
Self-Organized Subpopulation in GP on GPU

Paper:

Self-Organized Subpopulation Based on Multiple Features
in Genetic Programming on GPU

Keiko Ono∗ and Yoshiko Hanada∗∗

∗Doshisha University
1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan

E-mail: kono@mail.doshisha.ac.jp
∗∗Kansai University

3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
[Received August 9, 2019; accepted December 3, 2020]

Genetic Programming (GP) is an Evolutionary Com-
putation (EC) algorithm. Controlling genetic diversity
in GP is a fundamental requirement to obtain vari-
ous types of local minima effectively; however, this
control is difficult compared to other EC algorithms
because of difficulties in measuring the similarity be-
tween solutions. In general, common subtrees and the
edit distance between solutions is used to evaluate the
similarity between solutions. However, there are no
clear guidelines regarding the best features to evaluate
it. We hypothesized that the combination of multiple
features helps to express the specific genetic similar-
ity of each solution. In this study, we propose a self-
organized subpopulation model based on similarity in
terms of multiple features. To reconstruct subpopu-
lations, we introduce a novel weighted network based
on each normalized feature and utilize network clus-
tering techniques. Although we can regard similar-
ity as a correlation network between solutions, the use
of multiple features incurs high computational costs,
however, calculating the similarity is very suitable for
parallelization on GPUs. Therefore, in the proposed
method, we use CUDA to reconstruct subpopulations.
Using three benchmark problems widely adopted in
studies in the literature, we demonstrate that perfor-
mance improvement can be achieved by reconstruct-
ing subpopulations based on a correlation network of
solutions, and that the proposed method significantly
outperforms typical methods.

Keywords: genetic programming, subpopulation model,
genetic diversity, multiple features

1. Introduction

In Genetic Programming (GP), it is important to main-
tain genetic diversity, which can be achieved by improv-
ing the replacement strategies, such as re-selection and
crowding [1], and the sharing function [2]. A subpopula-
tion model easily encourages genetic diversity and avoids
premature convergence toward local optima; it frequently

shows a better search performance than single population
models. Studies have been conducted on subpopulation
models in GP to further improve its performance. For
example, Hu et al. [3, 4] proposed the hierarchical fair
competition model (HFX), in which individuals are sepa-
rated into subpopulations according to their fitness values
and evolve in a fair competition environment. Hornby [5,
6] proposed the age-layered population structure model
(ALPS), in which individuals are evaluated by their age,
that is, a measure of how long the genetic material has
been in the population, and separated into subpopulations
according to this age measure. Luna et al. [7] proposed
a meaning-based model for data mining to extract mining
rules. Moreover, other researchers have proposed migra-
tion models [8–11], in which some individuals migrate to
the next subpopulation to maintain genetic diversity. HFX
and ALPS require appropriate boundary parameters for
each subpopulation, which are difficult to determine: a fit-
ness value in HFX and an age value in ALPS. By contrast,
in migration models, it is not necessary to set boundary
parameters, and these models can be easily implemented
in various applications. Therefore, we focus on migration
models in this study and consider enhancing the subpop-
ulation models in the GP framework.

To enhance the subpopulation model, it is important to
consider the amount of genetic diversity that should be
maintained during evolution. The higher the genetic di-
versity of a subpopulation, the wider the range of charac-
teristics of each solution, which hinders the convergence
to local minima. Previous subpopulation models focused
on increasing genetic diversity by dividing solutions into
some populations; the level of genetic diversity was not
controlled. The genetic diversity can be easily controlled
if the distance between solutions can be measured as Eu-
clidian distance. However, this distance is difficult to
measure because solutions in GP are typically expressed
by a tree. In general, the similarity based on common
subtrees and edit distance between solutions is used to
evaluate the distance between solutions. Nevertheless, the
best manner to express distance is uncertain because each
problem domain has its own most effective feature. We
hypothesize that multiple features extracted from each so-
lution can enable an improved evaluation of the distance

Vol.25 No.2, 2021 Journal of Advanced Computational Intelligence 177
and Intelligent Informatics

https://doi.org/10.20965/jaciii.2021.p0177

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Ono, K. and Hanada, Y.

between solutions compared to a single feature, and adap-
tive reconstruction of subpopulations consisting of similar
individuals in terms of multiple features can enhance local
search. Moreover, both mutations in each subpopulation
and independent evolution using the subpopulation model
can enhance genetic diversity.

In this study, we propose a novel self-adaptive subpop-
ulation model that, on the basis of multiple features, cre-
ates a subpopulation in which similar individuals exist and
enhances mutation in this subpopulation. More specifi-
cally, to create subpopulations with similar features, we
introduce a weighted network of individuals based on
similarity obtained from features, and separate individu-
als into subpopulations using network clustering. Using
these strategies, we can control the balance between local
search and genetic diversity to avoid redundant search-
ing. Obtaining similarity based on multiple features is a
time-consuming task, whereas calculating the similarity
between individuals is very suitable for parallelization.
Therefore, we use CUDA to construct a correlation net-
work. It is well known that a considerable computational
effort is required to evaluate fitness in GP. The first study
using CUDA (GPUs) in GP was reported in [12]; other
researchers have also proposed using CUDA models in
GP to enhance acceleration [13–16]. To the best of our
knowledge, our proposed method is the first subpopula-
tion model in GP, executed on CUDA, which reconstructs
subpopulations according to the individuals’ features.

The remindar of this paper is organized as follows. In
Section 2, we formulate the optimization problem dis-
cussed in this study and provide a detailed explanation
of the subpopulation model in GP. In Section 3, we de-
scribe the CUDA-based proposed adaptive subpopulation
model in GP in detail. We first present an overview of
the proposed method, and then explain the CUDA-based
approach of the proposed method with the objective of
reducing computational effort. Moreover, we explain
a technique for adaptively reconstructing subpopulations
using the proposed method. In Section 4, we examine
the effectiveness of the proposed method through experi-
ments using three benchmark problems widely adopted in
studies in the literature. We first explain the implementa-
tion of the proposed method, and then introduce two com-
parison methods to analyze the effects of the proposed
method.1

2. Problem Definition and Subpopulation
Model in GP

In the framework of GP, we consider the problem of
minimizing a function f (x), where its input variable x is
represented as a labeled ordered tree. Given the total pop-
ulation size N and a crossover-mutation-selection strat-
egy, a common approach to improving a GP search is to

1. In our conference paper [17], we proposed a basic framework for such
a migration strategy. This paper extends our preliminary study [17] by
improving the technique of measuring the similarity between subpopula-
tions incorporating mutation.

Algorithm 1 Algorithm for subpopulation model
R0: Set g← 1.
R1: Initialize individuals in each subpopulation Pm.
R2: If g ≤ G, then perform Steps R3 to R8; otherwise,
stop.
R3: Apply genetic operations, such as selection and
crossover.
R4: If g is a migration generation, then perform Steps R5
to R7; otherwise, perform Step R8.
R5: Choose the best n individuals Bm and the worst n in-
dividuals W m in Pm.
R6: Send Bm to the next subpopulation Pm+1.
R7: Replace W m with Bm−1, that is, the best individuals
in the next subpopulation Pm−1.
R8: Set g← g+1.

apply subpopulation model methods. In the GP subpop-
ulation model, the total population V is partitioned into
M subpopulations, and the subpopulations execute GP
searches for minimizing f (x) in parallel, although they
exchange information by migration. There are several mi-
gration topologies such as ring, random, and grid, but the
ring topology is the most basic. Thus, we focus on the
ring topology and refer to it as the subpopulation model
in GP in this paper. It should be noted that the number of
individuals in each subpopulation does not change during
searching.

We begin by recalling the details of the subpopulation
model in GP with ring topology. Let Pm (m = 1, . . . ,M)
denote the m-th subpopulation, where the number of indi-
viduals in Pm is |Pm|= |V |/M. The individuals in Pm are
denoted by V m = {vm

i ; i = 1, . . . , I}, and the total popula-
tion is obtained by

V =
M⋃

m=1

V m,

where I = |V |/M, and |V | is the number of all individ-
uals. The total population is V = {vi; i = 1, . . . , I×m}.
It should be noted that the set of subpopulations P =
{Pm; m = 1, . . . ,M}, and the maximum generation is G.
The algorithm of the subpopulation model in GP is shown
as Algorithm 1. Here, the topology type of the subpop-
ulation model in GP is a ring; therefore, the subpopula-
tion P0 receives individuals from PM, and PM sends them
to P0.

3. Self-Organized Subpopulation Model in GP
on GPU: SoS-GP

3.1. Overview of SoS-GP

In sequence, we consider enhancing the subpopulation
model in GP for the minimization problem of the objec-
tive function f (x).

In GP, the structure of an individual can be expressed
by a tree. There are multiple features of an individual,

178 Journal of Advanced Computational Intelligence Vol.25 No.2, 2021
and Intelligent Informatics

Self-Organized Subpopulation in GP on GPU

3

Inid
ivid
uals

Inidividuals

Fig. 1. Proposed model using CUDA.

such as fitness, tree size, and subtree. However, fitness is
used only as a feature for migration in the common sub-
population model in GP; elite individuals with lower fit-
ness values than others in the same subpopulation migrate
to other subpopulations. According to the building block
hypothesis, partial solutions are assembled into the en-
tire solution. Here, we hypothesize that incorporating the
structure information of individuals in the migration strat-
egy is important for enhancing the combination of partial
solutions. We also assume that the balance between local
and genetic searches is important. If abrupt changes oc-
cur in the search area, individuals randomly evolve, which
leads to disruption of genetic operations. To effectively
explore partial solutions, we incorporate a local search
into the subpopulation model in GP. Thus, from the view-
point of encouraging local search to combine partial so-
lutions, we suppose that automatic reconstruction of sub-
populations, which consist of similar individuals in terms
of their multiple features, enhances local search and im-
proves the combination of partial solutions. Therefore,
we propose a self-adaptive subpopulation model in GP.
In the proposed method, we generate a weighted network
of individuals based on fitness and node size and create
subpopulations by network clustering.

However, fitness evaluation is the most time-
consuming part of reconstructing subpopulations. More-
over, the proposed method evaluates the similarity be-
tween individuals based on their features, which also in-
creases the computational effort. To solve this issue, we
use GPGPU to create a similarity network using multi-
ple features. Fig. 1 shows the model of the proposed
method. The proposed method forms subpopulations in
which individuals are evolved in parallel. In spite of mi-
gration, subpopulations are automatically reconstructed
by the similarity network of individuals V . In Section 3.2,
we describe the proposed model using GPGPU in detail.
The algorithm of the proposed method is shown as Algo-
rithm 2.

3.2. Feature Evaluation Using GPGPU
In the proposed method, self-organized subpopulation

model in GP on GPU (SoS-GP), an automatic reconstruc-

Algorithm 2 Algorithm for the proposed method
P0: Set g← 1.
P1: Initialize individuals in each subpopulation Pm, where
the number of individuals I is set to |V |/M.
P2: If g ≤ G, then perform Steps P3 to P13; otherwise,
stop.
P3: Apply selection and crossover.
P4: Apply mutation γ times.
P5: If g is a reconstruction generation, then perform
Steps P5 to P11; otherwise, perform Step P13.
P6: Send V m in each Pm to the subpopulation P0.
P7: If the subpopulation is P0, then perform Steps P7
to P11; otherwise, perform Step P12.
P8: Evaluate the similarity matrix H between vi and v j

(i �= j).2
P9: Create a network based on H.
P10: Divide the population V into M subpopulations V̂ m

by network clustering to reconstruct V m.3
P11: If |V m| is not 1, then perform Steps P11 to P12; oth-
erwise, perform Step P13.
P12: Send V̂ m to Pm.
P13: Replace V m with V̂ m.
P14: Set g← g+1.

tion of subpopulations that consist of similar individuals
in terms of their features, is conducted to enhance local
search. In GP, as an individual can be represented by a
tree, there are several features that can be used to mea-
sure their similarity. We assume that the similarity can
be accurately measured using multiple features. How-
ever, there are |V |2/2 combinations for one type of feature
when the number of individuals is |V |, and the required
computational effort is thus increased. To decrease the
computational effort when multiple features are applied,
we use GPGPU to create a similarity network.

Figure 1 shows the model of the proposed method
that uses both CUDA and MPI. The proposed method
evolves subpopulations in parallel and applies the same
type of genetic operators in all subpopulations. MPI is

2. Here, the similarity H is a V ×V matrix, and the element of H is huv. For
more detail, see Section 3.2.

3. For more detail, see Section 3.3.

Vol.25 No.2, 2021 Journal of Advanced Computational Intelligence 179
and Intelligent Informatics

Ono, K. and Hanada, Y.

mostly known for message-passing multiprocessing pro-
gramming and allows a subpopulation model to be easily
implemented using multiple processors on a single system
or a cluster of systems. However, the proposed method
evaluates the similarity between individuals in terms of
each feature in a different CUDA kernel in parallel to
achieve acceleration. Therefore, the proposed method
uses both CUDA and MPI. The three steps for evaluating
the similarity are as follows:

1. Gather individuals in each subpopulation to subpop-
ulation 1; the information of individuals is sent to a
global memory;

2. Evaluate the similarity in terms of each feature using
a different kernel: node size or fitness. Each similar-
ity result is sent to subpopulation 1;

3. Combine the similarity results using cuBLAST.

Here, to combine the similarities evaluated by differ-
ent kernels, we use cuBLAST, which is the CUDA basic
linear algebra subroutine library on NVIDIA CUDA run-
time. It automatically allocates the required matrices and
vectors in the GPU memory space. cuBLAST has many
calculators of matrix vectors divided into three levels in
terms of parallelization. In the proposed method, each
similarity consists of |V |2/2 elements; therefore, combin-
ing these elements requires a matrix and matrix multipli-
cation operation. This operation is a BLAST Level 3 op-
eration, which has higher scalability than other levels.
Therefore, the proposed method uses the cublasGetMatrix
operator in cuBLAST to process multiple feature similar-
ities.

3.3. Newman Clustering

Newman clustering [18, 19] is the most well-known
algorithm for extracting communities. It uses a qual-
ity function known as “modularity Q” over the possi-
ble divisions of a network. By optimizing the modular-
ity, density-connected groups of vertices with only sparse
connections between groups are detected. As in the pro-
posed method we reconstruct subpopulations based on the
similarity between individuals, Newman clustering can
be applied to detect subpopulations in which individuals
have a similar characteristic easily if we refer the simi-
larity matrix H to an adjacency matrix in a weighted net-
work. In this study, we used the Newman clustering algo-
rithm to reconstruct subpopulations. We refer to an indi-
vidual as a vertex, and an element of similarity H is the
weight between vertices. The modularity Q is defined as

Q = ∑
i
(eii−a2

i),

where eii is a portion of the weight of the joint vertices in
community i in the total weight, and ai is a portion of the
weight of nodes that connect vertices in community i to
other groups in the total weight. Let Auv be an element of

Algorithm 3 Algorithm for Newman clustering
S1: Evaluate the initial values of ΔQi j and ai according to
Eqs. (1) and (2).
S2: Select the largest element of each row of the ma-
trix ΔQ, and save it to the max-heap.
S3: Select the largest ΔQi j from the max-heap, and join
the corresponding communities.
S4: Update ΔQ, the max-heap and ai according to Eq. (3),
and increment Q by ΔQi j.
S5: Repeat Steps 2 and 3 until only one community re-
mains.
S6: Extract communities where Q is the maximum value.

the similarity matrix H. Thus4

Auv =

⎧⎪⎨
⎪⎩

huv if the weight between vertices u
and v is not 0,

0 otherwise.

ai is obtained by

ai = ∑
j

ei j,

ei j =
1

2W ∑
u

∑
v

Auvδ (cu, i)δ (cv, j),

where W is the amount of weight and δ function δ (i, j)
is 1 if i = j and 0 otherwise. If community i belongs to
the community cu, then δ (cu, i) = 1. As the first step, let
each vertex be the sole member of a community of one;
then, ei j = 1/2W if i and j are connected and 0 otherwise,
and ai = ki/2W , where

ku = ∑
v

Auv.

Thus, the initial ΔQi j is obtained by

ΔQi j =

⎧⎪⎨
⎪⎩

1
2W
− kik j

(2W)2 if the weight between
vertices i and j is not 0,

0 otherwise,
. (1)

and

ai =
ki

2W
. (2)

The Newman clustering algorithm with the similarity ma-
trix H is shown as Algorithm 3.

ΔQ
′
jk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔQik +ΔQ jk if community k is connected
to both i and j,

ΔQik−2a jak if community k is connected
to i but not to j,

ΔQ jk−2a jak if community k is connected
to j but not to i.

. (3)

4. Auv is an element of the adjacency matrix of the network.

180 Journal of Advanced Computational Intelligence Vol.25 No.2, 2021
and Intelligent Informatics

Self-Organized Subpopulation in GP on GPU

4. Experimental Evaluation

Through experiments using three benchmark problems
widely adopted in studies in the literature, we evaluated
the effectiveness of the proposed method. Moreover, we
analyzed the effects of mutation and genetic diversity, and
verified that the proposed framework based on similarity
between individuals can control genetic diversity.

4.1. Implementation
Here, we explain the implementation of Step P7 of the

proposed method in the experiments. Although there are
several features for measuring the similarity between indi-
viduals i and j, we used the difference in the fitness value
and in the node size between i and j for simplicity. The
similarity matrix H f in terms of the difference in the fit-
ness value is obtained by

H f
i j =

{
h f

i j f (vi) �= f (v j),
0 otherwise,

where h f
i j = η/| f (vi)− f (v j)| and η is a real-valued pa-

rameter. We set it to 1.0 in our experiments. H f
i j becomes

large when f (vi) and f (v j) are scalar. Moreover, the sim-
ilarity matrix Hn in terms of the difference in node size is
obtained by

Hn
i j =

{
hn

i j |vi| �= |v j|,
0 otherwise,

where hn
i j = η/||vi|− |v j||. We constructed the similarity

of individuals H as follows. Let Ĥ f and Ĥn be the normal-
ized matrices of H f and Hn, respectively. Let H denote
the total similarity with respect to the fitness values and
node size. Then, we define H by

H = αĤ f +(1−α)Ĥn.5 (4)

A matrix and matrix multiplication operation were used
to normalize the matrices Hf and Hn and to obtain H in
Eq. (4); therefore, we used the cublasGetMatrix operation
in cuBLAST.

4.2. Comparison Methods
The proposed method evaluates the similarity between

individuals using a combination of H f and Hn. H f mea-
sures the difference between individuals in fitness values,
and Hn measures the difference in node size. To ana-
lyze the effect of H f and Hn separately, we introduce two
methods as extreme cases of the proposed method and
compare them with the proposed method, as described
in Section 4.5. First, we investigate the effectiveness of
similarity in terms of fitness values. The similarity H is
defined by

H = Ĥ f .

5. α is a parameter. In our experiments, we adopted α = 0.5.

We refer to this method as the F-method. Then, we inves-
tigate the effectiveness of the similarity in terms of node
size. Similarity H is then defined by

H = Ĥn.

We refer to this method as the N-method.

4.3. Benchmark Problems
We evaluated the effectiveness of the proposed method

on well-known benchmark problems, the symbolic re-
gression problems. Here, we briefly explain these prob-
lems (see [20–22] for detailed descriptions).

We investigated the symbolic regression problem for
the function space X constructed by the labeled ordered
trees of functional nodes {+,−,×, /, sin, cos, log} and
terminal nodes {s, 0.05, 0.10, 0.15, 0.20, . . . , 0.95, 1.00},
where s denotes a variable. Our training set was com-
posed of 30 data points {(s j,x∗(s j)) ∈R2; j = 1, . . . ,30},
where s j = 0.2(j− 1), and x∗(s) ∈ X is the true func-
tion to be identified. For any x(s) ∈ X , we define the
fitness f (x) by

f (x) = 50
30

∑
j=1
|x(s j)− x∗(s j)|,

and consider the maximization problem of f (x). In our
experiments, we employed three functions x∗(s),

Function A :
x∗(s) = (2−0.3s)sin(2s)cos(3s)+0.11s2,

Function B :
x∗(s) = scos(s)sin(s)

(
sin2(s)cos(s)−1

)
,

Function C :
x∗(s) = s3 cos(s)sin(s)e−s (sin2(s)cos(s)−1

)
.

4.4. Experimental Setting
To evaluate the benchmark problems, we used the fol-

lowing standard parameter settings [20–22]: the recom-
bination rate was 1.0, the mutation rate was 0.0, random
selection was used (non-elitist), the total population size
was N = 250, the number of subpopulations was M = 5,
the maximum depth was 16, the number of generations
was I = 100, the migration interval was 10, and the initial
individuals were created by using “ramped half-and-half”
with maximum depth. Fig. 2 shows the history of fitness
in terms of Ring and the proposed method. From this fig-
ure, we observe that the Ring method converged around
the 50th generation; therefore, we set the number of gen-
erations to I = 100.

All our experiments were conducted on a single PC
with 6 Intel Xeon E5-1660 3.3 GHz processors, with
24 GB of memory and NVIDIA Quadro K6000 running
on Linux. The NVIDIA Quadro K6000 is capable of ap-
proximately 5.2 TFlops and 2880 CUDA cores.

4.5. Performance Evaluation
We first compared the proposed method with the N,

F, Ring, and Simple methods in terms of solution qual-

Vol.25 No.2, 2021 Journal of Advanced Computational Intelligence 181
and Intelligent Informatics

Ono, K. and Hanada, Y.

0 20 40 60 80 100
Generat ion

450

500

550

600

650

700

750

800

Fi
tn
es
s

Island0
Island1
Island2
Island3
Island4

(a) Ring

0 20 40 60 80 100
Generat ion

450

500

550

600

650

700

750

800

Fi
tn
es
s

Island0
Island1
Island2
Island3
Island4

(b) Proposed

Fig. 2. History of fitness (Function A).

ity. In the experiments, we conducted 20 trials and eval-
uated the best individuals xm

f in Pm at the final genera-
tion, that is, f (xm

f) ≥ f (x) (∀x ∈ V m). Fig. 3 graphically
presents f (xm

f), where m = 1, . . . ,M and M = 5.
Figure 3 shows that the Simple method was not supe-

rior to the other methods in any functions. This result im-
plies the necessity of migration in a subpopulation model.
Fig. 3(a) shows the results of Function A. The N-method
was not superior to the proposed, F and Ring methods
in performance, and the F-method was comparable to the
Ring method. Moreover, the performance of the proposed
method was superior to that of these methods.

Figure 3(b) shows the results for Function B. It is ob-
served that the performance of the Ring method com-
pared to that of the F-method was superior for Function B,
and similar for Functions A and C. By contrast, the per-
formance of the F-method was superior to that of the
N-method. These results imply that similarity based on
fitness is effective for solution quality. In Section 4.6, we
analyze the reason why the F-method was superior to the
N-method.

From Fig. 3(c), it is observed that the performance
of the proposed method was comparable to that of the
F-method for Function C, whereas for other functions
the proposed method outperformed the N and F methods.
These results imply that the proposed method that recon-
structs subpopulations based on multiple features of indi-
viduals, that is, incorporating both the similarity of node
size Ĥn and the similarity of fitness Ĥ f , leads to perfor-
mance improvement.

Next, we evaluated the effects of mutation in Step P4.
We hypothesized that the proposed SoS model can en-
hance local search by constructing a subpopulation; it can
simultaneously maintain genetic diversity through muta-
tion. Here, individuals in the same subpopulation have
relatively the same features. We evaluated the fitness of
each individual every five generations while changing the
number of mutations γ . Figs. 4–6 show the distributions
of individuals every five generations using the proposed
method. We found that fitness became lower than that of
the 5th generation as the number of generations increased.
In particular, the results showed better performance in all
problems when γ was set to 10. From these results, we
confirmed that the balance in terms of mutation rate is
important for performance improvement.

 400

 450

 500

 550

 600

Proposed N-method F-method Ring Simple

F
i
t
n
e
s

Methods

(a) Function A

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

Proposed N-method F-method Ring Simple

F
i
t
n
e
s

Methods

(b) Function B

 100

 150

 200

 250

 300

 350

 400

Proposed N-method F-method Ring Simple

F
i
t
n
e
s

Methods

(c) Function C

Fig. 3. Performance evaluation.

To verify why the proposed method showed better
performance when γ was set to 10, we analyzed the
differences between the elite and the other individuals.
Figs. 7–9 show the differences between the best individ-
ual and each individual in terms of fitness and edit dis-
tance, in which individuals evolve without mutation when
γ is set to 0. Compared to γ = 5, 10, and 15, the plots in
Figs. 4(a), 5(a), and 6(a) were gathered around the upper-
left corner. These results without mutation show less di-
versity, as expected from the high similarities in each sub-
population. By contrast, diversity increases as the number
of mutations increases. From these results, we verify that
the proposed method can control local search and genetic
diversity by the proposed SoS and mutation, and an ap-
propriate balance exists. These results demonstrate the
effectiveness of the proposed method.

Moreover, we evaluated the average of nodes in terms
of the best individuals xm

f in Pm at the final generation to
investigate the influence of the bloat phenomenon in GP.

182 Journal of Advanced Computational Intelligence Vol.25 No.2, 2021
and Intelligent Informatics

Self-Organized Subpopulation in GP on GPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(a) γ = 0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(b) γ = 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(c) γ = 10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(d) γ = 15

Fig. 4. Distribution of individuals (Function A).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(a) γ = 0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(b) γ = 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250
F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(c) γ = 10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(d) γ = 15

Fig. 5. Distribution of individuals (Function B).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(a) γ = 0

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(b) γ = 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(c) γ = 10

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 50 100 150 200 250

F
i
t
n
e
s
s

#Indivisuals

gene-5
gene-10
gene-50
gene-95

(d) γ = 15

Fig. 6. Distribution of individuals (Function C).

A common method to prevent bloat is to limit the max-
imum number of nodes; therefore, we introduced a new
function shown in Eq. (5).

g(x) = 50
30

∑
j=1
|x(s j)− x∗(s j)|+β · ||x||, . . . (5)

where || || indicates the number of nodes in x and β is
a weight parameter that controls the number of nodes.
Fig. 10 shows the fitness values in terms of fitness g(x)
and f (x) = g(x)−β · ||x|| with respect to β using the pro-
posed method with γ = 0. From Figs. 3 and 10, Func-
tions A and B with β = 1 showed better performance
than the proposed method. As the first step, the proposed
method does not adopt an approach to reduce bloat; how-
ever, these results indicate that we should consider the
bloat in GP in the proposed method for further perfor-
mance improvement by incorporating a bloat resistance
method.

4.6. Behavior Analysis

In the proposed method, multiple features are used to
create a correlation network of individuals. Therefore,
considerable computational effort is required by the pro-
posed method compared to the Ring and Simple methods
for evaluating the similarity between individuals. First,
we investigated the scalability of the proposed method in
terms of the number of individuals and used this method
over 20 trials to analyze the best and worst trials based on
the average execution time, as shown in Fig. 11.

We set the number of individuals as 50, 150, 250, 350,
and 450. The average execution time is different in each
problem because although the maximum depth of an in-
dividual is limited, the number of nodes of individuals
is not constant. In Fig. 11, we see that the execution
time increased linearly as the number of individuals in-
creased from 50 to 150. However, linear computational
effort with respect to the number of individuals was not
required when the number of individuals exceeded 150.

Vol.25 No.2, 2021 Journal of Advanced Computational Intelligence 183
and Intelligent Informatics

Ono, K. and Hanada, Y.

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(a) γ = 0

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(b) γ = 5

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(c) γ = 10

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(d) γ = 15

Fig. 7. Differences between the elite and the others (Function A).

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(a) γ = 0

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(b) γ = 5

-2000

-1500

-1000

-500

 0

 0 50 100 150 200
D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(c) γ = 10

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(d) γ = 15

Fig. 8. Differences between the elite and the others (Function B).

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(a) γ = 0

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(b) γ = 5

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(c) γ = 10

-2000

-1500

-1000

-500

 0

 0 50 100 150 200

D
i
f
f
e
r
e
n
c
e

(
F
i
t
n
e
s
s
)

Edit distance

gene-5
gene-10
gene-50
gene-95

(d) γ = 15

Fig. 9. Differences between the elite and the others (Function C).

1 3 5 10 20 30 40 50
β

200

400

600

800

1000

1200

F
itn
es
s

Fitness
Fitness-β ⋅ #Nodes

(a) Function A

1 3 5 10 20 30 40 50
β

400

600

800

1000

1200

1400

F
itn
es
s

Fitness
Fitness-β ⋅ #Nodes

1600

(b) Function B

1 3 5 10 20 30 40 50
β

100

200

300

400

500

600

F
itn
es
s

Fitness
Fitness-β ⋅ #Nodes700

800

(c) Function C

Fig. 10. Influence of β on performance.

The proposed method uses CUDA to evaluate the simi-
larity between individuals to provide acceleration; we set
the number of threads at |V |2/2, where |V | is the number
of individuals. Therefore, the proposed method can adap-
tively reconstruct subpopulations without a substantial in-
crease in computational effort. These results demonstrate
the effectiveness of the proposed method.

Finally, we investigated the difference in the solution
quality of the proposed, N, and F methods, as described
in Section 4.5. Thus, we evaluated the success rate of
subpopulation reconstructions of the three methods. In
Step P11 in Section 2, we describe an error procedure
in the case where the subpopulation reconstruction fails.
These methods use Newman clustering to adaptively di-

184 Journal of Advanced Computational Intelligence Vol.25 No.2, 2021
and Intelligent Informatics

Self-Organized Subpopulation in GP on GPU

Fig. 11. Scalability in terms of the number of individuals.

Table 1. Success rate and average of |Pm|.

Average of |Pm|
Method Success rate [%] Best trial Worst trial
Proposed 100 44.5 65.7

N-method 30 – –
F-method 100 56.1 65.2

vide the population P into subpopulations Pm based on
the features of individuals. If the value of each Hi j is sim-
ilar, the number of communities extracted by Newman
clustering may be 1. Table 1 presents the success rate
of subpopulation reconstruction over 20 trials. From the
table, it can be seen that the proposed and F-methods can
reconstruct subpopulations with a 100% success rate, but
the N-method failed several times to reconstruct subpopu-
lations. This result shows that the weighted network with
only the difference in the node size cannot create sub-
populations, whereas the proposed method using multiple
features succeeded in creating subpopulations and exhib-
ited a better performance than the F-method. We hypothe-
sized that incorporating the multiple structure information
of individuals in the migration strategy is important for
enhancing the combination of partial solutions and leads
to performance improvement. These results support our
hypothesis.

5. Conclusion

To improve the subpopulation models in GP, it is es-
sential to obtain a search strategy that has a good bal-
ance between local search and genetic diversity. We at-
tempted to enhance subpopulation models by adaptively
changing subpopulations according to the features of in-
dividuals to improve local search, where individuals can
be represented by a tree structure in GP. In this paper, we
introduced a novel similarity H to reconstruct subpopu-
lations based on the similarity of fitness values and also
node size between individuals, and proposed a novel sub-
population model (SoS-GP). The proposed method gen-
erates a weighted network of individuals according to the
proposed measure H, and creates subpopulations using a
network clustering technique. In this case, considerable
computational effort is required to evaluate the similar-
ity H. We proposed a CUDA-based model to shorten this

time-consuming task. Moreover, we adopted a mutation
in the proposed method. We hypothesized that mutation
can enhance the generation of various individuals with
different structures, and can maintain the balance between
local search and genetic diversity by cooperating with the
SoS model.

In well-known benchmark problems widely adopted in
studies in the literature, we confirmed that the proposed
subpopulation model offers a significant performance ad-
vantage over the comparison method. We also analyzed
the behavior of the proposed method and demonstrated
its validity.

The experimental results indicated that the perfor-
mance of the proposed method and F-method is high, and
confirmed that performance improvement can be achieved
by incorporating multiple features and reconstructing sub-
populations. Although in this paper we showed only the
results for three problems, we achieved similar results in
other problems. Our immediate future work is to evalu-
ate the proposed method using various other benchmark
problems. Moreover, other subpopulation models such as
ALPS require appropriate boundary parameters; however,
in the proposed method, some parameters like the num-
ber of mutations γ and crossover rate are fixed as the first
step. We will investigate methods for adaptively control-
ling these parameters, and compare the proposed method
with them. The proposed method uses fitness and node
size to evaluate the similarity between individuals for sim-
plicity. However, various features exist for estimating the
similarity between individuals. Therefore, future work in-
cludes combining these features to create a weighted net-
work with the objective of further performance improve-
ment. Additionally, we will attempt to develop a more
effective parallel method using CUDA to reduce compu-
tational effort.

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number
JP19H02032 and JP20K11982.

References:
[1] K. A. De Jong, “An Analysis of the Behavior of a Class of Genetic

Adaptive Systems,” Ph.D. thesis, University of Michigan, 1975.
[2] B. L. Miller and M. J. Shaw, “Genetic Algorithms with Dynamic

Niche Sharing for Multimodal Function Optimization,” Proc. of
1996 IEEE Int. Conf. on Evolutionary Computation (ICEC’96),
pp. 786-791, 1996.

[3] J. Hu, E. D. Goodman, and K. Seo, “Continuous Hierarchical Fair
Competition Model for Sustainable Innovation in Genetic Program-
ming,” R. Riolo and B. Worzel (Eds.), “Genetic Programming The-
ory and Practice,” pp. 81-98, Kluwer Academic Publishers, 2003.

[4] J. Hu, E. D. Goodman, K. Seo, and M. Pei, “Adaptive Hierarchical
Fair Competition (AHFC) Model for Parallel Evolutionary Algo-
rithms,” Proc. of the Genetic and Evolutionary Computation Conf.
2002 (GECCO 2002), pp. 772-779, 2002.

[5] G. S. Hornby, “ALPS: the age-layered population structure for
reducing the problem of premature convergence,” Proc. of the
8th Annual Conf. on Genetic and Evolutionary Computation
(GECCO’06), pp. 815-822, 2006.

[6] G. S. Hornby, “Steady-state ALPS for real-valued problems,” Proc.
of the 11th Annual Conf. on Genetic and Evolutionary Computation
(GECCO’09), pp. 795-802, 2009.

[7] J. M. Luna, J. R. Romero, C. Romero, and S. Ventura, “Discover-
ing Subgroups by Means of Genetic Programming,” Proc. of the

Vol.25 No.2, 2021 Journal of Advanced Computational Intelligence 185
and Intelligent Informatics

Ono, K. and Hanada, Y.

16th European Conf. on Genetic Programming (EuroGP 2013),
pp. 121-132, 2013.

[8] Y. Jin, “Surrogate-assisted evolutionary computation: Recent ad-
vances and future challenges,” Swarm and Evolutionary Computa-
tion, Vol.1, Issue 2, pp. 61-70, 2011.

[9] D. Andre and J. R. Koza, “A Parallel Implementation of Genetic
Programming That Achieves Super-Linear Performance,” Proc. of
the Int. Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA’96), Vol.III, pp. 1163-1174, 1996.

[10] W. F. Punch, “How Effective Are Multiple Populations in Genetic
Programming,” Genetic Programming 1998: Proc. of the 3rd An-
nual Conf., pp. 308-313, 1998.

[11] M. Harwerth, “Experiments on Islands,” Proc. of the 14th European
Conf. on Genetic Programming (EuroGP 2011), pp. 239-249, 2011.

[12] S. Harding and W. Banzhaf, “Fast Genetic Programming and Ar-
tificial Developmental Systems on GPUs,” Proc. of the 21st Int.
Symp. on High Performance Computing Systems and Applications
(HPCS’07), doi: 10.1109/HPCS.2007.17, 2007.

[13] S. Harding and W. Banzhaf, “Genetic programming on GPUs for
image processing,” Int. J. of High Performance System Architec-
ture, Vol.1, Issue 4, pp. 231-240, 2008.

[14] I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly, “Flash:
A GP-GPU Ensemble Learning System for Handling Large
Datasets,” Proc. of the 17th European Conf. on Genetic Program-
ming (EuroGP 2014), pp. 13-24, 2014.

[15] W. B. Langdon and M. Harman, “Genetically Improved CUDA C++
Software,” Proc. of the 17th European Conf. on Genetic Program-
ming (EuroGP 2014), pp. 87-99, 2014.

[16] W. B. Langdon, “A Many Threaded CUDA Interpreter for Genetic
Programming,” Proc. of the 13th European Conf. on Genetic Pro-
gramming (EuroGP 2010), pp. 146-158, 2010.

[17] K. Ono and Y. Hanada, “A CUDA-based self-adaptive subpopula-
tion model in genetic programming: CuSASGP,” Proc. of the 2015
IEEE Congress on Evolutionary Computation (CEC), pp. 1543-
1550, 2015.

[18] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proc. of the National Academy of Science
of the United States of America, Vol.99, No.12, pp. 7821-7826,
2002.

[19] A. Clauset, M. E. J. Newman, and C. Moore, “Finding commu-
nity structure in very large networks,” Physical Review E, Vol.70,
Issue 6, doi: 10.1103/PhysRevE.70.066111, 2004.

[20] K. Yanai and H. Iba, “Estimation of distribution programming based
on Bayesian network,” Proc. of the 2003 Congress on Evolutionary
Computation (CEC’03), Vol.3, pp. 1618-1625, 2003.

[21] W. B. Langdon and R. Poli, ”Foundations of Genetic Program-
ming,” Springer, 2002.

[22] W. B. Langdon and R. Poli, “Why Ants are Hard,” Genetic Pro-
gramming 1998: Proc. of the 3rd Annual Conf., pp. 193-201, 1998.

Name:
Keiko Ono

Affiliation:
Doshisha University

Address:
1-3 Tatara Miyakodani, Kyotanbe, Kyoto 610-0394, Japan
Brief Biographical History:
2010- Assistant Professor, Ryukoku University
2014- Associate Professor, Ryukoku University
2020- Associate Professor, Doshisha University
Main Works:
• K. Ono, Y. Hanada, M. Kumano, and M. Kimura, “Enhancing Island
Model Genetic Programming by Controlling Frequent Trees,” J. of
Artificial Intelligence and Soft Computing Research, Vol.9, No.1,
pp. 51-65, 2019.
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)
• Information Processing Society of Japan (IPSJ)
• The Japanese Society for Evolutionary Computation (JPNSEC)

Name:
Yoshiko Hanada

Affiliation:
Kansai University

Address:
3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
Brief Biographical History:
2008- Assistant Professor, Kansai University
2016- Associate Professor, Kansai University
Main Works:
• K. Matsumura, Y. Hanada, and K. Ono, “Probabilistic Model-Based
Multistep Crossover Considering Dependency Between Nodes in Tree
Optimization,” R. Lee (Ed.), “Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing,”
pp. 187-200, Springer, 2017.
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)
• Information Processing Society of Japan (IPSJ)
• The Institute of Energy Economics, Japan (IEEJ)

186 Journal of Advanced Computational Intelligence Vol.25 No.2, 2021
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

