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In this paper, a Hadoop-based big data system for
auto body precision is established. The system uni-
fies the elements that affect auto body precision into
a big data platform, which is more efficient than tradi-
tional management methods. Using big data analysis,
we devised algorithms to improve the efficiency and
accuracy of body precision monitoring. Furthermore,
we developed techniques to analyze complex dimen-
sion deviation problems using a correlation analysis
method, principal component analysis (PCA), and im-
proved PCA method. We further established failure
modes and devised monitoring and diagnosis models
based on time series analysis.

Keywords: big data, PCA, precision monitoring, intelli-
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1. Introduction

Dimensional precision is an important indicator of
body welding quality. It determines the precision and reli-
ability of the vehicle assembly and further affects the sta-
bility and smoothness of the chassis, the handling of the
auto, and the matching quality of the interior and exterior
trims. However, improvements made on the flexibility of
the body production line, which enables the production of
mixed lines of multiple models, cause difficulties in de-
bugging and controlling dimensional precision. Thus, the
analysis of traditional body precision problems is mostly
handled by experienced dimension engineers. However,
big data analysis provides a good way to reduce depen-
dence on engineering experience.

The factors that usually influence auto body dimen-
sional precision include the precision of stamping parts,
precision and stability of welding fixtures, trolley of au-
tomated production lines, precise positioning of the parts
shelf, staff operation, and stability of the robot welding
system. Thus, multiple factors affect dimensional pre-
cision, which are interrelated and influence one another.
Hence, it is difficult to analyze and control the causes of

deviations.
To investigate this problem, in the 1990s, General Mo-

tors, Chrysler, and the University of Michigan jointly
launched the “2MM Project” [1]. In China, the study of
auto dimensional engineering mainly started when auto-
mobile joint ventures adopted technology in their produc-
tion processes. Systematic research on dimension control
in body welding was presented by Lin [2]. Xie et al. also
proposed a system optimization method for body parts
and fixture design [3]. Yang proposed a method of auto-
matic alarm for body dimension by analyzing the on-line
measurement data [4]. Moreover, the concept of a preci-
sion quality system for the reference position system of
the auto body was proposed by Chen and Huang [5].

As mentioned above, various aspects of auto body di-
mensional precision control have been investigated in the
current literature. Nevertheless, the complexity of the fac-
tors that influence body dimensional precision and their
multiple sources cause practical issues in dimensional
control. The development of intelligent manufacturing
and big data technology provides new methods for con-
trolling and improving body precision. In this study, we
established a big data system and used big data analysis
to monitor auto body dimensional precision and analyze
the influencing factors. The relevant measurement infor-
mation were unified into the big data platform, including
100% online measurement data of more than 1000 key
points of the vehicle, regular measurement data of the as-
sembly and sub-assembly parts based on importance, reg-
ular and irregular measurement data of more than 500 sets
of fixtures, and measurement data of the supplier parts and
stamping parts. Afterwards, we automatically analyzed
and monitored the auto body precision using a big data
analysis model. For multi-deviation source problems, cor-
relation analysis can be used to find the linear correlation
between elements. If the deviation source is too complex,
principal component analysis (PCA) can be used, whereas
for complex non-linear multi-deviation source problems,
kernel principal component analysis (KPCA) can be used.
The deviation source analysis method based on the time
series model is more effective for monitoring recurrent
fluctuations.
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Fig. 1. Parts positioning and wear mode of locating pins.

2. Dimension Correlation Analysis of Multi-
Deviation Sources

The change in body dimension generally follows a nor-
mal distribution. Hence, dimensional precision control
is conventionally based on the principle of normal dis-
tribution. The coordinate measuring machine (CMM)
method is used to control and improve dimensional preci-
sion based on actual measurements. The method is suit-
able for simple troubleshooting and improvements. How-
ever, for multi-factor dimension problems, it cannot ef-
fectively determine the causes of deviations and quantita-
tively analyze the degree of influence of a given deviation
source. To address this issue, we introduced a correlation
analysis method to quantitatively analyze multiple devia-
tion sources and quickly determine the main factors of the
deviation sources.

2.1. Principle of Dimension Correlation Analysis
Correlation coefficient quantifies the degree of correla-

tion between variables. It is a statistical method used to
determine if there is a relationship between variables and
the degree of such relationship [6]. Covariance is often
used to quantify the linear correlation between two ran-
dom variables. For two variables X and Y , the covariance
is defined as [7]:

cov(X ,Y ) =

n

∑
i=1

(Xi −X)(Yi −Y )

n−1
. . . . . . (1)

Thus, the correlation coefficient γ is defined as:

γ =

n

∑
i=1

(x1i − x1)(x2i − x2)√
n

∑
i=1

(x1i − x1)2
n

∑
i=1

(x2i − x2)2

=

n

∑
i=1

(x1i − x1)(x2i − x2)

(n−1)S1S2
, . . . . . . . (2)

where x1i and x2i are the i-th measurement values of the
first and second variables, respectively, x1 and x2 are the
averages of the first and second variables, respectively,
n is the total number of measurements, S1 and S2 are the

standard deviations of the first and second variables, re-
spectively.

To normalize the correlation coefficient in Eq. (2), we
further set Z1i = (x1i − x1)/S1 and Z2i = (x2i − x2)/S2.
Therefore, γ becomes:

γ =

n

∑
i=1

Z1iZ2i

n−1
. . . . . . . . . . . . . . (3)

2.2. Dimension Correlation Analysis
As shown in Fig. 1, a body part was positioned with cir-

cular and kidney-shaped holes on the XY planes. Fig. 1(a)
shows the positioning of the body parts on the fixture
under normal conditions. Circular pins A and B were
matched with the circular and kidney-shaped holes, re-
spectively. Figs. 1(b) and (c) indicate the possible devi-
ation directions of the measuring points n1 and n2 under
the wear conditions of circular pins A and B, respectively.
The failure mode, which causes the size fluctuation of the
welding parts, can be determined by performing correla-
tion analysis on the measurement data.

If n1 and n2 move horizontally at the same time and
with the same magnitude, it indicates that pin A is worn.
Similarly, if the movement amplitudes of n1 and n2 are
not the same, and n2 moves up and down, it indicates that
pin B is smaller or lost. Here, we utilized correlation anal-
ysis to determine the type of measurement point fluctua-
tions. In the experiment, CMM was used to measure the
dimension. For convenience of measurement, holes were
drilled at the n1 and n2 positions. The diameters of pins A
and B were then measured using a micrometer. The devi-
ation value was obtained by calculating the deviation be-
tween the measured and theoretical positions of multiple
random clamping measurements.

As shown in Fig. 1(b), pin A is worn and the deviations
of n1 and n2 are (x1i,y1i) and (x2i,y2i), respectively. The
measuring points are listed in Tables 1 and 2. The sam-
pling statistics of the correlation analysis was based on
more than 20 groups of data randomly selected from hun-
dreds of samples. The correlation coefficients among X1,
X2, Y1, and Y2 are:
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Table 1. Deviations of the measuring points (n1,n2) under the wearing condition of circular pin A. Unit: mm.

1 2 3 4 5 6 7 8 9 10
X1 0.45 0.35 0.25 −0.3 −0.21 0.11 0.22 0.35 −0.36 −0.23
Y1 0.23 0.12 0.22 0.31 −0.15 −0.13 −0.26 0.18 0.25 −0.21
X2 0.42 0.34 0.24 −0.28 −0.22 0.12 0.23 0.33 −0.35 −0.23
Y2 0.01 0.11 −0.05 0.09 0.07 −0.11 −0.06 0.13 0.05 −0.04

Table 2. Deviations of the measuring points (n1,n2) under the wearing condition of circular pin B. Unit: mm.

1 2 3 4 5 6 7 8 9 10
X1 0.12 0.06 −0.1 0.08 0.02 0.11 −0.11 −0.07 0.09 0.08
Y1 0.06 0.08 0.1 −0.06 −0.05 −0.13 0.07 0.1 0.12 0.05
X2 0.1 0.09 −0.08 0.06 −0.12 0.12 −0.05 0.05 0.05 −0.12
Y2 0.36 0.25 0.45 −0.23 −0.19 0.33 −0.48 0.36 0.25 0.33

Fig. 2. Scatter diagrams of two variables with different correlation coefficients.

• γ(X1,X2) = 0.999, γ(X1,Y1) = 0.089,
• γ(X1,Y2) = −0.055
• γ(X2,Y1) = 0.082, γ(X2,Y2) = −0.007,
• γ(Y2,Y1) = 0.529

The value of the correlation coefficient indicates the
strength of the linear correlation between two variables.
As shown in Fig. 2, γ = 1 indicates that the two variables
have a clear linear relationship, 0 < γ < 1 indicates that
the two variables are positively correlated, γ = 0 indicates
that the two variables do not have a linear relationship,
−1 < γ < 0 indicates that the two variables are negatively
correlated, and γ = −1 indicates that the two variables
have a linear relationship with a negative slope.

The correlation coefficient between multiple variables
is usually obtained through a computer program. The cor-
relation matrix corresponding to X1, X2, Y1, and Y2 is
given in Table 3, which shows that the correlation coef-
ficients of X1 and X2 are close to 1. This means that the

changes in these two measurements are linearly related.
When pin A is worn, n1 and n2 synchronously move in the
X direction, and the two points have a strong correlation in
the X direction. Furthermore, the correlation coefficients
in the Y direction are significantly small owing to the lim-
itation of pin B. The movement of n2 is limited such that
there is no obvious correlation between n1 and n2. Based
on the correlation coefficients and measuring points data,
the wear of pin A can be inferred.

For the cases where the correlation coefficient is 0 (see
Fig. 2(f)), one may conclude that there is no linear re-
lationship between the two variables. However, there is a
definite relationship between the two variables, which can
be described by a non-linear curve.

In Fig. 1(c), pin B is worn, and points n1 and n2 ro-
tate around pin A. The correlation matrix is given in
Table 4, which shows that the correlation coefficient is
small. Moreover, there is no obvious correlation in the
XY direction. In this case, correlation analysis cannot ef-

92 Journal of Advanced Computational Intelligence Vol.25 No.1, 2021
and Intelligent Informatics



Method Improvement of Auto Body Precision Analysis

Table 3. Correlation matrix of measuring points n1 and n2
under the wearing condition of circular pin A.

Correlation matrix
X1 Y1 X2 Y2

X1 1.000 0.089 0.999 −0.055
Correlation Y1 0.089 1.000 0.082 0.529

X2 0.999 0.082 1.000 −0.07
Y2 −0.055 0.529 −0.07 1.000

Table 4. Correlation matrix of measuring points n1 and n2
under wearing condition of round pin B.

Correlation matrix
X1 Y1 X2 Y2

X1 1.000 −0.412 0.474 0.250
Correlation Y1 −0.412 1.000 −0.141 0.279

X2 0.474 −0.141 1.000 0.268
Y2 0.250 0.279 0.268 1.000

fectively indicate the root cause of changes in the measur-
ing point. Hence, a new method needs to be adopted to
analyze such changes. Instances of such changes are the
rotation mode and multiple parts, multiple processes, and
multiple jigs for multiple sources of analysis.

3. Dimension Analysis Based on PCA and
KPCA

Correlation coefficient analysis is suitable for determin-
ing the linear correlation between multivariate pairs. For a
more complex analysis, PCA and KPCA based on kernel
function [8] are often used.

3.1. Analysis of Dimension Deviation Sources Based
on PCA

Pearson introduced PCA for non-random variables.
This concept was further extended by Hotellin to random
vectors [9]. PCA is a statistical method for dimensional-
ity reduction. In body dimension analysis, PCA is usually
called principal vector analysis. The principal vector are
derived and represented by Zi. Zi can be interpreted as a
linear combination of N original correlation variables Xi
as: ⎛

⎜⎜⎜⎜⎜⎝

Z1
Z2
·
·
·

Zn

⎞
⎟⎟⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
· · · · · ·
· · · · · ·

an1 an2 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

x1
x2
·
·
·

xn

⎞
⎟⎟⎟⎟⎟⎠ . . . . (4)

The purpose of principal vector analysis is to determine
the eigenvalues and eigenvectors of the correlation ma-
trix. The eigenvalues are the variances of the principal
vectors, Var(Zi) = λ i. The elements of the eigenvector are
ai1,ai2, . . . ,ain. The equation that represents the changes

Fig. 3. Measuring points of the door sub-assembly and as-
sembly.

is given by:

[λ I−C]V = 0, . . . . . . . . . . . . . (5)

where λ represents the eigenvalue, that is, the variance of
the principal vector, I is the identity matrix, C is the co-
variance matrix, and V is the eigenvector. The eigenvec-
tors characterize the fluctuation via their values and signs
of their elements, and they can be used to determine the
source of dimension fluctuation and direction. The origi-
nal n related variables x1,x2, . . . ,xn are used with n master
vectors Z1,Z2, . . . ,Zn as:⎛

⎜⎜⎜⎜⎜⎝

x1
x2
·
·
·

xn

⎞
⎟⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · ·
· · · · · ·
· · · · · ·

an1 an2 · · · ann

⎤
⎥⎥⎥⎥⎥⎦

−1⎛
⎜⎜⎜⎜⎜⎝

Z1
Z2
·
·
·

Zn

⎞
⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

b11 b12 · · · b1n
b21 b22 · · · b2n
· · · · · ·
· · · · · ·
· · · · · ·

bn1 bn2 · · · bnn

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

Z1
Z2
·
·
·

Zn

⎞
⎟⎟⎟⎟⎟⎠ . . . (6)

Therefore, each original variable is described as a linear
combination of multiple principal vectors:

xi = bi1Z1 +bi2Z2 + · · ·+binZn. . . . . . . (7)

The variance of the original variable is expressed as:

Var[xi] = b2
i1var[Z1]+b2

i1var[Z1]+ · · ·+b2
invar[Zn], (8)

Var[xi] = b2
i1λ1 +b2

i1λ2 + · · ·+b2
inλn. . . . . . (9)

As mentioned earlier, the correlation matrix is symmet-
rical, and the number of matrix rows is equal to the num-
ber of eigenvalues and eigenvectors.

Here, we used PCA to investigate the causes of devi-
ations to analyze the fluctuations of the door frame size
during the welding of the door assembly. As shown in
Fig. 3, the measuring points 1, 2, 3, 13, 14, 15, and 16 of
the door frame significantly fluctuate in the X and Z direc-
tions; therefore, it is difficult to find a straightforward rule
of the deviation causes. It is also difficult to determine the
dimension deviation source of the part’s fluctuation using
only correlation coefficient method.

To address this issue, we used PCA method to ana-
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Table 5. Deviation data of the door frame measuring points. Unit: mm.

Table 6. PCA results of the deviations of the door frame
measuring points.

Component Characteristic
value

Contribution
rate

Cumulative
[%]

1 11.537 54.939 52.939
2 2.296 10.934 65.873
3 1.902 9.055 74.928
4 1.287 6.128 81.057
5 1.116 5.316 86.373
6 0.933 4.443 90.815
· · · · · · · · · · · ·

Extraction method: Principal component analysis

lyze the above measurement points. The measured data
of 20 groups of the selected points are presented in Ta-
ble 5 and the PCA results are presented in Table 6. Five
principal vectors were greater than 1. The characteristic
value of the first principal vector was 11.537 and the con-
tribution rate was 54.9%. This explains why the source of
the dimension deviation is relatively single.

In the process of applying the PCA method, the data
should be analyzed in the XY Z directions. However, be-
cause of the high computational complexity involved in
determining the main factors, it is more efficient to ana-
lyze the measuring points data in the T normal or Y di-
rections rather than in the XYZ directions. As shown in
Fig. 3, the door fluctuations in the Y direction are unsta-
ble. Only the measuring point deviation data in the Y di-
rection and the normal measuring point deviation data or-
thogonal to the outer plate were considered. We used
three methods for measurement and PCA analysis, and
the PCA results are presented in Table 7.

Table 7 shows that the first three principal components
account for 72.4% of the PCA in the XY Z directions. The
three principal vectors are relatively dispersed, and in the
analysis using the deviations in the Y and T normal di-
rections, the contributions of the first three principal com-
ponents were 82.9% and 82.3%, respectively. The con-
tribution rate of the first principal vector calculated with
the deviation in the T normal direction was 47.3%, which
is greater than that of the first principal vector calculated

Table 7. Comparison of PCA results of three data deviation
methods (a/b/c).

(a) Explanation of the deviation variance in the Y direction
Initial eigenvalue

Component Characteristic
value

Contribution
rate

Cumulative
[%]

1 6.291 39.321 39.321
2 4.864 30.402 69.724
3 2.107 13.169 82.892
4 1.166 7.286 90.178
5 0.814 5.087 95.265
6 0.295 1.845 97.110
· · · · · · · · · · · ·

(b) Explanation of the deviation variance in the T normal di-
rection

Initial eigenvalue

Component
Characteristic

value
Contribution

rate
Cumulative

[%]
1 7.570 47.312 47.312
2 3.667 22.920 70.233
3 1.929 12.057 82.289
4 1.363 8.518 90.808
5 0.604 3.776 94.583
6 0.243 1.519 96.103
· · · · · · · · · · · ·

(c) Explanation of the total PCA variance in the XWZ directions
Initial eigenvalue

Component
Characteristic

value
Contribution

rate
Cumulative

[%]
1 5.375 37.092 37.092
2 2.886 19.916 57.008
3 2.237 15.437 72.445
4 1.896 13.084 85.529
5 1.230 8.488 94.017
6 0.243 1.678 95.695
· · · · · · · · · · · ·

Extraction method: Principal component analysis

in the Y direction (39.3%). This indicates that PCA using
the deviation in the T normal direction is not only effi-
cient for calculation but also provides a good reference
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value for determining the principal mode of the deviation
source.

3.2. Analysis of Dimension Deviation Sources Based
on KPCA Method

Because PCA only decouples data, it cannot be used
to analyze nonlinear problems. To address this issue, we
utilized a kernel function and applied KPCA to extract
the data deviation sources with non-linear features. The
KPCA method maps the input space variables from a low-
dimensional space to a high-dimensional space through a
non-linear function, and then applies PCA on the vari-
ables.

In KPCA, the key is to transform the inner product of
the characteristic space to the core function of the origi-
nal space after a nonlinear transformation by introducing
the core function. This considerably simplifies the cal-
culation process. Here, we used the core technology of
support vector machine to avoid “dimensional disaster.”
In other words, the inner product operation of samples in
the feature space is replaced by a core function that fits
the Mercer condition, that is, the core function must be a
semi-positive definite function [10].

The corresponding mapping Φ : x→F maps the point x
to F by the kernel function. In the corresponding high-
dimensional feature space, the variables satisfy the condi-
tion of decentralization, that is,

M

∑
μ=1

Φ(xu) = 0. . . . . . . . . . . . . . (10)

The covariance matrix of the feature space is then given
by:

C =
1
M

M

∑
u=1

Φ(xu)Φ(xu)
T , . . . . . . . . . (11)

and the eigenvalues and eigenvectors of C are obtained
using:

VεF\{0}, Cv = λ v. . . . . . . . . . . (12)

The eigenvector can be expressed as a linear combi-
nation of Φ(x1),Φ(x2), . . . ,Φ(xM), where v = 1,2, . . . ,M.
The eigenvalues and eigenvectors are obtained by solv-
ing the M ×M matrix K. Thus, the projection of the test
variables in the new eigenvector space vk is given by:

(
vk ·Φ(x)

)
=

M

∑
i=1

(αi)k(Φ(xi),Φ(x)
)
. . . . . (13)

Replacing the inner product with the kernel function,

(
vk ·Φ(x)

)
=

M

∑
i=1

(αi)kK(xi,x). . . . . . . . (14)

If Eq. (14) is not established, then it is adjusted as fol-
lows:

Φ(xu) → Φ(xu)− 1
M

M

∑
i=1

Φ(xv), u = 1,2, . . . ,M. (15)

The kernel matrix is then modified as:

Kuv → Kuv − 1
M

(
M

∑
w=1

Kuw +
M

∑
w=1

Kwv

)
+

1
M2

M

∑
w,τ=1

Kwτ .

. . . . . . . . . . . . . . . . . . . . (16)

Based on the principle of KPCA, the relevant calcula-
tion process is as follows.

1. Express the n indexes obtained in a m × n-
dimensional matrix (assuming each index has
m samples).

A =

⎡
⎢⎣

a11 · · · a1n

· · · . . . · · ·
am1 · · · amn

⎤
⎥⎦ . . . . . . . . (17)

2. Standardize the matrix and set X = (xi j)m×n.
3. Calculate the correlation matrix, R = 1/(m−1)XT ·

X = (ri j)n×n.
4. Obtain the eigenvalues λ1,λ2, . . . ,λn and the cor-

responding eigenvectors v1,v2, . . . ,vn using the
Jacobian iterative method.

5. Sort the strong eigenvalues in descending order to
obtain λ ′

1 > λ ′
2 > · · · > λ ′

n and the corresponding ad-
justed eigenvectors ν ′

1,ν ′
2, . . . ,ν ′

n.
6. Perform unit orthogonalization on the eigen-

vectors using Schmidt orthogonalization to ob-
tain α1,α2, . . . ,αn.

7. Calculate {B1,B2, . . . ,Bn} to obtain the cumulative
contribution rate of the eigenvalues. Afterwards, set
the value of the extraction efficiency ρ . If Bt ≥ ρ ,
then t principal components α1,α2, . . . ,αt are ex-
tracted.

8. Calculate the projection Y = X · α of the sample
variable (standardized X) on the extracted eigenvec-
tors, where α = α1,α2, . . . ,αn. Y is the dimension-
reduced data.

The advantage of KPCA over PCA is that the latter is an
algebraic feature analysis method. PCA requires a large
memory space, and its algorithm is computationally com-
plex. For an original space with dimension n, PCA needs
to decompose a n×n non-sparse matrix. Furthermore, as
a linear mapping method, the dimension-reduced expres-
sion of PCA is generated by linear mapping. Therefore,
it ignores non-linear relationships in data samples and
overlooks the optimal features. This is the main reason
why the PCA method is not effective in some cases [11].
However, KPCA uses a non-linear method to extract the
principal components, which map the variables to a high-
dimensional space F through a mapping function, and
subsequently uses PCA to analyze the function space F .

Here, we consider the deviation source analysis of the
body side tail-light installation area as an example to com-
pare the analysis results of the PCA and KPCA methods.
The dimension fluctuation in the mounting area of the side
tail light is an issue in body dimension control (see Fig. 4)
because the matching relationship between this area and
the tail lights, rear bumper, and rear trunk is complicated,
and the dimension of the rear body side area is the key to
the matching quality of this area.
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Fig. 4. Clamping drawing of the rear area of the body side.

We used both PCA and KPCA methods to analyze the
measurement data and then compared the results. Several
commonly used kernel functions are linear kernel func-
tion, P-order polynomial kernel function, Gaussian radial
basis function kernel function, and multilayer perceptron
kernel function. Considering the characteristics of the
analysis of the deviation source of the flexible sheet, we
adopted a polynomial kernel function given by:

K(x · xi) = [(x · xi)+1]p. . . . . . . . . . (18)

Table 8 presents the comparison of the analysis results
of PCA and KPCA. The contribution rate of the third prin-
cipal component obtained using PCA was 63.9%, whereas
that of the first principal component was 26.9%. Mean-
while, the contribution rate of the first three principal
components obtained using KPCA was 80.7%, whereas
that of the first principal component was 62.5%. Thus,
the contribution rate of the first principal component of
KPCA is higher than that of PCA. It is easier to deter-
mine the main mode of deviation. According to the on-
site analysis, due to the loose clamps of the body side tail
and the rebound of the outer plate of the body side tail,
the rear light assembly area is rotated around a certain
axis. After the clump is repaired, the measuring points in
this area become stable and qualified.

4. Analysis Based on the Model of Dimension
Deviation Source

The deviations of part assemblies are often caused
by the deviations of sub-assemblies or single parts. In
such cases, we analyzed the data to identify the devia-
tion sources. The data here refers to the corresponding
measuring points of the assembly, sub-assembly, or sin-
gle parts. We studied two analysis methods to identify the
deviation source: one is based on the failure mode of the
parts and fixtures, and the other is based on time series.

4.1. Principal Vector Analysis Based on Failure
Mode

PCA is used to extract the principal vectors (deviation
mode vectors) pi and s j of parts or sub-assemblies and
assemblies. The degree of vector correlation is expressed
by the correlation coefficient as:

ηi j =
∣∣∣∣ pi · s j

|pi||s j|
∣∣∣∣ , . . . . . . . . . . . . (19)

where ηi j is the correlation coefficient between pi and s j,
pi is the i-th principal component of the part or sub-
assembly p, and s j is the j-th principal component of the
assembly s. To eliminate the noise interference as much
as possible, we set a threshold Vcomp and formed a map-
ping relationship between part p and assembly s when the
correlation coefficient was greater than Vcomp. The contri-
bution rate μ represents the strength of the mapping rela-
tionship, and it is given by:

μ =

q

∑
j=1

λ j

m

∑
m=1

λm

, . . . . . . . . . . . . . (20)

where λ j is the eigenvalue of s j corresponding to pi, q is
the number of eigenvectors greater than Vcomp (if q �= 1),
and m is the total number of extracted eigenvectors. The
threshold Vm of the first feature principal vector is set to
reduce the computational complexity of the correlation
analysis. If the contribution of the first principal com-
ponent extracted by a part is less than Vm, it suggests that
the part has no significant impact on the deviation of the
assembly. However, if the contribution of the first prin-
cipal component is greater than Vm, it is considered to
have a significant influence on the deviation of the assem-
bly [12].

In addition to the deviation source of the welding as-
sembly caused by the parts, another important factor is
the fixtures. The analysis of the deviation source gener-
ated by the fixtures is based on investigating the potential
failure modes of the direction and the amplitude of the
movement at each measuring point.

According to the 3-2-1 positioning principle for parts,
the failure modes of fixtures are divided into failure of
the main positioning pin, failure of the secondary po-
sitioning pin, and failure of the positioning and clamp-
ing points. The corresponding parts also appear in three
modes: translation along the AB direction, rotation in the
plane around point A, and rotation in the space around
the axis formed by AB. The failure modes are shown in
Fig. 5.

For the first failure mode, most of the measuring points
in Fig. 5(a) move along the kidney-shaped hole and
slightly rotate around B. The deviation mainly appears in
a specific direction, and the deviation is the same. The
failure mode in this case can be obtained by unitizing the
column vector comprising all the measuring points. In
Figs. 5(b) and (c), the measuring point deviation mainly
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Table 8. Comparison of PCA and KPCA analysis results of rear body side deviation.

PCA KPCA

Component
Characteristic

value
Contribution

rate
Cumulative

[%] Component
Characteristic

value
Contribution

rate
Cumulative

[%]
1 2.536 26.921 26.921 1 0.285 62.500 62.500
2 1.809 19.024 46.125 2 0.062 13.596 76.096
3 1.678 17.813 63.938 3 0.021 4.605 80.702
4 1.106 11.741 75.679 4 0.017 3.728 84.430
5 0.812 8.620 84.299 5 0.012 2.632 87.061
6 0.678 7.197 91.497 6 0.008 1.754 88.816
· · · · · · · · · · · · · · · · · · · · · · · ·

Fig. 5. Three failure modes of fixtures.

has a fixed axis for rotating motion. Suppose the vec-
tor of the rotation direction of the measuring point is
ei = (x′i,y

′
i,z), the distance from the measuring point to the

center of rotation is d ′
i and ei × d ′

i , and the column vector
is [e1 ·d1,e2 ·d2, . . . ,en ·dn]T . After unitization, ei × d ′

i is
the failure mode under rotation.

For the fixture failure mode, the analysis of the devi-
ation source of the welding assembly is based on calcu-
lating the correlation coefficient ηik between the fixture
failure mode ai and the main eigenvector vk of the assem-
bly measurement point data as follows:

ηik =
∣∣∣∣ ai · s j

|ai||s j|
∣∣∣∣ . . . . . . . . . . . . . (21)

To reduce the amount of calculation, a threshold value Vjig
was considered, and a mapping relationship was deter-
mined between all the main eigenvectors larger than Vjig
and the failure modes. To determine the contribution de-
gree of the main eigenvector in the assembly deviation,
the deviation contribution coefficient ω is defined as:

ωi = ηik · λk

λ1 +λ2 + · · ·+λp
·100%, . . . . (22)

where ωi represents the deviation contribution factor of
the i-th failure mode of the fixture, λk is the corresponding
eigenvalue of vk, and p is the number of main eigenvec-
tors of the welding assembly. By comparing the contribu-
tion coefficients of different deviation modes, the failure
modes and points of the locations can be analyzed and
checked.

4.2. Discrimination of Dimensional Deviation
Source Based on Time Series Analysis

Here, we first established a time series autoregressive
(AR) model to process the continuous measurement data
and obtain a stable normal distribution with zero mean.
The first step is to extract the trend term to measure
the time series data {xt} (t = 1,2, . . . ,N), remove the
non-stationary part dt : yt = xt − dt , and form stationary
time series {yt}. Afterwards, the time series are zeroed
and normalized to obtain the normal distribution {xt},
where xt ∼ N(0,1). The basic expression of AR(n) is:

xt = ϕ1xt−1 +ϕ2xt−2 + · · ·+ϕnxt−n

+atat ∼ NID
(
0,σ2

a
)
, . . . . . . . . (23)

where at −{xt} (t = 1,2, . . . ,N) residuals correspond to
a normal distribution with variance σ2, ϕ1,ϕ2, . . . ,ϕn
and σ2

a are the parameters {xt} (t = 1,2, . . . ,N) estimated
by a time series method. Generally, the least-squares
method is used for parameter estimation, which is rela-
tively simple and unbiased. The least-square estimation
of the model is calculated by:

ϕ̂ =
(
xT x
)−1xT y, . . . . . . . . . . . . (24)

where ϕ = (ϕ1,ϕ2, . . . ,ϕn)T , y = [xn+1,xn+2, . . . ,xN]T ,
and

x =

⎡
⎢⎢⎣

xn xn−1 · · · x1
xn+1 xn · · · x2

...
...

. . .
...

xN−1 xN−2 · · · xN−n

⎤
⎥⎥⎦ .

PCA is used to extract the feature roots λ1,λ2, . . . ,λm and
eigenvector V from an n-dimensional pattern vector ϕ =
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Fig. 6. Deviation data of the body top cover measurement points.

(ϕ1,ϕ2, . . . ,ϕn)T . The vector V is a low-dimensional
eigenvector obtained by the PCA reduction of the pattern
vector ϕ as:

Vm×1 = Am×1ϕn×1. . . . . . . . . . . . (25)

To construct the discriminant function for a certain
part, corresponding K reference states are obtained for
the K dimension deviation sources FR1,FR2, . . . ,FRK . The
constructed function is a discriminant function. Then
classify the part’s mode vector ϕt , analyze, and judge its
deviation mode.

The discriminant function adopts the distance discrimi-
nant function, and its measurement method is the geomet-
ric Euclidian distance. The geometric distance between ϕt
and FR in an n-dimensional geometric space is expressed
as the sum of squares of the coordinate difference of two
points in space:

D2(X ,Y ) =
n

∑
i=1

(xi − yi)2 = (X ,Y )T (X ,Y ), . . (26)

where X = [x1x2· · ·xN ]T and Y = [y1y2· · ·yN]T are arbitrary
points in space. The time series data {xt}T to be checked
is transformed into a coefficient matrix XT , which is sub-
stituted in the AR model to form the reference deviation:

XT /0R = aRT XT /0RT = aT , . . . . . . . . . (27)

where aRT is the calculated residual vector of the coeffi-
cient matrix XT to be tested, /0R is the reference model
parameter, XT /0RT = aT is the AR model to be tested.
The geometric distance between aT and aRT represents
the residual offset distance D2(aT ,aRT ), given by:

D2(aT ,aRT ) = NT ( /0T − /0R)T RT ( /0T − /0R), . . (28)

where RT is the covariance matrix of the test time series
data {xt}T and NT is the length of the test time series
data {xt}T . Let NT be equal to the length of the reference
deviation mode time series data, that is, NT = NR = N.

It can be seen from Eq. (28) that D2(aT ,aRT ) is a func-
tion of /0T and /0R, which can be expressed as a weighted
residual offset distance measured in n + 1 dimensional
space. The offset distance function related to the resid-

ual ϕ is then derived as:

D2(aT ,aRT ) = NT (ϕT −ϕR)T rT (ϕT −ϕR), . (29)

where rT is the covariance matrix of the time sequence
to be checked {xt}T , which is equivalent to the n-th-order
sub-matrix of RT minus the first row and first column. For
the discrimination of K deviation source test modes, we
selected the reference mode with the smallest D2(aT ,aRT )
value. Thus,

D2
a(ϕT ,ϕR( j)) =

min
{

D2
a(ϕT ,ϕR(i))(i = 1,2, . . . ,K)

}
ϕT ∈ FR j. (30)

The reference population where ϕT is located should
satisfy the condition of minimum residual offset distance.

The geometric distance calculation and deviation diag-
nosis are as follows: First, the deviation source is clas-
sified. According to the corresponding deviation state of
the dimension deviation data, an AR model is established
to obtain the mode vector. Afterwards, the principal vec-
tor is extracted to obtain the covariance. Using Eqs. (29)
and (30), the distance is evaluated and the corresponding
deviation mode is established for reference. The next step
is to model the inspection data. The geometric distances
under different deviation states are also obtained and com-
pared to determine the dimension deviation source [13].

Here, we consider the upper edge of the windshield
glass of the auto body roof. The normal measurement
point matching the glass often fluctuates mainly due to the
wear of the welding electrode cap or the deformation of
the incoming material. Two deviation modes correspond-
ing to the wear of the electrode cap and the deformation
of the incoming material can be established. We collected
real-time data of the implementation detection data. By
calculating, tracking, and comparing the pre-established
deviation modes, we automatically identified the devia-
tion modes that eliminate the need for manual inspection.

The data under three states (normal operation, incom-
ing material deformation, and electrode cap wear) were
collected and shown in Fig. 6. The data to be inspected is
a group of actual measurement data of parts with dimen-
sion fluctuations during welding. Two hundred groups
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Table 9. Euclidean distance and squared Euclidean distance.

Approximation matrix Approximation matrix
Euclidean distance squared Euclidean distance

Normal deviation Part deviation Electrode wear Actual test Normal deviation Part deviation Electrode wear Actual test
mode mode mode data mode mode mode data

Normal deviation
mode 0.000 0.300 0.370 0.223 0.000 0.090 0.137 0.050

Part deviation
mode 0.300 0.000 0.234 0.083 0.090 0.000 0.055 0.007

Electrode wear
mode 0.370 0.234 0.000 0.218 0.137 0.055 0.000 0.047

Actual test
data 0.223 0.083 0.218 0.000 0.050 0.007 0.047 0.000

of time series data were selected, and the total time se-
ries span was three days. The time series model was
then established according to the AR modeling require-
ments, and the feature vector was extracted using the PCA
method. The AR model under three states is established
as follows:

1. Normal:
xt = −0.567xt−1 +0.112xt−2 −0.093xt−3

+0.112xt−4 −0.101xt−5 +at
2. Incoming material deformation:

xt = −0.583xt−1 +0.159xt−2 −0.065xt−3

−0.063xt−4 +0.136xt−5 +at
3. Electrode cap wear:

xt = −0.505xt−1 +0.012xt−2 +0.062xt−3

−0.148xt−4 +0.077xt−5 +at

Based on the measured data of the workshop, the AR
model is established as follows:

xt = −0.579xt−1 +0.131xt−2 −0.053xt−3

−0.028xt−4 +0.067xt−5 +at .

The Euclidean distance and squared Euclidean distance
between the inspected data and the data of other modes
are presented in Table 9, in which the deviation mode be-
tween the measured data and the reference sample is the
smallest. This indicates that the deviation mode might be
the same or quite similar. Therefore, the deviation mode
of the measured data is most likely the deviation mode
caused by the part fluctuation. Another distance calcu-
lation method is the Euro-square distance, whose calcu-
lation results are 0.505 (normal mode), 0.007 (part de-
viation mode), and 0.047 (electrode wear mode). It can
be seen from the data that the squared Euclidean distance
provides a better and more deviation mode discrimination.

5. Conclusion

1. The application of big data analysis improved the uti-
lization efficiency of measurement resources and de-
tection data of auto body precision systems, and also
reduced the dependence on the experience of engi-
neers. It is more efficient than traditional methods
that rely on an engineer’s experience. Big data anal-

ysis facilitates the analysis of the precision of body
dimensions.

2. Correlation analysis, PCA, and KPCA analysis
methods are capable of diagnosing complex dimen-
sion deviation problems. The failure-mode-based
principal component analysis model and dimension
deviation source monitoring diagnosis model based
on time series analysis were also shown to effectively
improve the efficiency of failure modes and deviation
source diagnosis.
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