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With the rapid development of control technology, in-
creasing applications are using model predictive con-
trol (MPC) for deviation correction in vertical drilling.
However, the accuracy of the predictive model is af-
fected by the uncertainty of the stratum, which re-
sults in model mismatch and a reduction in control
performance. In this paper, an intelligent compensat-
ing method is proposed for MPC-based deviation cor-
rection with stratum uncertainty in a vertical drilling
process to increase control accuracy. First, a trajec-
tory extension model is introduced as the predictive
model for MPC, and the uncertainty of the stratum is
discussed. Then, the compensation for the MPC is ac-
quired based on a Gaussian fitting method and hybrid
bat algorithm. Finally, based on the actual drilling
data, a simulation is performed to demonstrate the ef-
fectiveness of the proposed method.

Keywords: model predictive control, deviation correc-
tion control, vertical drilling, intelligent compensating
method

1. Introduction

Deviation correction control performs an important
role in vertical drilling processes; consequently, increas-
ing number of scholars are conducting research on this
topic [1,2]. The ultimate goal of correction control is
to ensure a straight drilling trajectory, which implies that
both the inclination angle and closure distance should be
corrected to zero. Consequently, the quality of the drilling
trajectory is predominantly by the performance of the cor-
rection control.

Previous deviation correction control methods were
primarily simple control methods based on manual expe-
rience [3]. However, they have gradually been replaced by
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several modern control methods, such as deviation vec-
tor control theory, attitude control method, and model-
based robust control [4-6]. In recent years, there has
been an increasing number of applications using model
predictive control (MPC) for deviation correction in ver-
tical drilling. To resolve the effect of control system de-
lay in drilling systems, Bayliss et al. presented an MPC
strategy with delay compensation [7]. Demirer et al. es-
tablished a model predictive controller that can deal with
the curvature constraints of practical drilling engineering
applications [8]. Zhang et al. established a trajectory ex-
tension model to describe the vertical drilling process,
and proposed a model predictive controller based on this
model [9]. All these applications have shown that MPC
has good control performance and can easily satisfy the
practical demands of drilling engineering.

However, owing to the uncertainty of the stratum, it
is difficult to establish an accurate drilling model. Poor
modeling accuracy results in model mismatch in MPC
as well as a deterioration in performance. The most
common way to deal with this problem is compensa-
tion. Farina et al. provided an output feedback MPC
to overcome a possibly unbounded additive noise by
means of the Chebyshev—Cantelli inequality [10]. Tang
et al. established an observer-based output feedback MPC
for Takagi—Sugeno fuzzy system with bounded distur-
bance [11]. Hu and Ding considered the dynamic out-
put feedback MPC for a quasilinear parameter varying
model [12]. Das and Mhaskar provided a Lyapunov-based
model to deal with the model mismatch of MPC [13].
These methods primarily start from observers or models
to deal with model mismatch; however, they do not con-
sider the measurement parameters themselves, which re-
duces their the applicability in practical applications.

A simple method for compensation is to adjust the
parameters of the controller using an optimization algo-
rithm, and this method has been widely applied in sev-
eral industry applications of control engineering [14—18].
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Chang et al. used a particle swarm optimization (PSO)
algorithm to optimally tune the control gains of fuzzy ter-
minal sliding mode control for the application of uninter-
ruptible power supply inverters [19]. Navabi et al. pre-
vented constraint violation by determining the optimal
adaptive controller parameters using an optimization al-
gorithm [20]. Cheng et al. employed a genetic algorithm
to derive optimal or near-optimal proportional-integral-
derivative (PID) controller gains [21]. Although there are
several works focusing on intelligent compensating meth-
ods in various industry applications, it is still not a simple
and effective technique to deal with the model mismatch
for MPC-based deviation correction in vertical drilling;
consequently, this is the primary motivation of this paper
to establish a compensation method.

In this paper, considering the uncertainty of the stra-
tum, we aim to design an intelligent compensating method
for the MPC-based deviation correction presented in [9]
to increase control accuracy. First, the trajectory exten-
sion model is introduced to describe the vertical drilling
process, and the problem of compensation is discussed.
Then, the uncertainty of the stratum is analyzed, and the
probability density distribution of the uncertainty is dis-
cussed based on the Gaussian fitting method. To simplify
the design of the compensation method for the predictive
controller, the hybrid bat algorithm discussed in [22] is
used to acquire the compensation value. Finally, based
on the raw data collected from [9], a simulation was con-
ducted to demonstrate the effectiveness of the proposed
method. The contributions of this work can be summa-
rized as follows:

a) The uncertainty of the stratum is considered in our
model, resulting in a more practical application.

b) The Gaussian fitting method is selected to acquire
the probability density distribution of the uncertainty
in a well section.

¢) The hybrid bat algorithm is utilized to calculate the
most appropriate compensation for the model pre-
dictive controller for lower implementation difficulty
and higher applicability in practical applications.

The remainder of this paper is organized as follows. In
Section 2, the trajectory extension model is introduced,
and the problems of this study are described based on the
model. In Section 3, the structure of the compensation
method is presented. The uncertainty of the stratum is
discussed; moreover, the Gaussian fitting method is intro-
duced to acquire the parameters of its probability density
distribution. Further, the hybrid bat algorithm is intro-
duced to calculate the compensation for MPC. Section 4
discusses the simulation that was performed to validate
the compensation method and describes the comparison
performed with the MPC strategy presented in [9]. Cer-
tain conclusions are presented at the end of this paper.
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Fig. 1. Deviation correction process.

2. Trajectory Extension Model and Problem
Description

This section describes the trajectory extension model
presented by [9]. Then, the control problems of this paper
are discussed based on this model.

2.1. Trajectory Extension Model

The schematic of the deviation correction process dis-
cussed here can be described in Fig. 1. The schematic
shows the movement of the bottom hole assembly (BHA)
and the formation of the drilling trajectory from a compre-
hensive perspective. To quantitatively analyze the drilling
trajectory, an underground orthonormal Cartesian coordi-
nate system is established, as shown in Fig. 1, where XOZ
is parallel to the plane of Earth and the Y-axis moves along
the North. The curve is defined as the drilling trajectory.
According to [9], the trajectory extension model can be
established to describe the deviation correction process as
presented below.

tan o, = tan ocsin 3
tan oy, = tan acos 3

SZ = Sposa
Sy = Stan o , (1)
Sy = Stan

Oy = Wy + & = rpya Wsg Sin etf+£x
ay =Wy t+E& = rBHAO)SRCOSQIf—l-Sy

where S, and §), are components of the position deviation
and o, and @, are components of the inclination angle.
6, r and wsg are the magnetic tool face angle and steer-
ing ratio, respectively. The rated build-up rate rpy4 is the
ideal maximum deflection capability of the BHA ideally,
and rgpa @sg ~ [0, r] denotes the real deflection capability
provided by the BHA. Because of the existence of stra-
tum uncertainty, there are certain uncertainty parameters
in this model. The stratum uncertainty is independent of
BHA, and &, and &, are utilized in this study to quantita-
tively describe the uncertainty.
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Fig. 2. Model predictive control and the compensation.

The trajectory extension model is used to describe the
vertical drilling process in the form of a mathematical
model; moreover, it is also an important basis for estab-
lishing the predictive model of the MPC controller in this
study.

2.2. Problem Description

Deviation correction control aims to decrease the devi-
ation of the drilling trajectory, including the position de-
viation components, S, and Sy, and inclination angles, o
and o, by adjusting the magnetic tool face angle 2 +and
steering ratio Wsg.

In addition, because of the limited drilling conditions,
there are certain constraints in practical drilling. The mea-
surement interval is the time consumption of drilling for a
certain distance according to the process requirement. In
order to ensure the quality of the vertical trajectory, the
inclination angle must be less than around ;.. More-
over, the build-up rate, rpy4 @Wsg, which is provided by the
BHA, should be less than its deflecting limit rgg4, which
is defined by the parameters of the BHA [23].

The control problem shown above was addressed using
a model predictive controller in [9], and its control con-
struction is shown as a basic MPC part in Fig. 2. Where
rin indicates the reference values of [Sy,Sy, 06, @], Oous
indicates the trajectory parameters [Sy,Sy, 0, 0], and
0,,,, represents the trajectory parameters of [Sy, Sy, O, 0]
calculated using the trajectory calculation model. The
vertical drilling process can be defined as the trajec-
tory extension model; moreover, the minimum curva-
ture method is selected as the trajectory calculation
method [24].

However, as the uncertainties &, and €, are not zero, it
will decrease the accuracy of the predictive model, and fi-
nally lead to model mismatch in MPC. This is a serious
problem for deviation correction control, which results
in difficulty in adjusting the drilling trajectory. Conse-
quently, in this study, a compensation generator was es-
tablished to determine the appropriate compensation ~t’f
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Fig. 3. Structure of the compensation generator.

and a)gR for the MPC controller to counteract the effects
of model mismatch caused by the uncertainties &, and &,
which is the primary purpose of this work.

3. Intelligent Compensation Method

In this section, the Gaussian fitting method is explored
to calculate the parameters of the probability density dis-
tribution of the uncertainty, and the hybrid bat algorithm
is utilized to acquire the compensation.

3.1. Structure of the Compensation Generator

As the parameters of the uncertainty are random vari-
ables, they are primarily defined by the characteristics of
the stratum. To ensure that the compensation generator is
capable of dealing with these uncertainties, it is necessary
to determine the common features of these uncertainties
or their probability density distributions. Subsequently,
the compensation can be customized based on the infor-
mation. Naturally, the compensation generator is divided
into two stages: probability density distribution analysis
and compensation calculation; moreover, the structure of
the compensation generator is shown in Fig. 3.

The primary purpose of stage 1 is to obtain the prob-
ability density distribution of uncertainty from the trajec-
tory parameters and determine the parameters of the tra-
jectory extension model according to Eq. (1). The inputs
of this stage are the original drilling data, including offset

Journal of Advanced Computational Intelligence 25

and Intelligent Informatics



Zhang, D. et al.

well information, parameters of the BHA, and trajectory
parameters. Then, the fixed parameters of the trajectory
extension model can be acquired, such as the length of the
drill pipe and rated build-up rate of the BHA rpp4. For the
uncertainties & and &, we select the Gaussian function to
describe their probability density distribution and utilize
the Gaussian fitting method to acquire the parameters of
the distribution. At the end of this stage, the trajectory
extension model with the determined parameters can be
implemented.

The primary purpose of stage 2 is to obtain the most ap-
propriate compensation based on the trajectory extension
model acquired from stage 1. To determine this compen-
sation, an intelligent optimization algorithm is introduced.
First, based on the trajectory extension model and model
predictive controller in [9], an MPC simulator can be es-
tablished as it can calculate the control results under dif-
ferent uncertainties, which follow the Gaussian distribu-
tion acquired from stage 1. Then, based on these control
results, the hybrid bat algorithm is introduced to deter-
mine the best result by adding different compensations,
and this compensation is chosen as the output of the gen-
erator.

In addition, the optimization of the compensation is not
required in stage 2 because the probability density distri-
bution is constant or changes slowly in a well section. The
probability density distribution changes primarily when
the composition of the stratum changes. This always im-
plies that the drilling system has entered the next well sec-
tion. Thus, the compensation of a well section can be
fixed until the next well section.

The calculation steps are as follows:

a) Obtain the original drilling data; then, obtain the
rated build-up rate of BHA rgya and set a fixed rate
of penetration S.

b) Obtain the probability density distributions of the un-
certainties &, €, based on trajectory parameters us-
ing the Gaussian fitting method.

c¢) If the drilling system enters the next well section and
the probability density distribution of the uncertainty
is significantly different from that of the previous
well section, the hybrid bat algorithm is used to up-
date the compensations 6/ and .

3.2. Probability Density Distribution of the Uncer-
tainty

In stage 1, the fixed parameters of the trajectory ex-
tension model can be acquired, such as the length of the
drill pipe and rated build-up rate of BHA rpy4; however,
the exact values of the uncertainties &, &, cannot be de-
termined. Therefore, the probability density function is
selected to describe the distribution of &, or &,.

To acquire the probability density distribution, the char-
acteristics of the uncertainty should initially be analyzed.
We considered that the distribution of the uncertainty in a
well section is constant or changes slowly as a drilling tra-
jectory consists of several well sections. Fig. 4 shows the
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build-up rates provided by a BHA in a well section from
a practical drilling site. Based on the statistical analysis
performed on this data, it can be observed that the practi-
cal build-up rate is primarily within approximately 4.5 ~
7.5°/30 m, and the probability that the build-up rate is
within approximately O ~ 1.5°/30 m or 9.0 ~ 10.5°/30 m
is considerably smaller. This implies that the probability
density distribution of the build-up rate provided by BHA
is unimodal.

According to the analysis above, the Gaussian function
can be used to describe the probability density distribution
of the uncertainties &, €,, and it can be written as follows:

(r—bg)?
&y, £y ~ dece c€

CBHA, - e e e e (@

where rpp4 is the rated build-up rate of BHA which can be
learned from the parameters of the BHA. r is the dogleg
severity of the drilling trajectory acquired from trajectory
parameters such as inclination angle and azimuth; r can
reflect the build-up rate of the BHA. ag, b¢, ¢ are Gaus-
sian parameters, and it can easily be acquired from r using
the Gaussian fitting method.

Finally, with &,, &6 and other parameters of BHA, the
trajectory extension model with the uncertainty is estab-
lished, and this model is utilized to approximately de-
scribe the vertical drilling process during drilling in the
selected well section.

3.3. Optimization of the Compensation

The purpose of stage 2 is to determine the best con-
trol results by adding compensations él’f and ¢, when
the probability density distribution of the uncertainty
changes; moreover, the key point is optimization. The
structure of the optimization is shown in Fig. 5.

In this optimization problem, the MPC simulator is es-
tablished to define the fitness function, as the simulator
consists of two parts: a trajectory extension model with
uncertainty established in sfage 1 and the model predic-
tive controller as presented in [9]. To acquire the control
result of the MPC under different uncertainties, the con-
troller in the simulator is the same as the basic MPC. The
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predictive model of MPC is written as:
Sy(k+1) 1 ST 0 0 S, (k)
ax(k+1) | [0 1 0 O ay(k)
Sy(k—i-l) 0O 0 1 8T Sy(k)
ay(k+1) 0 0 0 1 ay (k) 3)
0 0
" T 0 (k) + o' (k)
00 o, (k) + o'y (k) |’
0T

where @y (k) and @ (k) are transformed from the compen-

sations ét'f and @gg. The optimization problem of MPC is
as presented below:

minJ (Y (k),U(k)) =Y (k) ' QY (k) + W (k) "RW (k)

(0 (k) + (0 (k) < Ot @)
1.9 (00 + @)+ (@, (6) + 0y () < 2
k=1,...,n

where W (k) is the matrix of the incremental control sig-
nal and Y (k) is the matrix of incremental state varieties.
W (k) and Y (k) are the predictive values that can be ac-
quired from the predictive model. . (k) and o, (k) are
the outputs of the model predictive controller.

To evaluate the performance of the compensation in
a situation where the uncertainty follows the probabil-
ity density distribution, d groups of &, and g, are col-
lected randomly as all values of & and &, follow follows
the same probability density distribution. Moreover, the
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control results can be acquired under the uncertainties &
and g, based on the model predictive controller presented
in [9] and a compensation value. Then, the fitness func-
tion is set as the root mean square error (RMSE) of the
steady-state error. The RMSE will differ by adjusting the
compensations ét’f and Wgp.

Based on the fitness function, the optimization objec-
tive can be written as follows:

d n
=Y Y R+ )+ S k) . )

i=0j=m

_minJ
G;f,w/SRGQ

where Sy;(k+ j), Syi(k+ j) are the position deviations at
time (k+i) for group i of & and &, m is the time when the
system enters the steady-state phase, n is the duration of
the simulation. J defines the compensation performance.

To solve this optimization problem, a global optimiza-
tion algorithm called the hybrid bat algorithm, which is
presented in [22], is used to determine the most appro-
priate compensation of this deviation correction process.
This algorithm is used as it demonstrated successful out-
comes when compared to 10 conventional algorithms, es-
pecially on unimodal functions. In addition, the end con-
dition of the optimization is iterations < M, where M is a
positive integer.

As the density distribution reflects the uncertainty of
the entire well section, it is not necessary to update the
compensation determined in stage 2 until the drill bit
reaches the next well section. The MPC controller can
use the same compensation in a single well section.

4. Simulation and Result Analysis

Based on the raw data collected from a vertical drilling
site, a simulation was performed to demonstrate the ef-
fectiveness of the proposed method. Using the improved
trajectory extension model to describe the vertical drilling
process, the simulation was conducted to test the devia-
tion correction capacity for the case of vertical drilling.
According to [9], the parameters of the simulation are se-
lected as follows: rate of penetration S is 30 m/h, and
control cycle T is 0.3 h. For constraints, the maximum
deflection capability of BHA r is 6°/30 m, which is 3°.
The MPC parameters are as follows: p and c are 5, R is
diag(50000,50000), Q is diag(0.1,10,0.1, 10), m is 20, n
is 40, and d is 50.

According to the data obtained from [9], the horizon-
tal deviation between the actual trajectory and the refer-
ence is 8.82 m in the XOZ plane at 600 m measured depth
(MD); meanwhile, the horizontal deviation is 1.51 m in
the YOZ plane, inclination angle is 1.5°, and azimuth
angle is 35.9°. The uncertainty of the hole well section
is assumed to be &,¢&, ~ N(0.54,0.36). To validate the
proposed method, a comparison with the MPC presented
in [9] was conducted. Fig. 6 shows the simulation results
of Sy and Sy; Fig. 7 shows the simulation results of Sy,
and o; Fig. 8 shows the simulation results of 6, rand Wgg.

Both these methods can correct the deviation of the
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drilling trajectory, but the results are different. It can be
observed that the position deviation components Sy and Sy,
of the proposed method are eliminated to zero at nearly
780 m MD, as it can deal with constraints well. The posi-
tion deviation components S, and S of the MPC are cor-
rected to minimal values at nearly 870 m. The RMSE of
the proposed method is 0.0183 and the RMSE of the MPC
is 4.6136. Therefore, the proposed method has better con-
vergence and a smaller steady-state error than MPC.

In conclusion, the proposed method can efficiently ad-
dress the problem of model mismatch for deviation cor-
rection control of vertical drilling, and has better conver-
gence and smaller steady-state error than MPC. A two-
stage compensation generator is provided, and the prob-
ability density distribution of the uncertainty from trajec-
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tory parameters is acquired, and the parameters of the tra-
jectory extension model are determined in stage 1. The
most appropriate compensation is acquired by the hybrid
bat algorithm to achieve lower implementation difficulty
and higher applicability in practical applications.

5. Conclusion

In this paper, an intelligent compensating method for
the MPC-based deviation correction with the stratum un-
certainty in the vertical drilling process was proposed to
increase the control accuracy of MPC.

The compensation generator consists of two stages, and
the probability density distribution of the uncertainty from
the trajectory parameters is acquired using the Gaussian
fitting method. The parameters of the trajectory extension
model are determined in stage 1. Then, the most appro-
priate compensation is acquired using the hybrid bat algo-
rithm to resolve the effect of the uncertainty of the stratum
in stage 2.

Simulation results showed that the proposed method
demonstrated better convergence and smaller steady-state
error than MPC. It can efficiently address the problem of
model mismatch for deviation correction control of verti-
cal drilling and increases the accuracy of the MPC.
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