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The traditional traffic flow prediction method is based
on data modeling, when emergencies occur, it is im-
possible to accurately analyze the changes in traffic
characteristics. This paper proposes a traffic flow pre-
diction model (BAT-GCN) which is based on drivers’
cognition of the road network. Firstly, drivers can
judge the capacity of different paths by analyzing the
travel time in the road network, which bases on the
drivers’ cognition of road network space. Secondly,
under the condition that the known road informa-
tion is obtained, people through game decision-making
for different road sections to establish the probabil-
ity model of path selection; Finally, drivers obtain the
probability distribution of different paths in the re-
gional road network and build the prediction model by
combining the spatiotemporal directed graph convo-
lution neural network. The experimental results show
that the BAT-GCN model reduces the prediction error
compared with other baseline models in the peak pe-
riod.

Keywords: game decision-making, probability distribu-
tion, traffic flow prediction, spatiotemporal directed graph
convolution

1. Introduction

Due to the complex, nonlinear and dynamic character-
istics of the urban large-scale road network, it is difficult
to predict traffic flow data. With the breakthrough of deep
learning in many fields, more and more researchers apply
deep learning to spatiotemporal data prediction. Cheng
et al. [1] proposed a deep traffic prediction model, which
explicitly collected the upstream and downstream neigh-
borhood roads of each road and convolved these neighbor-
hoods respectively, thus modeling the spatial dependence.
Ke et al. [2] proposed a new deep learning method called
fusion convolution long and short time memory network
(FCL-NET), which takes into account spatial dependence,
time dependence and external factor dependence to pre-
dict short-term passenger demand. Yu et al. [3] used
the deep convolutional neural network (DCNN) to cap-

ture spatial dependence and Long Short-Term Memory
(LSTM) to capture temporal dynamics, proved the supe-
riority of the SRCN model through experiments on Bei-
jing traffic network data. Yang et al. [4] built a predict
model based on traffic flow information from the Cal-
trans Performance Measurement System (PeMS) and lo-
cal datasets, predicted future traffic flow by an improved
LSTM method. Zhu et al. [5] established predict model
based on the historical vehicle Global Positioning Sys-
tem (GPS) information data. The CLustering in QUEst
(CLIQUE)-based clustering algorithm V-CLIQUE is pro-
posed to analyze the historical vehicle GPS data. Al-
though the spatial correlation of CNN model introduced
by the above method has made great progress in traf-
fic prediction task, conventional convolutional neural net-
work is applicable to Euclidean space, such as image,
conventional power grid, etc., and limits the topological
structure of complex traffic network, so it cannot describe
spatial correlation in essence. In recent years, with the
development of the graph convolution network model [6],
it can be used to capture the structural characteristics of
the non-Euclidean topological road network, providing a
good solution for the above problems. Yu et al. [7] pro-
posed a gated graph-based convolutional network for traf-
fic prediction, but the model did not consider the uncer-
tainty of traffic flow in case of emergencies.

Traditional traffic flow prediction only considers the
spatial and temporal characteristics of traffic flow. The
input datasets of prediction are convenient to get, and the
path planning results are accurate and efficient in the ma-
jority traffic situation. In case of abnormal emergencies,
such as traffic accidents, road congestion, traffic flow will
present uncertainty and different complexity. The predic-
tion existed will lose its correctness terribly. To solve the
above problems, this paper simulates Variable Message
Sign (VMS) road condition information, establishes the
behavior model of drivers’ path selection. We obtain the
probability distribution of different paths and forecasts the
traffic flow at a future time by combining the spatiotem-
poral directed graph convolutional neural network. When
abnormal events occur, the parameter of drivers’ cogni-
tion of road network is proposed to correct these devia-
tions, thus avoiding the problem of inaccurate traffic flow
prediction.
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Fig. 1. Road network information description.

2. Driver Behavior Modeling

By stimulating the release of dynamic VMS informa-
tion, this paper studies the changing rules of traffic flow
characteristics under the influence of driver’s behavior
choice of route. To simplify the study of the model, the
following assumptions are provided:

(1) When receiving the traffic information of the road net-
work, drivers decide to choose the route according to
the current traffic conditions and driving experiences;

(2) Drivers in different sections may have similar prefer-
ences. Under the influence of road condition infor-
mation, drivers’ behavior of the path selection leads
to the potential traffic flow characteristics is corre-
lated with the utility functions of drivers’ preferences
in different sections.

As it is shown in the Fig. 1, G = (N,A,T,P) is estab-
lished based on real road network information to be a ran-
dom time-dependent network, N = {N1,N2, . . . ,Nn} is the
set of nodes; A = {A1,A2, . . . ,Am} is the set of road sec-
tions. The number of nodes is |N| = n and the number
of road sections is |A| = m; T = {t1, t2, . . . , tT} is the set
of period time; P is a set of the conditional probability

distribution.
Let eω(x) denote the expected travel time when

the state of the road network is x and the driver’s
route selection strategy is ω; Nodedown(j) as the set
of downstream nodes of node j, Cjk,T|I as the travel
time variable for link (j,k) at time t conditional on
current information I, as shown in Fig. 1(a). When the
driver at the decision point N1, the travel time of each
road section in the current road network is CN1N2,T|I,
CN2N3,T|I, CN1N4,T|I, CN1N7,T|I, CN2N5,T|I, CN3N6,T|I,
CN3N8,T|I, CN4N5,T|I, CN5N6,T|I, and CN7N8,T|I, respec-
tively. Ω is policy set for drivers choose a different path
{ω∗

1 (N1,T, I),ω∗
2 (N1,T, I),ω∗

3 (N1,T, I),ω∗
4 (N1,T, I)}.

When the driver deals with emergencies, the travel
time of different paths can be obtained as eω∗

1
(N1,T, I),

eω∗
2
(N1,T, I), eω∗

3
(N1,T, I), and eω∗

4
(N1,T, I), respec-

tively, using the game behavior of drivers calculate
the probability of different path selection PT(ω1|Ω),
PT(ω2|Ω), PT(ω3|Ω), and PT(ω4|Ω), it can improve the
ability of traffic flow prediction in case of emergency. In
the same network, at time T + Cjk,T|I, the road condition
information I′ at the next decision point N2 is shown in
Fig. 1(b), the travel time of different sections is CN2,N3 |I′,
CN2,N5 |I′, CN3,N6 |I′, and CN5,N6 |I′, respectively. When
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the driver in N1 decision points to choose conditions of
ω∗

2 (N1,T, I) or ω∗
3 (N1,T, I), at the decision point N2,

two strategies, ω∗
2
′(N2,T, I′) or ω∗

3
′(N2,T, I′) can be

chosen. The travel time is eω∗
2
′(N1,T, I′), eω∗

3
′(N1,T, I′),

and the path selection probability is PT(ω2
′|ω2 + ω3),

PT(ω3
′|ω2 + ω3). Denote Z(j,T) as the set of all the

information available at node j and at time T. Then, for
∀j ∈ U−{d}, ∀T, ∀I ∈ Z(j,T), eω∗ and ω∗ are optimal if
and only if they are solutions of the following system of
equations [8, 9]:

eω∗(j,T, I) = min
k∈Nodedown(j)

{
ECjk,T

[
Cjk,T

+EI′
[
eω∗

(
k,T+Cjk,T, I′

) |Cjk,T

]∣∣∣I]}
, (1)

ω∗(j,T, I) = arg min
k∈Nodedown(j)

{
ECjk,T

[
Cjk,T

+EI′
[
eω∗

(
k,T+Cjk,T, I′

) |Cjk,T

]∣∣∣I]}
, (2)

with boundary conditions eω∗(d,T, I) = 0, ω∗(d,T, I) =
d, ∀T,∀I ∈ Z(d,T). The above equations are extended
to take into account current time and information, so the
solution of these equations is similar to the shortest path
problem. We calculate the drivers’ behavior model based
on the logit random utility. The travel time distribution C
is the input of the optimal strategy generation model, Ω =
ϒ(C) denotes as the set of policies for OD path selection.
Let PT(ω|Ω) the probability of choosing policy ω by a
traveler if he or she departs the node j at time t. Then,

PT (ω|Ω) =
expλ (Yω,T)

∑
ω∈Ω

expλ (Yω,T)
. . . . . . . (3)

The model introduces the driver’s game judgment,
when he chooses the route to determine whether to choose
the route or not, λ = 1 means the driver chooses this road;
λ = 0 means the driver doesn’t choose this road. exp(·) is
the natural exponential function and Yω,T is the utility of
policy ω at time T. We compute Yω,T in terms of the ex-
pected travel time a traveler takes to reach node k if he or
she follows policy ω and departs at time T from the node
j:

Yω,T = eω (j,T, I) , . . . . . . . . . . . (4)

where eω(j,T, I) is the expected travel time for travelers to
follow the strategy ω departs from the node j to point D
at time T. The algorithm of section selection probability
is presented as Table 1 and Fig. 2 [10].

This algorithm takes the distribution of road travel time
as input to obtain the road condition information at the
current moment. We find the path with the shortest travel
time through the optimal strategy model. The logit ran-
dom utility model to calculate the probability matrix of

Table 1. The optimal strategy.

Algorithm: Computing the optimal strategy
Input: distribution of segment travel time {Cjk,T, j,k}
are the starting and ending points of the segment,
T{T1, . . . ,Tn}
Output: the selection probability of each road section PT

Step 1 (Initialization step):
1.1 Compute eω∗(j,T, I) and ω∗(j,T, I), ∀j ∈ U, ∀I ∈ (d, t)
1.2 eω∗(j,T, I) = ∞, ∀j ∈ U−{d},

eω∗(d,T, I) = 0, ∀t < Tn, ∀I ∈ (d,T);
Step 2 (Main Step):

For t = T down to 1
For each I ∈ (d,T)

For each link(j,k) ∈ M
temp = Cjk,T + ∑

I′∈I(T+Cjk,T)
eω∗(k,T

+Cjk,T, I′)P
(

I′
I(T+Cjk,T)

)
;

If temp < eω∗(j,T, I)
eω∗(j,T, I) = temp;
ω∗(j,T, I) = k;

PT =
expλ (temp)

∑
ω∈Ω

expλ (temp)′

Distribution of route

travel time

Optimal strategy

model

Path with the shortest

travel time

The probability matrix of

drivers at decision points

The logit random

utility model

Fig. 2. Structure of the optimal strategy algorithm.

drivers at decision points of different sections P(Nn,T),
as shown in Eq. (5), Nn nodes and T time step determine
the selection probability of different sections in the road
network.

P(Nn,T) =

⎡⎢⎢⎢⎢⎢⎣
p1,1 p1,2 . . . p1,T

p2,1 p2,2 . . . p2,T

...
...

. . .
...

pm,1 pm,2 . . . pm,T

⎤⎥⎥⎥⎥⎥⎦ . . . . (5)
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Fig. 3. Converting a space-time graph into a tensor.

3. Traffic Flow Prediction Model Based on
Drivers’ Cognition of Road Network
(BAT-GCN)

In this paper, the driver’s selection probability matrix
of different sections as probability graph for convolution
operation, and combined with the temporal and spatial
diagram convolutional neural network of road network
traffic flow, to predict the future traffic flow. Due to the
interconnection, correlation and mutual influence of each
road segment, its complexity poses a great challenge to
the traditional graph structure model, which transforms
the above space-time diagram and probability diagram
into a tensor. For example, we propose transforming
the space-time graph into a tensor [1, 11] Mt ∈ R

2N×I×J,
N is the number of nodes, and the transformation tensor
of the probability graph is the same as the method. As
it is shown in Fig. 3(a), the road network is composed
of 12 nodes and 15 edges at time t. We first unroll
it that a directed graph (Fig. 3(b)). For each node,
there are inflow and outflow transitions, represented
by a vector (dimension = 24) (Fig. 3(c)). For example
Node 1, its inflow matrix is [0 24 0 0 0 0 0 0 0 0 0 0 ],
the outflow matrix is [0 0 0 0 26 0 0 0 0 0 0 0 ],
which are further concatenated into one matrix
[0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 ],

containing both outgoing and incoming information.
Finally, we can reshape the matrix into a tensor, and
each tensor consists of an inflow matrix and an outflow
matrix (Fig. 3(d)). The first N channels are the inflow
matrix, and the last N channels are the outflow matrix.
Each node has a fixed spatial location according to the
real road network, protecting the spatial correlation.

Suppose the t time-series recorded on each node in
the traffic network G is the traffic flow sequence. We
use xt

c,Nn ∈ R to denote the value of the c-th feature
of node Nn at time t, and xt

Nn ∈ R
T denotes the val-

ues of all the features of node Nn at time t. Xt =
(xt

N1 ,xt
N2 , . . . ,xt

Nn)T ∈ R
n×T denotes the values of all

the features of all the nodes at time t. Besides, we set
yNn

t = xT,Nn
t ∈R to represent the traffic flow of node Nn at

time t in the future.
Figure 4 shows the description of the traffic flow pre-

diction model based on drivers’ cognition of the road net-
work. The model is composed of two parts, namely, the
time-space diagram modeling of traffic flow and path se-
lection probability. Taking the space-time diagram model
of traffic flow as an example, the traffic flow data is in-
put, and it is a time-ordered sequence of graphs {St | t =
t1, t2, . . . , tT}, which is further converted into a sequence
of tensors Mt ∈ R

2N×I×J, {Mt | t = t1, t2, . . . , tT}, accord-
ing to the above transformation method.
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Fig. 4. Traffic flow prediction model based on drivers’ cognition of road network.

For each node Nn, it has up to 2N transition possibil-
ity, including N incomings and outgoings. However, for
a certain time interval, the transition between nodes may
be very sparse. We propose employing a spatial embed-
ding method, to tackle such sparse and high-dimensional
problems. In detail, the spatial embedding tends to learn
a function that maps a 2N-dimension vector of node Ni,j
into a M-dimension space as follows:

Zt (:, i, j) = WmMt (:, i, j)+bm,

1 ≤ i ≤ I, i ≤ j ≤ J,
. (6)

where Wm ∈ R
M×2N and bm ∈ R

M are the learnable pa-
rameter matrix and vector, respectively. All I× J nodes
share these parameters. Mt(:, i, j) ∈ R

M means the vector
located at (i, j).

We employ an embedding layer to deal with the prob-
lem of sparse matrix transition and carry out convolu-
tion operation. The space-time path selection probability
graph model converts the tensor model is the same as the
above method, the obtained probability tensor model is
shown in the figure below. Firstly, the processed space-
time graph sequence of road traffic flow and path selec-
tion probability is used as the input of convolution oper-
ation. Secondly, we obtain the relevant features in dif-
ferent spatial and temporal dimensions and compressed
into one-dimensional vectors through the flattening layer
in the convolution. Finally, the eigenvectors of the two
models are taken as the input of the full connection, and
the inner product is output to predict future traffic flow.

4. Experimental Analysis

4.1. Data Description

We used TensorFlow to predict the performance of the
BAT-GCN model on the actual data set. The data set is
the GPS trajectory data of floating cars in a demonstration
area of Hefei from September 1 to September 30, 2016.
We measure traffic volume, average speed, and travel time
between sections every 10 minutes, 80% of data was used
as training data sets, and the remaining 20% was used as
test sets to predict future traffic volume. The hyperparam-
eters set in the model mainly including learning speed,
batch size, training cycle and the number of hidden layers.
In the experiment, we set the learning rate to 0.001 and the
batch size to 32. Since the iteration is about 1000 times,
the training error is in an equilibrium state, the training
period is 1500. After many experiments, the number of
hidden layer units is set to be 64, which is the optimal
prediction model.

4.2. Evaluation Metrics

To evaluate the prediction performance of the
BAT-GCN model, we use five metrics to evaluate the dif-
ference between the real traffic flow Yt and the prediction
Ŷt including:

(1) Root mean squared error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(
Yt − Ŷt

)2
. . . . . . . . (7)

(2) Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣Yt − Ŷt
∣∣. . . . . . . . . . (8)
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Table 2. The prediction results of the BAT-GCN model and other baseline methods on datasets.

Metrics
Model

HA SVR ARIMA GCN LSTM T-GCN BAT-GCN
RMSE 24.145 25.475 26.587 27.875 22.899 23.001 21.208
MAE 15.094 18.277 17.640 18.075 15.032 14.053 12.825

R2 0.565 0.422 ∗ 0.420 0.610 0.605 0.666
Var 0.565 0.422 ∗ 0.422 0.610 0.627 0.673

(3) Coefficient of determination (R2):

R2 = 1−
∑
i=1

(
Yt − Ŷt

)2

∑
i=1

(
Yt − Ŷ

)2 . . . . . . . . . . (9)

(4) Explained variance score (Var):

Var = 1− Var
{

Y− Ŷ
}

Var{Y} . . . . . . . . . . (10)

Specifically, RMSE and MAE are used to measure the
prediction error: the smaller the value, the better the pre-
diction effect. R2 and Var calculate correlation coeffi-
cients to measure the ability of prediction results to rep-
resent actual data: the larger the value, the better the pre-
diction effect.

4.3. Experimental Results
The performance of the BAT-GCN model is compared

with the following baseline approach, as shown in Ta-
ble 2.

Table 2 shows the evaluation indexes of the BAT-
GCN model and other baseline methods. ∗ indicates
that the value is too small to be ignored, indicating that
the prediction effect of the model is poor. T-GCN and
BAT-GCN models emphasize the importance of time fea-
ture modeling. Compared with other baselines, such as
the HA model, the ARIMA model, and the SVR model,
they have better prediction accuracy. The RMSE errors
of T-GCN and BAT-GCN models are 9.71% and 16.7%
lower than those of SVR models respectively, which is
because it is difficult for HA, SVR, and ARIMA meth-
ods to process complex non-stationary time series data.
Compared with the GCN model that only considers spa-
tial features, RMSE decreases by 17.5% and 23.9% re-
spectively. Compared with the LSTM model that only
considers time characteristics, RMSE of BAT-GCN de-
creases by about 7.4%, while RMSE of the T-GCN model
increases. It can be seen that the evaluation indexes of
the BAT-GCN model in all prediction models are the best
prediction performance, proving the effectiveness of the
model in traffic flow prediction.

To more clearly see the effective value of evalua-
tion, we selected the morning peak (7:00–9:30) as shown
in Fig. 5(a), and late peak (17:00–7:30) as shown in
Fig. 5(b) of the traffic flow forecasting. By comparing our
model with SVR, GCN, LSTM, and T-GCN models, we

(a) Morning peak (7:00–9:30)

(b) Evening peak (17:00–7:30)

Fig. 5. Prediction of morning and evening peak traffic flow
on September 25, 2016.

can see from these figures that in most cases, the perfor-
mance of our BAT-GCN model is superior to other mod-
els.

From the above results, we can draw the following con-
clusions: It is very important to predict the traffic flow
accurately by the model of driver’s behavior choice path
strategy base on the condition of the known traffic net-
work. Especially, when congestion occurs in morning and
evening peak hours, drivers consider the shortest path to
avoid congestion. Therefore, this paper proposes a traf-
fic flow prediction model based on driver behavior se-
lection. The distribution of route selection probability is
obtained through the driver’s judgment of road network
information, and combined with the spatiotemporal di-
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(a) RMSE

(b) MAE

Fig. 6. Error comparison.

rected graph convolution neural network model, predicted
the traffic flow of the regional road network. The model
can capture the spatiotemporal characteristics of the non-
Euclidean space. Compared with the traditional predic-
tion model, the prediction accuracy of our model is main-
tained at about 88%. The predicted curve law is basically
consistent with the actual. The position with large devia-
tion is mainly reflected in the traffic volume is small and
the fluctuation is large, but the error is within the accept-
able range.

With the increase of prediction interval, various predic-
tion performance also changes, as shown in the figure. In
general, as the prediction range increases, the prediction
error also increases. As can be seen from Fig. 6, only
consider the time correlation method can predict better
results in a short time, such as LSTM, but with the in-
crease of the prediction time range the prediction error in-
creases sharply. The predicted effect of the GCN model is
low, the main reason is that GCN only considers the spa-
tial characteristics, ignoring the traffic flow data is typical
of the time-series data. T-GCN and BAT-GCN models
take into account both temporal and spatial features, they
can almost always obtain the best prediction performance
compared with other models. In particular, we proposed

the BAT-GCN model has a more obvious difference from
other baselines in the short-term prediction, which indi-
cates that the optimal route selection strategy of drivers
can be better used in the traffic flow prediction of urban
complex road networks.

5. Conclusion

In this paper, we propose a novel approach for traffic
forecasting called BAT-GCN, which analyzes the driver’s
path selection behavior of road network traffic informa-
tion to obtain the selection probability distribution of dif-
ferent road sections in the road network. And then, com-
bining with spatiotemporal directed graph convolution
neural network. Because of the complexity of the ur-
ban road network, people often choose the best strategy
to reach their destination based on selfish behaviors. This
model can be better applied in the case of sudden acci-
dents or serious congestion in the road network, drivers
choose the path with the shortest travel time through game
thinking to avoid traffic congestion. Our method reflects
that drivers use GPS navigation, VMS, and other road in-
formation to judge the reality of the real road network, to
select the shortest path. By the analysis of the driver’s be-
havior, the accuracy of actual traffic flow prediction can
be improved. In this paper, the proposed model is verified
by the measured traffic flow data and compared with some
other baseline models. The results show that the predic-
tion results of the BAT-GCN model are closer to the real
data.
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