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In the field of cluster analysis, rough set-based
extensions of hard C-means (HCM; k-means) in-
cluding rough C-means (RCM), rough set C-means
(RSCM), and rough membership C-means (RMCM)
are promising approaches for dealing with the cer-
tainty, possibility, uncertainty of belonging of object to
clusters. Since C-means-type methods are strongly af-
fected by noise, noise clustering approaches have been
proposed. In noise clustering approaches, noise ob-
jects, which are far from any cluster center, are re-
jected for robust estimation. In this paper, we intro-
duce noise rejection approaches for rough set-based
C-means based on probabilistic memberships and
propose noise RCM with membership normalization
(NRCM-MN), noise RSCM with membership normal-
ization (NRSCM-MN), and noise RMCM (NRMCM).
In addition, visualization demonstration of the cluster
boundaries on the two-dimensional plane of the pro-
posed methods is carried out to confirm the charac-
teristics of each method. Furthermore, the clustering
performance is verified by numerical experiments us-
ing real-world datasets.

Keywords: rough set theory, noise clustering,
rough C-means, rough set C-means, rough membership
C-means

1. Introduction

Recently, huge amounts of data are accumulated and
their effective utilization is required in society. In order
to discover knowledge from large-scale data, the demand
for the techniques for automatically classifying and sum-
marizing the data is increasing. Clustering is one of the
techniques for automatically classifying and summarizing
data without supervision. A cluster is a group composed
of objects that have similar features. The purpose of clus-
tering is to extract an appropriate cluster structure from
the data.

Hard C-means (HCM; k-means) [1] is one of the most
widely used partitive clustering methods. However, HCM
lacks flexibility because it assigns each object to one and
only one cluster without considering the uncertainty in-

herent in the data. In order to overcome this problem,
various approaches utilizing soft computing such as fuzzy
theory [2] and rough set theory [3–5] have been proposed.
Fuzzy C-means (FCM) [6, 7] was proposed as an exten-
sion of HCM based on fuzzy theory and is widely used as
a flexible and robust method.

On the other hand, extensions of HCM based on rough
set theory are attracting attention as promising approaches
for dealing with the certainty, possibility, and uncertainty
of belonging of object to clusters. Lingras and West
first proposed rough C-means (LRCM) [8] and Peters
proposed PRCM [9] with some refinements to LRCM.
Ubukata et al. proposed generalized RCM (GRCM) [10]
by integrating LRCM and PRCM. GRCM can express
LRCM, PRCM, and their combination by tuning parame-
ters. If no confusion arises, GRCM is simply called RCM.
RCM allows each object to belong to multiple clusters
by relaxing the condition of belonging based on a lin-
ear function of the distance to the nearest cluster. RCM
is further generalized to linear function threshold-based
C-means (LiFTCM) [11].

In principle, rough set theory deals with the certainty,
possibility, and uncertainty by extracting the lower ap-
proximation, upper approximation, and boundary region,
respectively. They are calculated by determining the be-
longing to any subset for each granule (neighborhood of
object) in the space granulated by a binary relation. How-
ever, RCM-type methods do not correspond to the prin-
ciple of rough set theory because the granulation of the
object space is not considered. As a clustering model
in granular space, Ubukata et al. proposed rough set
C-means (RSCM) [12, 13].

In RCM and RSCM, aggregation strategies are required
to determine the representative point (prototype) of the
cluster, because each cluster is represented by three types
of regions representing certainty, possibility, and uncer-
tainty. In original methods, the priority weight of each re-
gion is set, and the aggregation is carried out by calculat-
ing the convex combination of the centers of three regions.
If the distinction is necessary, we call these methods RCM
with center combination (RCM-CC) and RSCM with cen-
ter combination (RSCM-CC). These methods are difficult
to use because we have to find and set the appropriate
weight parameters. In order to overcome the problem,
methods that determine the cluster center based on proba-
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bilistic memberships are proposed. Peters proposed RCM
with membership normalization (RCM-MN; πRCM) [14,
15] and Ubukata et al. proposed RSCM with membership
normalization (RSCM-MN; πRSCM) [16]. These meth-
ods normalize the membership so that it satisfies the sum-
to-one constraints across clusters. Ubukata et al. further
proposed rough membership C-means (RMCM) [16, 17],
which uses the rough membership (the proportion of clus-
ter in the neighborhood of object) [18, 19] as a probabilis-
tic membership.

In C-means-type methods, the cluster prototype is de-
termined by the center, which is the point that mini-
mizes the within-cluster sum of square errors. There-
fore, C-means-type methods are strongly affected by out-
liers, which are objects with anomalous features. In
noise clustering approaches, noise objects, which are far
from any cluster center, are rejected for robust estima-
tion. Dave proposed noise FCM (NFCM) [20, 21], in
which a single noise cluster is introduced in addition
to regular (non-noise) clusters and noise objects are re-
jected by assigning them to the noise cluster. Ubukata
et al. proposed noise RCM-CC (NRCM-CC) and noise
RSCM-CC (NRSCM-CC) as noise reduction approaches
for RCM-CC and RSCM-CC [22]. NRCM-CC and
NRSCM-CC realize flexible and robust clustering by con-
sidering the certainty, possibility, and uncertainty of be-
longing to the noise cluster as well as the regular clusters.

In rough clustering based on center combination, it is
difficult to set the weight parameters. In noise rough clus-
tering, it is more difficult because of an additional pa-
rameter, the noise distance. Therefore, in this study, we
consider methods based on parameter-free center calcu-
lation, that is, methods based on the membership nor-
malization or rough memberships. In this paper, noise
rejection approaches for RCM, RSCM and RMCM are
comprehensively discussed. In addition to our previ-
ously proposed NRCM-CC and NRSCM-CC, we in-
troduce noise rejection approaches for rough set-based
C-means based on probabilistic memberships and pro-
pose noise RCM-MN (NRCM-MN), noise RSCM-MN
(NRSCM-MN), and noise RMCM (NRMCM). In addi-
tion, visualization demonstration of the cluster boundaries
on the two-dimensional plane of the proposed methods is
carried out to confirm the characteristics of each method.
Furthermore, the clustering performance is verified by nu-
merical experiments using real-world datasets.

The remainder of the paper is organized as follows.
Section 2 describes the preliminaries for our study. Noise
rejection approaches for various rough set-based C-means
clustering are introduced and visualization demonstration
is carried out in Section 3. In Section 4, our comparative
experiments are discussed. Finally, the conclusions are
presented in Section 5.

2. Preliminaries

In general, C-means-type clustering methods deal with
a dataset composed of n objects with observations of
m features. Let U = {xxx1, . . . ,xxxi, . . . ,xxxn} be a set of ob-
jects, where each object is an m-dimensional real fea-
ture vector xxxi = (xi1, . . . ,xi j, . . . ,xim)�. Set the number
of clusters, C, and extract C clusters composed of simi-
lar objects from U . The prototype of cluster c is repre-
sented by the cluster center bbbc = (bc1, . . . ,bc j, . . . ,bcm)�.
Let dci = ||xxxi −bbbc|| be the Euclidean distance between bbbc
and xxxi. Let Dit = ||xxxt − xxxi|| be the Euclidean distance be-
tween xxxi and xxxt .

2.1. Hard C-Means and Fuzzy C-Means
Let uci ∈ {0,1} be the membership value of object i to

cluster c. If object i belongs to cluster c, then uci = 1,
otherwise, uci = 0. HCM is formulated as follows to min-
imize the total within-cluster sum of squared errors.

min. JHCM =
C

∑
c=1

n

∑
i=1

ucid2
ci, . . . . . . . (1)

s.t.
C

∑
c=1

uci = 1,∀i, . . . . . . . . . . (2)

uci ∈ {0,1},∀c, i. . . . . . . . . . (3)

The update rules of uci and bbbc are derived as follows, re-
spectively:

uci =

⎧⎨
⎩1

(
c = arg min

1≤l≤C
dli
)

,

0 (otherwise),
. . . . . . . (4)

bbbc =

n

∑
i=1

ucixxxi

n

∑
i=1

uci

. . . . . . . . . . . . . . (5)

In HCM, the cluster centers are initialized, the member-
ships and centers are updated alternately until they con-
verge.

In FCM, the membership value uci ∈ [0,1] is relaxed to
take the value on the closed unit interval. The optimiza-
tion problem is formulated as follows.

min. JFCM =
C

∑
c=1

n

∑
i=1

uθ
cid

2
ci, . . . . . . . (6)

s.t.
C

∑
c=1

uci = 1,∀i, . . . . . . . . . . (7)

uci ∈ [0,1],∀c, i, . . . . . . . . . (8)

where θ (θ > 1) is a parameter for adjusting the fuzziness
degree. Larger θ produces a fuzzier partition. The update
rules of uci and bbbc are derived as follows, respectively:
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uci =
(dci)

2
1−θ

C

∑
l=1

(dli)
2

1−θ

, . . . . . . . . . . . . (9)

bbbc =

n

∑
i=1

uθ
cixxxi

n

∑
i=1

uθ
ci

. . . . . . . . . . . . . (10)

In FCM, the membership values are initialized so that they
satisfy the constraints, the centers and memberships are
updated alternately until they converge.

2.2. Rough Set-Based C-Means

2.2.1. Rough C-Means

RCM considers the memberships of object to three re-
gions with respect to cluster, namely, the lower area, up-
per area, and boundary area, in order to deal with the cer-
tainty, possibility, and uncertainty of belonging to clus-
ters, respectively. Let uci, uci, ûci ∈ {0,1} be the member-
ships of object i to the lower area, upper area, and bound-
ary area of cluster c, respectively. In RCM object-cluster
assignment, the membership to the upper area is first cal-
culated. RCM allows each object to belong to multiple
upper areas of clusters by relaxing the condition of be-
longing based on a linear function of the distance to the
nearest cluster. The lower area is extracted as a region in
which each object belongs to one and only one upper area
of a cluster. The boundary area is extracted as a region
in which each object belongs to multiple upper areas of
clusters.

uci, uci, and ûci are calculated as follows using the dis-
tance dmin

i to the nearest cluster:

dmin
i = min

1≤l≤C
dli, . . . . . . . . . . . . (11)

uci =
{

1
(
dci ≤ αdmin

i +β
)
,

0 (otherwise),
. . . . . (12)

uci =

⎧⎪⎨
⎪⎩

1

(
uci = 1∧

C

∑
l=1

uli = 1

)
,

0 (otherwise),

. . . (13)

ûci =

⎧⎪⎨
⎪⎩

1

(
uci = 1∧

C

∑
l=1

uli ≥ 2

)
,

0 (otherwise),

. . . (14)

where α (α ≥ 1), β (β ≥ 0) are parameters for adjusting
the roughness. Larger α and β produce smaller lower
areas, larger upper areas, and larger boundary areas.

Since each cluster is represented by three areas, aggre-
gation strategies are required to calculate the cluster pro-
totype. Here, we introduce two aggregation strategies.

One is RCM with center combination (RCM-CC),
which is based on the convex combination of the centers

of three areas.

bbbc =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

∑
i=1

ucixxxi

n

∑
i=1

uci

(
n

∑
i=1

uci = 0∨
n

∑
i=1

ûci = 0

)
,

w

n

∑
i=1

ucixxxi

n

∑
i=1

uci

+w

n

∑
i=1

ucixxxi

n

∑
i=1

uci

+ ŵ

n

∑
i=1

ûcixxxi

n

∑
i=1

ûci

(otherwise),

(15)

where w,w, ŵ ≥ 0 such that w + w + ŵ = 1 are weight
parameters for three areas.

The other is RCM with membership normalization
(RCM-MN), in which the cluster prototype is calculated
by the normalized upper area membership ũci to satisfy
the sum-to-one constraints across clusters.

ũci =
uci

C

∑
l=1

uli

, . . . . . . . . . . . . . (16)

bbbc =

n

∑
i=1

ũcixxxi

n

∑
i=1

ũci

. . . . . . . . . . . . . (17)

This membership normalization strategy does not require
setting of the weight parameters.

2.2.2. Rough Set C-Means

RSCM is a clustering model on a granulated object
space. In RSCM, the object space U is previously gran-
ulated by a binary relation R ⊆ U ×U . In this study,
the binary relation is represented by the matrix-element
form Rit . In the original method, Rit is determined as fol-
lows based on the neighborhood rough set model [23, 24]:

Rit =
{

1 (Dit ≤ η),
0 (otherwise),

. . . . . . . . (18)

η = percentile([Dit ],τ). . . . . . . . . (19)

The neighborhood of object i is the set of objects within
the distance η from i. It is useful to determine η
by τ ∈ [0,100] percentile of the distance distribution [Dit ].
This allows setting the τ-percent of [Rit ] to be 1 indepen-
dent of the scale of the feature space.

In each iteration of RSCM object-cluster assignment,
temporary clusters are first generated by the HCM-based
nearest-cluster assignment. The certainty, possibility, and
uncertainty of belonging to clusters are represented by the
lower approximation, upper approximation, and bound-
ary region of temporary clusters with respect to R. Let
uci, uci, ûci ∈ {0,1} be the memberships of the lower ap-
proximation, upper approximation, and boundary region,
respectively. If no confusion arises, we use the same sym-
bols as RCM.
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Based on the definitions in the generalized rough set
model [25], uci, uci, and ûci are calculated as follows, re-
spectively:

uci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

⎛
⎜⎜⎜⎝

n

∑
t=1

Rituct

n

∑
t=1

Rit

> 0

⎞
⎟⎟⎟⎠ ,

0 (otherwise),

. . . . . (20)

uci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

⎛
⎜⎜⎜⎝

n

∑
t=1

Rituct

n

∑
t=1

Rit

= 1

⎞
⎟⎟⎟⎠ ,

0 (otherwise),

. . . . . (21)

ûci =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

⎛
⎜⎜⎜⎝

n

∑
t=1

Rituct

n

∑
t=1

Rit

∈ (0,1)

⎞
⎟⎟⎟⎠ ,

0 (otherwise).

. . . . (22)

Two aggregation strategies for the calculation of the
cluster prototypes are introduced in similar manner to
RCM. One with Eq. (15) is called RSCM-CC. The other
with Eqs. (16) and (17) is called RSCM-MN.

2.2.3. Rough Membership C-Means

In RMCM, the cluster center is calculated by the rough
membership μci, which is the proportion of cluster c in the
neighborhood of object i.

μci =

n

∑
t=1

Rituct

n

∑
t=1

Rit

, . . . . . . . . . . . (23)

bbbc =

n

∑
i=1

μcixxxi

n

∑
i=1

μci

. . . . . . . . . . . . (24)

By using the rough membership, which is an intermediate
product of rough approximation, more detailed neighbor-
hood information can be utilized.

3. Noise Rejection Approaches for Various
Rough Set-Based C-Means Clustering

In this paper, noise rejection approaches for RCM,
RSCM and RMCM are comprehensively discussed. In
addition to our previously proposed NRCM-CC and
NRSCM-CC, we introduce noise rejection approaches for
rough set-based C-means based on probabilistic mem-
berships and propose noise RCM-MN (NRCM-MN),
noise RSCM-MN (NRSCM-MN), and noise RMCM

(NRMCM). In addition, visualization demonstration of
the cluster boundaries on the two-dimensional plane of
the proposed methods is carried out to confirm the char-
acteristics of each method.

3.1. Noise Fuzzy C-Means
As a preliminary for the introduction of noise rough

clustering, we explain one of the methods of noise fuzzy
clustering. NFCM is one of the noise rejection approaches
for FCM. In NFCM, a single noise cluster is introduced in
addition to the regular clusters. Noise objects, which are
far from any cluster center, are rejected by assigning them
to the noise cluster for robust estimation. Let C be the
number of clusters including C − 1 regular clusters and
one noise cluster. Let C-th cluster be the noise cluster.

The optimization problem of NFCM is formulated as
follows:

min. JNFCM =
C−1

∑
c=1

n

∑
i=1

uθ
cid

2
ci +δ 2

n

∑
i=1

uθ
Ci,

under the same constraints as FCM, where δ (δ ≥ 0) is
the noise distance, which is the reference value for noise
determination. Smaller δ rejects more objects as noise.
NFCM can be implemented in a simple manner by fix-
ing the distance dCi = δ , which is the distance between
object i and the noise cluster, in FCM.

3.2. Algorithms of Proposed Methods
This subsection shows the algorithms of the proposed

methods. The noise rejection schemes of the proposed
methods are implemented by similar manners to the
derivation of NFCM from FCM. That is, in each itera-
tion, the memberships are calculated by fixing dCi = δ
and the prototypes of the regular clusters (1 ≤ c ≤C− 1)
are calculated.

The conventional methods and the proposed methods
are summarized in Table 1.

3.2.1. Noise RCM

A sample algorithm of NRCM including NRCM-CC
and NRCM-MN is shown in Algorithm 1. Note that,
membership normalization is executed including the noise
cluster as well as the regular clusters.

3.2.2. Noise RSCM

A sample algorithm of NRSCM including NRSCM-CC
and NRSCM-MN is shown in Algorithm 2. Note that,
membership normalization is executed including the noise
cluster as well as the regular clusters.

3.2.3. Noise RMCM

A sample algorithm of NRMCM is shown in Algo-
rithm 3.
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Table 1. Summary of the conventional methods and the proposed methods. The methods with ‘*’ are the proposed methods.

Summary
Center
Calculation RCM-type RSCM-type RMCM-type

Without
Noise
Rejection

Center
Combination RCM-CC RSCM-CC RMCM
Membership
Normalization RCM-MN RSCM-MN

Noise
Rejection

Center
Combination NRCM-CC NRSCM-CC NRMCM *
Membership
Normalization NRCM-MN * NRSCM-MN *

Algorithm 1 NRCM
Step 1. Set C (1 <C < n), α (α ≥ 1), β (β ≥ 0), and δ (δ ≥ 0).
Step 2. Initialize bbbc.
Step 3. Calculate uci, uci, and ûci using Eqs. (11), (12), (13),
and (14), fixing dCi = δ .
Step 4. Calculate bbbc (1 ≤ c ≤C−1):
if NRCM-CC then

Using Eq. (15) with w, w, ŵ ≥ 0
such that w+w+ ŵ = 1.

else if NRCM-MN then
Using Eqs. (16) and (17).

end if
Step 5. Repeat Steps 3–4 until uci do not change.

3.3. Cluster Boundary Visualization

This subsection shows the visualization demonstration
of the cluster boundaries on the two-dimensional plane of
the proposed methods. We generated an artificial dataset,
grid data, in which n = 100× 100 objects are equally ar-
ranged in a grid on the unit square [0,1]× [0,1]. We con-
sider extracting three regular clusters, c = (1,2,3), and
one noise cluster, c = 4, in the grid data. That is, we show
the results of the proposed methods with the cluster num-
ber C = 4. The regular clusters, c = (1,2,3), correspond
to the primary colors (red,green,blue), respectively. The
noise cluster, c = 4, corresponds to black.

In NRCM and NRSCM, the RGB value (r,g,b)i of ob-
ject i is calculated as follows based on resulting uci:

(r,g,b)i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

255× (u1i,u2i,u3i)
(u4i = 0),

255×

⎛
⎜⎝

u1i
C

∑
c=1

uci

,
u2i

C

∑
c=1

uci

,
u3i

C

∑
c=1

uci

⎞
⎟⎠

(u4i = 1).

Objects belonging to one and only one regular cluster are
displayed in primary colors. Objects belonging to the
boundary area (region) of multiple regular clusters are dis-
played in additive color mixture. Objects belonging to the
boundary area (region) of the noise cluster are darkened
by dividing the membership. Objects only belonging to
the noise cluster are displayed in black.

In NRMCM, the RGB value (r,g,b)i of the object i is

Algorithm 2 NRSCM
Step 1. Set C (1 < C < n), [Rit ], and δ (δ ≥ 0).
Step 2. Initialize bbbc.
Step 3. Calculate uci, uci, uci, and ûci using Eqs. (4), (20), (21),
and (22), fixing dCi = δ .
Step 4. Calculate bbbc (1 ≤ c ≤C−1):
if NRSCM-CC then

Using Eq. (15) with w, w, ŵ ≥ 0
such that w+w+ ŵ = 1.

else if NRSCM-MN then
Using Eqs. (16) and (17).

end if
Step 5. Repeat Steps 3–4 until uci do not change.

Algorithm 3 NRMCM
Step 1. Set C (1 < C < n), [Rit ], and δ (δ ≥ 0).
Step 2. Initialize bbbc.
Step 3. Calculate uci and μci using Eqs. (4) and (23), fixing
dCi = δ .
Step 4. Calculate bbbc (1 ≤ c ≤C−1) using Eq. (24).
Step 5. Repeat Steps 3–4 until uci do not change.

calculated as follows based on resulting μci:

(r,g,b)i = 255× (μ1i,μ2i,μ3i).

The RGB values are distributed based on the proportion
of clusters in the neighborhood of object. Objects closer
to primary colors have higher certainty of belonging to a
regular cluster.

In order to observe the cluster boundaries under the
same condition, the centers of the three regular clusters,
c = (1,2,3), are fixed as follows, respectively:

bbb1 = (0.22,0.31)�,

bbb2 = (0.5,0.81)�,

bbb3 = (0.78,0.31)�.

These cluster centers are one of the results of HCM. Each
center of the regular cluster is indicated by the cross mark
in the figures. The noise cluster does not have the center.
Since the centers are fixed, differences in the center cal-
culation methods (CC and MN) are not considered in this
demonstration.

Figure 1 shows the result of NRCM (α = 1, β = 0), in
which a hard partition is obtained and no boundary area
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Fig. 1. Grid data: Visualization of the cluster boundaries by NRCM (α = 1, β = 0) for each δ ∈ {∞,0.4,0.3,0.2}.

Fig. 2. Grid data: Visualization of the cluster boundaries by NRCM (α = 1.5, β = 0) for each δ ∈ {∞,0.4,0.3,0.2}.

is detected. Fig. 1(a) shows the result of δ → ∞, in which
noise objects are not detected. This is the same result as
HCM, which produces the Voronoi boundary. Fig. 1(b)
shows the result of δ = 0.4. By reducing δ , black regions
appear at the top both ends. That is, objects far from any
cluster center are rejected as noise. Fig. 1(c) shows the
result of δ = 0.3. By further reducing δ , black areas are
enlarged rejecting more objects as noise. Fig. 1(d) shows
the result of δ = 0.2. By further reducing δ , circular reg-
ular clusters are finally extracted.

Figure 2 shows the results of NRCM (α = 1.5, β = 0).
Fig. 2(a) shows the result of δ → ∞, in which noise ob-
jects are not detected. By increasing α , the boundary
areas are detected assigning objects to multiple clusters.
Since the boundary area is calculated based on the dis-
tance ratio, it forms the circles of Apollonius. Fig. 2(b)
shows the result of δ = 0.4. By reducing δ , dark areas,
in which objects possibly belong to the noise cluster, ap-
pear. Fig. 2(c) shows the result of δ = 0.3. By further
reducing δ , black areas, in which objects certainly belong
to the noise cluster, appear. Fig. 2(d) shows the result
of δ = 0.2. By further reducing δ , double circular regular
clusters, in which the upper area includes the lower area,
are finally extracted.

Figure 3 shows the results of NRCM (α = 1, β =
0.15). Figs. 3(a), (b), (c), and (d) show similar trends
to Figs. 2(a), (b), (c), and (d), respectively. Since the
boundary area is calculated based on the distance differ-

ence, it forms hyperbolas. The ratio of the lower area and
upper area is different from Fig. 2, because it is different
whether the distance ratio is used or the distance differ-
ence is used.

Figure 4 shows the results of NRSCM (τ = 3).
Figs. 4(a), (b), (c), and (d) correspond to the results of the
upper approximation of the hard partitions in Figs. 1(a),
(b), (c), and (d), respectively, and show similar trends to
Figs. 2 and 3. Since the boundary region is calculated
based on neighborhood information, it forms more com-
plex shape than that of NRCM. The roundness and sharp-
ness of the boundary regions in Fig. 4 are attributed to the
sharp parts of the noise cluster in Fig. 1.

Figure 5 shows the results of NRMCM (τ = 3).
Since the rough membership is an intermediate product
of the upper approximation, the rough memberships in
Figs. 5(a), (b), (c), and (d) induce the upper approxima-
tions in Figs. 4(a), (b), (c), and (d) by threshold process-
ing, respectively. Since the rough membership takes a real
value, the clusters are expressed by gradation. Fig. 5(a)
shows the result of δ → ∞, in which noise objects are not
detected. Here, objects in dark areas have the uncertainty
of belonging to the regular clusters. When δ is decreased
in the order of Figs. 5(b), (c), and (d), the dark area sur-
rounding the regular clusters expands. Here, dark areas
have the uncertainty of belonging to the noise clusters as
well as the regular clusters.

It was shown that NRCM, NRSCM, and NRMCM pro-
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Fig. 3. Grid data: Visualization of the cluster boundaries by NRCM (α = 1, β = 0.15) for each δ ∈ {∞,0.4,0.3,0.2}.

Fig. 4. Grid data: Visualization of the cluster boundaries by NRSCM (τ = 3) for each δ ∈ {∞,0.4,0.3,0.2}.

Fig. 5. Grid data: Visualization of the cluster boundaries by NRMCM (τ = 3) for each δ ∈ {∞,0.4,0.3,0.2}.

duce the cluster boundaries with different characteristics
considering the certainty, possibility, uncertainty of be-
longing to the noise cluster as well as the regular clusters.

4. Numerical Experiments

In this section, we verify the clustering performance of
the proposed methods using real-world datasets by evalu-
ating the estimation performance of the true class centers.
In datasets, each object has the true class label as well
as the observations of the features. Let bbbtrue

l be the true
center of class l. By setting the number of clusters C as

the number of classes plus one (the one is for the noise
cluster), clustering was performed to obtain the regular
cluster center bbbc (1 ≤ c ≤C−1) without supervision, that
is, without class information.

The center error (CE), which is the sum of errors
between the resulting regular cluster centers and corre-
sponding true class centers, was calculated as follows:

CE =
C−1

∑
c=1

||bbbc −bbbtrue
c ||, . . . . . . . . . (25)

where the one-to-one correspondence between the regular
clusters and classes was selected so that it minimizes CE.
The smaller the CE is, the more accurately the class struc-
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ture can be estimated without supervision. Since it is dif-
ficult to compare the consistency between the given la-
bel structure, which has no overlap and no noise, and the
resulting cluster structure, which has overlap and noise,
we evaluate the performance by CE, which is easy to
compare. We assume that if latent overlap and noise are
handled properly then the cluster center can be estimated
more accurately.

To avoid the initial value dependence of clustering,
the initial cluster centers was determined by the result of
HCM with the strict KKZ initialization, in which the first
two centers are set by the most distant two objects and the
subsequent centers are set by the most distant object from
the nearest center.

4.1. Iris Dataset
This subsection shows the results for the Iris dataset

downloaded from the UCI Machine Learning Reposi-
tory [26]. The Iris dataset consists of n = 150 objects, m =
4 features ({sepal length, sepal width, petal length,
petal width}), and three classes ({setosa, versicolour,
virginica}).

Figure 6 shows the result of NRCM (α = 1, β = 0)
changing δ ∈ [0.3,2.5] in increments of 0.01. Since
this is the case of hard noise clustering, NRCM-CC and
NRCM-MN produce the same result. In the case of δ ≥
1.7, no object is detected as noise and the result is the
same as that of HCM. In the case of δ ∈ [0.5,1.5], a cer-
tain number of objects is rejected as noise, improving the
performance. In the case of δ < 0.5, more objects are re-
jected as noise and the regular clusters shrink, degrading
the performance.

We compared the performances of two center calcu-
lation methods, namely, the center combination and the
membership normalization, under the condition, δ → ∞,
in which noise rejection was not performed. Fig. 7
shows the results of NRCM-CC (δ → ∞, β = 0) chang-
ing α ∈ [1,3] in increments of 0.05 for various weights,
where w = (w,w, ŵ), and NRCM-MN (δ → ∞, β = 0).
Fig. 8 shows the results of NRCM-CC (δ → ∞, α = 1)
changing β ∈ [0,1.5] in increments of 0.05 for various
weights and NRCM-MN (δ → ∞, α = 1). In both cases,
the performance deteriorates when the weight ŵ of the
boundary area is given. Although w = (1.0,0.0,0.0) and
w = (0.5,0.5,0.0) produce better performance, it is dif-
ficult to set an appropriate combination of the weight
parameters. NRCM-MN can produce relatively stable
performance without weight setting. Thereafter, we use
the membership normalization-based methods to compare
NRCM, NRSCM, and NRMCM.

Figure 9 shows the results of NRCM-MN (β = 0)
changing α ∈ [1,3] in increments of 0.05 for each δ ∈
{∞,1.5,1.25,1.0,0.75,0.5}. Fig. 10 shows the results of
NRCM-MN (α = 1) changing β ∈ [0,1.5] in increments
of 0.05 for each δ ∈ {∞,1.5,1.25,1.0,0.75,0.5}. For
all δ , the performance is improved by increasing α or β to
some extent, whereas it is degraded by further increasing
the parameters. That is, the appropriate roughness im-

Fig. 6. Iris: Transition of center error by NRCM (α = 1,
β = 0) changing δ ∈ [0.3,2.5] in increments of 0.01.

Fig. 7. Iris: Transition of the center error by NRCM-CC
(δ → ∞, β = 0) changing α ∈ [1,3] in increments of 0.05
for various weights and NRCM-MN (δ → ∞, β = 0).

Fig. 8. Iris: Transition of the center error by NRCM-CC
(δ → ∞, α = 1) changing β ∈ [0,1.5] in increments of 0.05
for various weights and NRCM-MN (δ → ∞, α = 1).

proves the performance. δ → ∞ is the result of not reject-
ing noise. The appropriate adjustment of δ improves the
performance. In this case, the best result is CE = 0.213
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Fig. 9. Iris: Transitions of the center error by NRCM-MN
(β = 0) changing α ∈ [1,3] in increments of 0.05 for each
δ ∈ {∞,1.5,1.25,1.0,0.75,0.5}.

Fig. 10. Iris: Transitions of the center error by NRCM-MN
(α = 1) changing β ∈ [0,1.5] in increments of 0.05 for each
δ ∈ {∞,1.5,1.25,1.0,0.75,0.5}.

when α = 1.5 and δ = 1.25. Fig. 11 shows the results
of NRSCM-MN changing τ ∈ [0,50] in increments of 1
for each δ ∈ {∞,1.5,1.25,1.0,0.75,0.5}. In this case, the
best result is CE = 0.256 when τ = 9 and δ = 0.5. Fig. 12
shows the results of NRMCM changing τ ∈ [0,50] in in-
crements of 1 for each δ ∈ {∞,1.5,1.25,1.0,0.75,0.5}.
In this case, the best result is CE = 0.265 when τ = 17
and δ = 0.5. Therefore, the appropriate roughness and
noise rejection improves the performance.

4.2. Breast Cancer Wisconsin Dataset
This subsection shows the results for the Breast Cancer

Wisconsin (BCW) dataset downloaded from the UCI Ma-
chine Learning Repository [26]. The BCW dataset con-
sists of n = 569 objects, m = 30 features, and two classes
({malignant, benign}).

Figures 13, 14, 15, 16, 17, 18, and 19 show the
results of similar settings to Figs. 6, 7, 8, 9, 10, 11,
and 12, respectively, changing α ∈ [1,1.8] in increments
of 0.05, β ∈ [0,3] in increments of 0.1 for each δ ∈

Fig. 11. Iris: Transitions of the center error by NRSCM-MN
changing τ ∈ [0,50] in increments of 1 for each δ ∈
{∞,1.5,1.25,1.0,0.75,0.5}.

Fig. 12. Iris: Transitions of the center error by NRMCM
changing τ ∈ [0,50] in increments of 1 for each δ ∈
{∞,1.5,1.25,1.0,0.75,0.5}.

{∞,15,12.5,10,7.5,5}. They show similar trends to the
Iris dataset.

NRCM-MN (α = 1, β = 0) produced the best re-
sult CE = 0.773 when δ = 7.5. Similar to the Iris dataset,
the membership normalization can produce relatively sta-
ble performance without weight setting. NRCM-MN
(β = 0) produced the best result CE = 0.708 when α =
1.2 and δ = 7.5. NRCM-MN (α = 1) produced
the best result CE = 0.712 when β = 1.2 and δ =
7.5. NRSCM-MN produced the best result CE = 0.755
when τ = 2 and δ = 7.5. NRMCM-MN produced the
best result CE = 0.743 when τ = 18 and δ = 7.5.

From the above experimental results, it was shown
that the estimation performance of the true class centers
was improved by the proposed methods with appropriate
roughness and noise rejection.
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Fig. 13. BCW: Transition of the center error by NRCM-MN
(α = 1, β = 0) changing δ ∈ [0.3,2.5] in increments of 0.01.

Fig. 14. BCW: Transition of the center error by NRCM-CC
(δ → ∞, β = 0) changing α ∈ [1,1.8] in increments of 0.05
for various weights and NRCM-MN (δ → ∞, β = 0).

Fig. 15. BCW: Transition of the center error by NRCM-CC
(δ → ∞, α = 1) changing β ∈ [0,3] in increments of 0.1 for
various weights and NRCM-MN (δ → ∞, α = 1).

Fig. 16. BCW: Transitions of the center error by
NRCM-MN (β = 0) changing α ∈ [1,1.8] in increments
of 0.05 for each δ ∈ {∞,15,12.5,10,7.5,5}.

Fig. 17. BCW: Transitions of the center error by
NRCM-MN (α = 1) changing β ∈ [0,3] in increments of 0.1
for each δ ∈ {∞,15,12.5,10,7.5,5}.

Fig. 18. BCW: Transitions of the center error by
NRSCM-MN changing τ ∈ [0,50] in increments of 1 for
each δ ∈ {∞,15,12.5,10,7.5,5}.
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Fig. 19. BCW: Transitions of the center error by NRMCM
changing τ ∈ [0,50] in increments of 1 for each δ ∈
{∞,15,12.5,10,7.5,5}.

5. Conclusions

In this paper, noise rejection approaches for RCM,
RSCM and RMCM were comprehensively discussed.
In addition to our previously proposed NRCM-CC and
NRSCM-CC, we introduced noise rejection approaches
for rough set-based C-means based on probabilistic mem-
berships and proposed NRCM-MN, NRSCM-MN, and
NRMCM. In addition, visualization demonstration of the
cluster boundaries on the two-dimensional plane of the
proposed methods was carried out to confirm the char-
acteristics of each method. It was shown that NRCM,
NRSCM, and NRMCM produce the cluster boundaries
with different characteristics considering the certainty,
possibility, uncertainty of belonging to the noise cluster
as well as the regular clusters. Furthermore, the cluster-
ing performance was verified by numerical experiments
using real-world datasets. It was shown that the estima-
tion performance of the true class centers was improved
by the proposed methods with appropriate roughness and
noise rejection. The appropriate roughness and noise dis-
tance were indicated in the two datasets, namely, the Iris
dataset and the Breast Cancer Wisconsin dataset. How-
ever, it is difficult to know the appropriate roughness and
noise distance in advance in actual data analysis tasks,
and empirical tuning is required. Therefore, the adjust-
ment of appropriate parameters is a future task. On the
other hand, the proposed methods based on the member-
ship normalization or rough memberships are expected to
achieve stable performance without weight setting in the
center combination.

We plan to consider automatic determination of the pa-
rameters with respect to the roughness and noise rejection.
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