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The human gaze contains substantial personal infor-
mation and can be extensively employed in several
applications if its relevant factors can be accurately
measured. Further, several fields could be substan-
tially innovated if the gaze could be analyzed using
popular and familiar smart devices. Deep learning-
based methods are robust, making them crucial for
gaze estimation on smart devices. However, because
internal functions in deep learning are black boxes,
deep learning systems often make estimations for un-
clear reasons. In this paper, we propose a visualiza-
tion method corresponding to a regression problem
to solve the black box problem of the deep learning-
based gaze estimation model. The proposed visualiza-
tion method can clarify which region of an image con-
tributes to deep learning-based gaze estimation. We
visualized the gaze estimation model proposed by a re-
search group at the Massachusetts Institute of Tech-
nology. The accuracy of the estimation was low, even
when the facial features important for gaze estima-
tion were recognized correctly. The effectiveness of
the proposed method was further determined through
quantitative evaluation using the area over the MoRF
perturbation curve (AOPC).

Keywords: CNN, eye tracking, Grad-CAM, regression
problem

1. Introduction

The gaze contains substantial information on human
sensory perception, which is often specific individual.
Additionally, the gaze includes implicit internal informa-
tion that cannot be understood from the facial expression
alone. Consequently, gaze information would have broad
applications, if it could be analyzed accurately.

Smart devices are popular throughout the world [1],
and several people have the latest technology devices.
Gaze estimation by a smart device can be expected to pro-
mote innovation in several fields. Since smart devices are
generally portable, this would also allow gaze estimation
technology to be used in various places.

Gaze estimation methods can be divided into model-

based (estimating gaze using pupil orientation) and
appearance-based (estimating gaze from an eye im-
age) [2]. In this study, we focus on a method using
a convolutional neural network (CNN) [3], which is an
appearance-based method. CNN learns from a large data
set consisting of facial images and gaze positions to es-
timate gaze. Using CNN enables the capture of minute
features that are difficult for a person to find or under-
stand. Furthermore, it is possible to robustly estimate a
large number of patterns in an image by learning. Un-
fortunately, the reasoning behind the results is unknown
because the CNN inference process is a black box [4].
Therefore, it is not possible to judge whether the model
uses features that are useful for gaze estimation, such as
eyes and faces. This can lead to incorrect inferences.
Thus, in deep learning, model visualization is an essen-
tial factor in evaluating model performance.

In this study, we visualize representative deep learning-
based gaze estimation [3], clarifying what image features
contribute to a prediction. In [5], the gaze estimation
model is visualized. In this study, the model’s quantita-
tive evaluation is performed and extended. We focus on
the Grad-CAM [6] visualization method for CNN. Grad-
CAM is a gradient-based method for determining where
a CNN has looked and what it has estimated. We chose
Grad-CAM because it is widely used and can rapidly im-
plement any convolutional neural network. Grad-CAM
visualize the models that output results with the greatest
probability because it only visualizes the features using
positive signs of the gradients. This means that Grad-
CAM can only visualize features that increase the out-
put of the model. We therefore propose to modify Grad-
CAM’s basic approach, making it suitable for a regression
problem such as gaze estimation modeling. The proposed
method can visualize features that make the output closer
to the true value, not features that increase the output.

2. Related Works

In this section, we discuss previous research on visual-
ization techniques and the gaze estimation methods an-
alyzed in this study. In particular, we describe a deep
learning-based gaze estimation model that is intended to
be implemented on smart devices. We also describe re-
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Visualization of Gaze Estimation Model

Fig. 1. Overview of iTracker. The input image is divided into four images, and input to the network. The output is distance, in
centimeters, from the front-facing camera, which indicates the gaze position on the screen of a smart device.

lated works discussing the visualization method used in
this study.

2.1. Gaze Estimation
Gaze estimation methods can be divided into two types:

model-based and appearance-based [2]. Model-based ap-
proaches use a geometric model of the eye. This approach
can be divided into corneal reflection-based and shape-
based methods. In corneal reflection-based methods, the
cornea reflects light, and eye features are estimated based
on the reflected light. This method depends on an exter-
nal light source, which limits its use. Shape-based meth-
ods infer gaze direction from observed eye shapes, such
as pupil centers and iris edges. These approaches perform
poorly with low image quality and variable lighting con-
ditions because of the simplicity of the eye shape model.

Appearance-based methods use eye images as input
and directly infer gaze. These methods can potentially
work on low-resolution images, but require large amounts
of user-specific training data. However, by using large
amount of data, the model can generalize well to novel
faces without needing user-specific training data. Another
advantage of appearance-based methods is that they can
handle unconstrained use of smart devices. They can esti-
mate gaze without assumptions regarding geometric prop-
erties of the environment or the camera and user’s rela-
tive positions. Several appearance-based methods have
been proposed to estimate gaze in smart devices. Zhang
et al. [7] proposed an algorithm that takes only the face
image as input and performs two-dimensional and three-
dimensional gaze estimation using a convolutional neu-
ral network with spatial weights applied on the feature

maps. Huang et al. [8] collected an unconstrained dataset
(Rice TabletGaze dataset) consisting of 51 subjects, each
with 4 different postures and 35 gaze locations. Using a
baseline algorithm based on the multilevel histogram of
oriented gradient (HoG) features and the Random Forests
regressor, they achieved a mean error of 3.17 cm. These
studies develop gaze estimation methods and datasets, but
do not implement their estimators on smart devices.

Krafka et al. [3] achieved a mean error of 1.71 cm and
2.53 cm without calibration using iTracker, a CNN for
eye tracking, on a mobile device. Besides, they have
implemented iTracker on smartphones (iOS), achieving
speeds of 10–15 frames/s. Fig. 1 shows overview of
iTracker. The inputs of iTracker are the image of the face,
the image of both eyes, and the grid display of the po-
sition of the face in the full image. The output is the
position (x,y) of the gaze on the screen. iTracker was
trained by GazeCapture, which contains almost 2.5 mil-
lion frames of gaze data from over 1450 people, collected
using crowdsourcing. The specific preparation procedure
of GazeCapture is as follows. First, a dot appears at
a random location on the screen for 2 s and the subject
looks at the dot. Second, after 2 s, left and right indi-
cators appear on the screen, and the subject taps ‘left’ or
‘right.’ This ensures that the subject’s attention is directed
at the screen. Image capture begins 0.5 s after the start of
point display. The procedure is repeated 60 times, and
then the subject is asked to change the screen orientation.
GazeCapture considers scalability, reliability, and diver-
sity. Thus, it is an effective data set for gaze estimation.

The internal state of deep learning-based gaze estima-
tion methods is a black-box due to internal complexity.
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Therefore the reason for the output cannot be explained,
and there is a risk in terms of social implementation. In
this paper, we propose a visualization method that can ex-
plain the gaze estimation model and attempt to explain the
internal state of iTracker.

2.2. Visualization Techniques
Visualization provides human-level understanding of

the underlying reasons for a CNN’s output. The visual-
ization method highlights the pixels or regions that con-
tributed to the estimation in the input image. Making the
black box process explicit based on the results of the visu-
alization increases confidence in predictions and makes it
easier to redesign of the CNN’s architecture and to cleanse
datasets to improve performance. Previous research on
visualizing CNN models [9–11] has visualized CNN pre-
dictions by visualizing pixels that contributed to the out-
put by back-propagating the output to the input. Such ap-
proaches do not distinguish between classes. Gaze esti-
mation models typically have multiple classes or outputs;
thus, in this study, we focus on Grad-CAM, which can
visualize features related to specific outputs.

Grad-CAM is a visualization method that uses the gra-
dient of the feature map of the convolutional layer. It is
widely used because it can be implemented more easily
and can be adapted to a more diverse variety of models
than back-propagation methods. To use Grad-CAM, we
first compute gradients of the classification score yc of
class c for the final convolution layer feature map Ak

i j.
i and j indicate the location of pixels in the feature
map. k indicates the channel. The gradient is calculated
using the backpropagation method and averaged using
global average pooling (GAP) to obtain the importance
weight αc

k for each channel, which is defined as

αc
k =

1
Z ∑

i
∑

j

∂ yc

∂ Ak
i j

. . . . . . . . . . . . (1)

Since gradients change by yc when Ak
i j changes slightly,

yc increases when a pixel with a large gradient changes,
that is, when the probability that a model will be classified
into class c increases. As the gradients decrease, yc de-
creases and can be considered a feature of other classes.
When GAP averaging is used, αc

k indicates how important
each feature map is to the target class c.

Next, the weighted sum of the weight and the feature
map is calculated, and the activation function Rectified
Linear Units (ReLU) is applied to the weighted sum in
order to hide the part that has a negative effect on the class
decision. The relevant formula is

Lc
Grad-CAM = ReLU

(
∑
k

αc
k Ak

)
. . . . . . . (2)

Using Grad-CAM, we can see where in the image the
classification score of class c was determined. Grad-CAM
can be visualized easily for problems of probability out-
put such as multi-class classification; however, it cannot
be used for problems of infinite output range, such as re-
gression. In this paper, we propose a visualization method

appropriate to regression problems such as a gaze estima-
tion model, based on Grad-CAM.

3. Grad-CAM Variant Corresponding to Re-
gression Problems

The proposed visualization technique can be used for
regression problems with two-dimensional (x,y) outputs.
Fig. 2 shows an overview of the proposed method. Con-
ventional Grad-CAM calculates the gradient by differen-
tiating the classification score yc directly from the fea-
ture map Ak

i j. A positive gradient corresponds to an in-
crease in the probability of occurrence and a larger yc.
Conversely, a negative gradient reduces yc. Therefore, in
Grad-CAM, negative gradients are eliminated by multi-
plying by ReLU, because inputs that reduce yc are not the
basis of the model’s judgment.

A gaze estimation CNN’s output can range up to in-
finity, in contrast to a probability model whose outputs
are between 0 and 1. Instead, the output estimation value
shows improved accuracy when the difference from the
true value is smaller. In conventional Grad-CAM, fea-
tures that increase the output are visualized in a multi-
class classification problem. However, in the regression
problem, even if the features that increase the output are
visualized, the reason for the model’s judgment is not
fully clear. The true value may be greater than the es-
timated value. If so, then the estimated value must de-
crease, not increase, to approach the true value. There-
fore, features that reduce the output must be visualized in
this case. Conversely, if the estimate is less than the true
value, features that increase the output must be visualized.
Moreover, while the outputs x and y can be visualized in
Grad-CAM, determining how much each x and y value
contributed to the estimation is difficult. Thus, we want to
overlay the x and y heat maps to determine which position
in the image contributes the most to the estimation. To
solve this problem, in place of the classification score yc,
we propose the inverse of the distance between the esti-
mated value (x,y) and the true value (x′,y′), defined as

d =
1√

(x− x′)2 +(y− y′)2
. . . . . . . . . (3)

In this case, the importance weight α for each channel is

αd
k =

1
Z ∑

i
∑

j

∂ d
∂ Ak

i j
. . . . . . . . . . . . (4)

The final heat map is calculated as follows,

LGrad-CAM = ReLU

(
∑
k

αd
k Ak

i j

)
. . . . . . (5)

To visualize the features activated when the difference
between the estimated value and the true value becomes
small, we introduce the distance between the estimated
value and the true value. Since Grad-CAM visualizes only
the features in which the output is increased by multiply-
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Fig. 2. Overview of the proposed method: Grad-CAM computes gradients of the output of the model with respect to the feature
map of the final convolutional layer, but the proposed method computes gradients of the reciprocal of the distance between the
estimated value and the true value, with respect to the feature map of the final convolutional layer, for use in regression problems.
GAP and ReLU are calculated in the same manner as Grad-CAM.

ing by ReLU, the feature in which d increases shows the
feature in which the distance decreases. Gradients for d
with respect to Ak

i j are

∂ d
∂ Ak

i j
=

∂ d
∂ x

∂ x
∂ Ak

i j
+

∂ d
∂ y

∂ y
∂ Ak

i j
. . . . . . . . (6)

∂ x/∂ Ak
i j and ∂ y/∂ Ak

i j are gradients for the heat maps
of x and y, respectively; these gradients are the same as
Grad-CAM’s basic approach. However, depending on the
size of ∂ d/∂ x and ∂ d/∂ y, the component of either x or y
more strongly affects the heat map. ∂ d/∂ x, ∂ d/∂ y is

∂ d
∂ x

= − x− x′(
(x− x′)2 +(y− y′)2

) 3
2
, . . . . . (7)

∂ d
∂ y

= − y− y′(
(x− x′)2 +(y− y′)2

) 3
2
. . . . . . (8)

When x > x′, the gradients are negative, and the heat map
for x shows where to look to reduce x because the features
that reduce x are activated. Moreover, since the gradi-
ents are positive for x < x′, we can see where to look to
increase x. The same is true for ∂ d/∂ y. When the dif-
ference between the estimated value and the true value is
large, the associated feature appears more prominently on
the heat map. The proposed method thus enables visual-
ization of where the estimated value is calculated when
the difference between the true value and the value esti-
mated by the model is large.

4. Experiments

In this section, we first compare the proposed method
with Grad-CAM and show the effectiveness of the pro-
posed method. Next, we visualize the iTracker model
with the proposed method and clarify the features that
contributed to its estimation.

4.1. Setup
We implemented iTracker in the Keras environment

and set it to learn using small GazeCapture, consisting
48,000 training data and 5,000 test data. Each data im-
age is 128 × 128, and the batch size is 32. The opti-
mizer Adam (lr = 0.003, beta 1 = 0.9, beta 2 = 0.999)
was used. In the original iTracker, the weights of the con-
volution layer of the right eye and the left eye are shared.
However, in this study, weights are not shared, in order to
visualize input images of each eye separately. The trained
model’s distance error is 2.28 cm. In Section 4, we dis-
cuss the use of four types of gradients to compare the
proposed method with Grad-CAM. The gradients of the
output x with respect to the last feature maps and the gra-
dients of the output y with respect to the last feature maps
are typical approaches of Grad-CAM. We consider these
approaches ineffective because they can not visualize fea-
tures that contribute to the reduction of the outputs. The
sum of the gradients of x and y is also computed for com-
parison with the proposed method, and is defined as

∂ oxy

∂ Ak
i j

=
∂ x

∂ Ak
i j

+
∂ y

∂ Ak
i j

. . . . . . . . . . . (9)

Grad-CAM using this gradient can visualize the features
of x and y at the same time; however, when the one gra-
dient is large, the feature of the other gradient appears
relatively small. The proposed method of changing the
computing gradients with respect to last feature maps was
described in Section 3.

4.2. Quantitative Evaluation
In this section, we evaluate the proposed method us-

ing AOPC [12]. AOPC is a greedy iterative procedure
that measures how the output changes as it progressively
removes important features from the input image. The
AOPC formula is

AOPC =
1

L+1

〈
L

∑
k=0

f
(

x(0)
MoRF

)
− f

(
x(k)

MoRF

)〉
p(x)

,(10)
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where 〈·〉p(x) denotes the average over all the images in the

data set. f (x) indicates model function. x(k)
MoRF represents

perturbed images and is defined as

x(0)
MoRF = x, . . . . . . . . (11)

∀ 1 ≤ k ≤ L : x(k)
MoRF = g

(
x(k−1)

MoRF ,rk

)
. . . . (12)

Where g is the function that removes information at a
specified region r (i.e., a single pixel or local neighbor-
hood) within the image x(k−1)

MoRF . As k increases, the re-
gion is progressively replaced by randomly sampled val-
ues from a uniform distribution according to an ordered
heat map. A Heat map ordering where the most sensi-
tive regions are ranked first implies a steep variation of
the MoRF, and thus, a larger AOPC. AOPC was com-
puted using 5,080 images of GazeCapture. To reduce
random effects, AOPC was repeated 10 times. For each
AOPC, we perturbed the first 40 regions, replacing for the
10×10 neighborhood.

Figure 3 show the results of replacing regions from im-
ages randomly. Since iTracker is given three images as
input, we compared cases where only the face image was
perturbed and where one eye was perturbed. AOPC was
also computed for each output (x,y) of the model. Re-
placing regions of the face image input most significantly
affects the output of the model. By contrast, the left eye
and right eye images do not significantly affect the output.
Thus, the model seems to estimate gaze mainly using face
image. Similar results have been reported elsewhere [3].
By removing input components, a model without eye in-
put shows good results. Furthermore, and perhaps sur-
prisingly, the AOPC values of the left eye were smaller
than that of the right eye. The AOPC values of output y
were likewise found to be less than x. It is believed that
this is because the variance in the y-axis direction is small
due to the constraints of the data set, and the learning is
therefore biased.

Figure 4 show results of AOPC relative to random se-
lection. Each graph shows the results of computing AOPC
by each Grad-CAM method and the proposed method
when input images are perturbed correspondingly. The
upper part of the figure shows the AOPC for output x,
and the lower part of the figure shows the AOPC for out-
put y. Overall, from the viewpoint of the frequency of the
highest score, compared with other methods, the proposed
method exhibits higher or comparable AOPC values. The
proposed method shows the highest result (three times
at (a), (b), and (c)). In particular, the proposed method
exhibits higher AOPC values with reference to output x
compared with the other methods, which perturbs the face
input image (a). We believe that the proposed method is
effective in visualizing the model, because the face image
is considered to contribute most to the output. In contrast,
the AOPC for the output y when the face is perturbed is
lower in the proposed method than in the other methods.
The proposed method uses the reciprocal of the distance.
If the effect of output x is large, features related to out-
put y may have not been visualized well. AOPC values

that perturbed right eye image were reduced for all meth-
ods. This shows that visualization of right eye images
does not indicate the features that most contributed to the
estimation.

Table 1 summarizes the results of difference of heat
map image size by visualization method. Good heat maps
should highlight the relevant regions with low noise. In
terms of complexity, the file size of the visualized heat
maps should be smaller than noisy ones. Heat map sizes
visualized by each method average a size of 34,241 im-
ages. Heat maps visualized by proposed method are
smaller than other methods in terms of the face images.

4.3. Visualization Experiments and Discussion
4.3.1. Results of Proposed Method

Examples of the visualization results are shown in
Fig. 5. Figs. 5(a) and (f) are the original images used
for the input. The images (b) through (e) and (g) through
(j) show the heat map of the region by each of the four
visualization methods. (a)–(e) show the results when the
error between estimated value and true value is small and
(f)–(j) show the results when the error is large. From the
results of the proposed method, the edges of hair, glasses,
and the nose are taken as features, and it is shown that the
estimated value of the model approaches the true value
by changes in that feature. (f)–(j) show the results when
the error between the estimated value and the true value is
large. The proposed method yields active features under
the eyes and around the nose. It is considered that the fea-
ture around the eye can be caught because a change in the
eye can estimate the gaze. However, the most active fea-
tures appear on the nasolabial fold. The model judges the
nasolabial fold as one of the edges representing the face
and it appears in the heat map.

The results of the visualization of the eye image are
shown in Fig. 6. As before, Figs. 6(a)–(e) show the results
of the visualization of the right eye image. Figs. 6(f)–(j)
show the results of the visualization of the left eye image.
In Grad-CAM for X (Fig. 6(b)) and for Y (Fig. 6(c)), the
edge of the eye and the conjunctiva are highlighted as fea-
tures. These seem to be effective features for gaze estima-
tion. However, the proposed method (Fig. 6(e)) does not
show the eye as a feature, but instead shows the eyebrow
as contributing to the estimation. Even if the model learns
the characteristics of the eye, the estimated value is not
close to the true value. Similarly, in the case of the left
eye, the proposed method does not capture the eye and
shows the feature of bringing the edge of the nose close
to the true value.

Figure 7 shows the difference in visualization results
with and without glasses. Some GazeCapture participants
wore and removed glasses during the experiment. Visible
features change with and without glasses. In Fig. 6(a), the
conjunctiva of the eye is caught as a feature. However, the
edge of the glasses is shown as a feature when the glasses
are worn. Since it is difficult to estimate the gaze using the
edge of glasses, the error of the estimation value appears
to have become large. In GazeCapture, people of various
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(a) Random AOPC with respect to output x (b) Random AOPC withe respect to output y

Fig. 3. Results of random AOPC: (a) indicates AOPC values with reference to output x, which perturb face and eye images
randomly, (b) indicates AOPC values with reference to output y.

(a) AOPC with respect to output x: face perturba-
tion

(b) AOPC with respect to output x: right eye per-
turbation

(c) AOPC with respect to output x: left eye per-
turbation

(d) AOPC with respect to output y: face perturba-
tion

(e) AOPC with respect to output y: right eye per-
turbation

(f) AOPC with respect to output y: left eye per-
turbation

Fig. 4. Results of AOPC relative to random: (a)–(c) indicate AOPC values with respect to output x when perturbing the face, right
eye, and left eye, respectively, according to the ordered heat map. (d)–(f) indicate AOPC values with respect to output y when
perturbing the face, right eye, and left eye, respectively, according to the ordered heat map.

Table 1. Comparison of heat map complexity, measured in terms of file size (bytes).

File size (bytes) Right eye Left eye Face

x 7763.46 7256.73 9153.83
y 9184.52 8388.06 10274.86

Sum 8561.32 7628.39 9422.10
Proposed 7892.26 8088.58 9086.95
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(a) Original image (b) Grad-CAM: X (c) Grad-CAM: Y (d) Sum gradients (e) Proposed method

(f) Original image (g) Grad-CAM: X (h) Grad-CAM: Y (i) Sum gradients (j) Proposed method

Fig. 5. Visualization of iTracker input image (face) features using the proposed method: (a)–(e) heat map when the error between
the estimated value and the true value is small, (a) original image used for input, (b) heat map for output x, (c) heat map for output y,
(d) heat map with the sum of x and y gradients, and (e) heat map using the proposed method. (f)–(j) Heat map when the error
between the estimated value and the true value is large, (f) original image used as input, (g) heat map on output x, (h) heat map for
output y, (i) heat map with the sum of x and y gradients, and (j) heat map using the proposed method.

(a) Original image (b) Grad-CAM: X (c) Grad-CAM: Y (d) Sum gradients (e) Proposed method

(f) Original image (g) Grad-CAM: X (h) Grad-CAM: Y (i) Sum gradients (j) Proposed method

Fig. 6. Visualization of iTracker input image (eye) features using the proposed method: (a)–(e) visualization of features of the right
eye, (b) heat map for output x, (c) heat map for output y, (d) heat map with the sum of x and y gradients, and (e) heat map using the
proposed method. (f)–(j) Visualization of features of the left eye, (f) original image used as input, (g) heat map on output x, (h) heat
map for output y, (i) heat map with the sum of x and y gradients, and (j) heat map using the proposed method.

appearances and conditions participated in the experiment
to enhance the robustness of the data set. No conditions
were set for glasses, and most of the data were obtained
from people who did not wear glasses. Therefore, it is
considered that the accuracy decreased because the model
caught the features of the glasses when glasses were worn.

4.3.2. Discussion
From the results of several visualizations using the pro-

posed method, it has become clear that iTracker makes es-
timates using the edges of facial features and parts, such
as the glasses, eyes, nose, jaw, and eyebrow. The edge of
the facial feature predicts the angle of the face, and it is
considered that this might contribute to the gaze estima-

tion. However, there was no correlation between the error
of the estimate and the position of the model’s gaze, and
the accuracy greatly differed according to the image, even
if a different image captured the same features. This is
considered to be caused by the weak relationship between
the features and the estimated value. The large error is
considered to be included in the change of the estimated
value, even though the estimated value changes when the
features change. Since the model captures the features of
the face, the correlation between the features and the es-
timated value is strengthened by expanding the data set,
and an estimated value with a small error can thus be ob-
tained.

The data set should be cleansed to improve the accuracy
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(a) Without glasses (b) With glasses

Fig. 7. Differences in the visualization of features with
glasses: (a) visualization without eyeglasses and (b) visu-
alization with eyeglasses.

of the model. GazeCapture has various experimental envi-
ronments because of the large number of participants. For
example, it is necessary to adjust the data because even
disregarding glasses, the data are biased. It is considered
that technical improvement of the cropping of faces and
eyes is necessary.

iTracker uses Apple’s SDK to crop the face and eye
images from input frames. In the present method, parts
such as eyebrows are not considered, and some images do
not include eyebrows. Differences in the features appear-
ing in the input image can adversely affect the estimation.
Therefore, it is necessary to crop the image while consid-
ering the features of the face.

iTracker shares the weights of the convolutional layers
of both eyes. However, both eyes often catch the same
features, and the images of left eye are not important to
estimation, as clarified in Section 4.2. Therefore, it is
thought that inputting only one eye image causes only
small deterioration of estimation accuracy. Furthermore,
the weights of the model cannot be reduced by removing
the input image of one eye, but can reduce the cropping
process of the input frame, leading to improved process-
ing speed.

In the future, it will be necessary to examine the con-
tribution of each input image to the model’s output. We
could rank the features for each input image using the pro-
posed method. Furthermore, the features can be ranked
in all the input images by considering the contribution of
each input image.

5. Conclusions

In this paper, we proposed a method to extend the
Grad-CAM visualization technique to visualize a gaze
estimation model corresponding to a regression prob-
lem. We demonstrated that the proposed method is better
than Grad-CAM by using AOPC and quantitative evalua-
tion. Using the proposed method, the iTracker trained by
GazeCapture was visualized and the features contribut-
ing to the output were investigated. The proposed method
showed important features for gaze estimation such as
eyes and nose; however it was clarified that there is no

correlation between accuracy and features. We also sug-
gested that cleansing the data, improving the cropping
technique of the image, and reducing the input image
of the eye tends to improve the accuracy and reduce the
weight of the model.
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