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In many medical applications, we diagnose a disease
and/or apply a certain remedy if, e.g., two out of five
conditions are satisfied. In the fuzzy case, i.e., when
we only have certain degrees of confidence that each
of nnn statement is satisfied, how do we estimate the de-
gree of confidence that kkk out of nnn conditions are satis-
fied? In principle, we can get this estimate if we use
the usual methodology of applying fuzzy techniques:
we represent the desired statement in terms of “and”
and “or,” and use fuzzy analogues of these logical op-
erations. The problem with this approach is that for
large nnn, it requires too many computations. In this pa-
per, we derive the fastest-to-compute alternative for-
mula. In this derivation, we use the ideas from neural
networks.

Keywords: fuzzy logic, neural networks, 2-out-of-5 con-
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1. Formulation of the Problem

Need for fuzzy logic in medical applications. To di-
agnose a patient, to come up with appropriate cure, it is
often important to perform many tests. Each tests results
in numerous numerical values that describe the state of
the patient: even a routine blood test returns several pages
of numbers. These numbers are important and need to be
taken into account, but, of course, medical doctors do not
just operate based on these numbers, they also use their
experience and intuition – if they operated by numbers
only, it would have been easy to replace them with a com-
puter program.

Some medical doctors have more experience and a bet-
ter intuition, they are more successful in curing the cor-
responding diseases. Other medical doctors have not yet
acquired this experience. It is therefore desirable to in-

corporate the experience of top medical doctors into a
computer-based system so as to help beginning medical
doctors make good decisions.

Most top medical doctors are willing and eager to share
their knowledge. The problem is that this knowledge does
not usually come in terms of numbers – which would then
be easy to incorporate in a computer system, this knowl-
edge usually comes in terms of words from natural lan-
guage, words which are not easy for a computer to un-
derstand. For example, a medical doctor may say that a
certain treatment is appropriate when the fever is high –
without giving a precise definition of what “high” means.

This situation – and similar situations with experts in
other fields – motivated Lotfi Zadeh to come up with fuzzy
logic; see, e.g., [1–6]. In this approach, for every state-
ment in which an expert is not 100% confident, the expert
supplies his/her degree of confidence in this statement –
estimated, e.g., by a number on a scale from 0 to 10. Since
different experts may use different scale, a reasonable idea
is to make the corresponding numbers compatible by re-
ducing them to the interval [0,1]; e.g.:

• 7 on a 0-to-10 scale will be represented by a number

7
10

= 0.7,

• 3 on a 0-to-5 scale will be represented by a number

3
5

= 0.6,

etc.

In this case:

• if we are absolutely confident that a statement is true,
then our degree of confidence will be 1, and

• if we are absolutely confident that a statement is not
true, then our degree of confidence will be 0.
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Logical operations in fuzzy logic and how we use them.
In medicine, decisions are rarely based on one simple
opinion or one simple rule. Usually, several expert state-
ments S1, . . . ,Sn need to be taken into account. In such a
case, the practitioner’s confidence in this decision is the
confidence that all these statements are true, i.e., equiva-
lently, that the combined statement S1 & · · · &Sn is true.

In the ideal world, we should elicit the corresponding
degrees of confidence from the experts, but the problem
is that based on N statement, we can make 2N −1 combi-
nations corresponding to all possible non-empty subsets
of the set {S1, . . . ,SN}, and for a reasonable large N, like
several dozen, this number is astronomical. There is no
way to ask the expert to estimate the degree of confidence
in billions of possible combinations.

Since we cannot elicit the degree of confidence in a
complex statement like A&B from the expert, we must
be able to evaluate it based on the known degrees of con-
fidence a and b in the statements A and B. An algorithm
f&(a,b) that transforms the degrees of confidence a and
b into an estimate for a degree of confidence in A&B is
known as an “and”-operation, or, for historic reasons, a
t-norm.

There are many possible “and”-operations. Often, a
reasonable choice is to follow Zadeh himself and select
the simplest possible “and”-operation

f&(a,b) = min(a,b).

Similarly:

• to estimate the degree of confidence in statements of
the type A ∨B, we need to have an “or”-operation
f∨(a,b), and

• to estimate the degree of confidence in negation
statements ¬A, we need to have a negation opera-
tion f¬(a).

Sometimes, we may want to describe the degree of con-
fidence in a more complex statement, e.g., a statement
of the type (S1 &S2 &S3) ∨ (S4 &S5) that corresponds,
e.g., to the case when we have two different situations
S1 &S2 &S3 and S4 &S5 under which a given medicine is
recommended. In this case, a reasonable idea is:

• to first apply “and”-operations and get the degrees of
confidence for S1 &S2 &S3 and S4 &S5, and then

• apply an “or”-operation to combine these two esti-
mates.

In general, if we have a complex statement, a usual
practice is to represent this complex statement in an equiv-
alent form that uses “and,” “or,” and “not,” and then se-
quentially apply the corresponding operations of fuzzy
logic.

How can we describe conditions like 2-out-of-5: a chal-
lenge. Medicine is filled with statement of the “2-out-of-
5” type: if a patient has 2 out of the given 5 symptoms,
this means that, most probably, the patient has the corre-
sponding disease. It could be 8 out of 10 etc., but it is a

known fact that for many diseases, some of the symptoms
may not occur in some patients.

Since such statements are ubiquitous, it is desirable to
be able to describe them in fuzzy logic; this need was em-
phasized, e.g., in [7–9]. The problem is that for such state-
ments, the above-described usual fuzzy techniques do not
work well.

Indeed, in principle, if we have five statements
S1, . . . ,S5, then we can naturally describe the 2-out-of-
5 statement in terms of “and” and “or,” by explicitly list-
ing all possible pairs of statements, i.e., as

(S1 &S2)∨ (S1 &S3)∨ (S1 &S4)∨ (S1 &S5)∨ (S2 &S3)∨
(S3 &S4)∨ (S2 &S5)∨ (S3 &S4)∨ (S3 &S5)∨ (S4 &S5).

This statement is long and difficult-to-compute, but still
doable. However, when we get more symptoms, the
resulting “and”-“or”-statement becomes astronomically
large, not practically doable.

We need a simpler way to estimate our degree of confi-
dence in such statements. This is what we will do in this
paper.

2. Analysis of the Problem

What do we want. We want to have, for each k < n,
a function fk,n(a1, . . . ,an) that would transform our de-
grees of confidence ai in individual statements Si into our
estimate for the degree of confidence that k out of n state-
ments are true.

When we are absolutely sure about each statement, i.e.,
when each value ai is equal to 0 or 1, then we should have:

• fk,n(a1, . . . ,an) = 1 if at least k values ai are equal
to 1, and

• fk,n(a1, . . . ,an) = 0 if fewer than k values ai are equal
to 1.

Also, the very fact that we are simply counting the con-
ditions – and not taking some of them with a larger weight
– means that we treat all n conditions as equally impor-
tant. Thus, it makes sense to require that the value of
the desired function will not change if we simply change
the order of values. In precise terms, for any permuta-
tion π : {1, . . . ,n}→ {1, . . . ,n} and for all possible values
a1, . . . ,an, we should have

fk,n(aπ(1), . . . ,aπ(n)) = fk,n(a1, . . . ,an).

If our confidence in one (or more) of the statements
increases, then clearly our degree of confidence in the de-
sired statement – that at least k of the statements are true
– should also increase (or at least not decrease). Thus, the
desired function fk,n(a1, . . . ,an) should be monotonic in
all ai:

if ai ≤ a′i for all i, then fk,n(a1, . . . ,an) ≤ fk,n(a′1, . . . ,a
′
n).

What we mean by simplicity. To describe the desired
“simple” operation, let us first clarify what we mean by
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simplicity. The problem with the traditional approach to
such statement is that they take too long to compute –
sometimes, unrealistically long. So, when we talk about
simplicity, we mean the need to make computations faster.

When we estimate the computation time of an algo-
rithm, we need to take into account that nowadays, even
the cheapest PC has several processors working in par-
allel. Thus, it makes sense to count the time needed to
compute the corresponding value in parallel.

So, we are looking for parallel algorithms in which we
have a sequence of “layers” – computational blocks work-
ing in parallel. The fewer layers we have and the faster the
computations on each layer, the faster the overall com-
putations. So, to speed up the overall computations, we
need to have the smallest possible number of layers and
the fastest-to-compute blocks.

Which blocks are the fastest to compute? In mathemat-
ical terms, each block computes a function of its inputs.
Functions can be linear and nonlinear. Of course, linear
functions are faster to compute, so they will be our first
example of fast-to-compute blocks. We will denote such
blocks by L, short of “linear.”

In many practical situations, it is not sufficient to have
linear functions – and later on, we will show that this is
exactly one of such situations. Thus, we also need some
non-linear blocks. Different non-linear blocks require dif-
ferent computation time. Usually, the more inputs we
have, the longer it takes to process them. The fastest-to-
compute are the blocks that process only one input. So, in
addition to linear blocks, we will also consider non-linear
blocks that take one input a and compute some non-linear
function s(a) of this input. These blocks will be denoted
by NL, short of “non-linear.”

Can we have just one layer? If we have only one layer,
then this layer must be formed either by NL blocks or by
L blocks. We cannot have NL blocks, because they com-
pute a function of one variable, and we need a function of
n variables.

Can we have L blocks – i.e., can the desired function
be linear? In other words, can we have a function of the
type

fk,n(a1, . . . ,an) = w0 +
n

∑
i=1

wi ·ai

for some coefficients wi? Not really. Indeed, if k values ai
are equal to 1 and the result are equal to 0, then we should
get the value 1:

fk,n(1, . . . ,1 (k times),0, . . . ,0) = w0 +
k

∑
i=1

wi = 1.

On the other hand, if we have k +1 values equal to 1
and all the other equal to 0, then we should also get the
value 1:

fk,n(1, . . . ,1 (k +1 times),0, . . . ,0) = w0 +
k+1

∑
i=1

wi = 1.

Subtracting these two equalities, we conclude that
k+1

∑
i=1

wi −
k

∑
i=1

wi = wk+1 = 0.

Similarly, we can prove that all the weights w1, . . . ,wn
should be equal to 0 – thus, the function should not de-
pend on the inputs at all and be a constant, which cannot
be, since:

• for some inputs, the desired function is equal to 1,
while

• for other inputs, the desired function is equal to 0.

So, we cannot have one layer, we need at least two layers.

We cannot have L-L or NL-NL configurations. It is
easy to see that we cannot have two consequent layers of
the same type. Indeed, if we have two consequent linear
layers, this means that:

• first, we apply some linear transformation to the in-
puts, and then,

• we apply a second linear transformation to the results
of the first transformation.

It is well known that a composition of two linear transfor-
mations is linear – and we already know that linear func-
tions are not sufficient.

Similarly, if we have two NL layers, then:

• on the first layer, each input ai is transformed into a
value bi = si(ai) for some function si(a) of one vari-
able, and then,

• on the second layer, we apply a non-linear func-
tion ti(a) to the results bi of the first layer.

As a result, we get ti(bi) = ti(si(ai)), which is equivalent
to applying a single function ti(si(a)) to the inputs ai. And
we already know that this way, we cannot build the de-
sired function.

So, if we have two layers, then these layers must be
different: either NL-L or L-NL. Let us analyze these two
cases one by one.

Can we have NL-L? In this case:

• first, we apply some non-linear function si(a) to each
input ai, and then,

• we form a linear combination of the results si(ai).

In other words, we will have

fk,n(a1, . . . ,an) = w0 +
n

∑
i=1

wi · si(ai)

for some coefficients wi.
In this case, if k values ai are equal to 1 and all other

values ai are equal to 0, then we should get the value 1:

fk,n(1, . . . ,1 (k times),0, . . . ,0)

= w0 +
k

∑
i=1

wi · si(1)+
n

∑
j=k+1

w j · si(0) = 1.
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On the other hand, if we have k +1 values equal to 1
and all the other equal to 0, then we should also get the
value 1:

fk,n(1, . . . ,1 (k +1 times),0, . . . ,0)

= w0 +
k+1

∑
i=1

wi · si(1)+
n

∑
j=k+2

w j · si(0) = 1.

Subtracting these two equalities, we conclude that
sk+1(1)− sk+1(0) = 0, i.e., that sk+1(1) = sk+1(0).

Similarly, we can prove that all i from 1 to n, we will
have si(1) = si(0). So, if each ai is equal to 0 or to 1, the
value

fk,n(a1, . . . ,an) = w0 +
n

∑
i=1

wi · si(ai)

should be the same, no matter how many of these values
are 0s and how many are 1s. But this cannot be, since:

• for some combinations of 0 and 1 inputs, the desired
function is equal to 1, while

• for other combinations of 0 and 1 inputs, the desired
function is equal to 0.

So, we cannot have a NL-L configuration either. The only
remaining case is the case of L-NL configuration.

Can we have L-NL? In this case:

• we first form a linear combination of the inputs

w0 +
n

∑
i=1

wi ·ai,

and then

• we apply a non-linear functions s(a) to this linear
combination, resulting in

fk,n(a1, . . . ,an) = s

(
w0 +

n

∑
i=1

wi ·ai

)
.

The requirement that the value should not change under
any permutation means that all the weights w1, . . . ,wn
must be equal to each other: w1 = · · · = wn. If we de-
note the common value of the coefficients wi by w, then
the above formula takes the form

fk,n(a1, . . . ,an) = s

(
w0 +

n

∑
i=1

w ·ai

)

= s

(
w0 +w ·

n

∑
i=1

ai

)
.

Instead of a function s(a), we can use a different function

t(a) def= s(w0 + w · a). In terms of this new function, the
above expression gets the following simplified form:

fk,n(a1, . . . ,an) = t

(
n

∑
i=1

ai

)
.

What can we conclude about the function t(a)? We
want the value fk,n(a1, . . . ,an) to be between 0 and 1, so
we should have t(a) ∈ [0,1] for all a. Monotonicity im-
plies that the function t(a) is monotonic: if a ≤ a′, then
t(a)≤ t(a′). Also:

• If at least k values ai are equal to 1, then we must
get 1. In this case, the sum ∑n

i=1 ai is equal to k or
larger. So, for any value a ≥ k we should have

t(a) = 1.

• On the other hand, if fewer than k values ai are equal
to 1, and other values are equal to 0, then we should
get 0. In this case, the sum ∑n

i=1 ai is equal to the
number k−1 (or to a smaller number). Thus, we
should have t(k−1) = 0 – and, by monotonicity, we
should have t(a) = 0 for all a ≤ k−1.

Now, we are ready to present our final result.

3. Main Result: The Simplest Possible Fuzzy
Analogue of the 2-out-of-5-Type Operations

General conclusion. Suppose that we know the degrees
of confidence a1, . . . ,an in n statements S1, . . . ,Sn, and for
some integer k < n, we want to estimate our degree of con-
fidence fk,n(a1, . . . ,an) that at least k of these statements
are true. In this case, we should take

fk,n(a1, . . . ,an) = t

(
n

∑
i=1

ai

)
,

where:

• for a ≤ k−1, we have t(a) = 0;

• for a ≥ k, we have t(a) = 1, and

• for a between k−1 and k, the function t(a) increases
from 0 to 1.

Which of these operations should we choose? All we
need to do is to choose the values of the function t(a) for
the interval [k−1,k]; for all other values, its values are
determined already. As we have mentioned earlier, the
simplest possible functions are linear, so we should take
t(a) = c0 + c1 · a. From the conditions that t(k− 1) = 0
and t(k) = 1, we conclude that c0 = −(k−1) and c1 = 1.
Thus, on this interval, we should take t(a) = a− (k− 1).
Thus, we arrive at the following operation fk,n(a1, . . . ,an):

• when ∑k
i=1 ai ≤ k−1, we have fk,n(a1, . . . ,an) = 0;

• when k−1 ≤ ∑k
i=1 ai ≤ k, we have

fk,n(a1, . . . ,an) =
n

∑
i=1

ai − (k−1);

and
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• when k ≤ ∑k
i=1 ai, we have fk,n(a1, . . . ,an) = 1.

These three cases can be covered by a single formula

fk,n(a1, . . . ,an) = min

[
max

(
0,

n

∑
i=1

ai − (k−1)

)
,1

]
.

Comment. It is worth mentioning that for k = n, we get
the exact same expression as when we repeatedly apply
the “and”-operation

f&(a,b) = max(a+b−1,0)

to the values ai:

• first, we compute the estimate a12 for the degree of
confidence in

A12
def= A1 &A2

as a12 = f&(a1,a2);

• then, we compute the estimate a123 for the degree of
confidence in

A123
def= A1 &A2 &A3 ≡ A12 &A3

as a123 = f&(a12,a3),

• . . . ,

• finally, we compute the estimate a1...n for the degree
of confidence in

A1...n
def= A1 & . . . &An ≡ A1...n−1 &An

as a123 = f&(a1...n−1,an).

Why neural networks? All this may sound reasonable,
but why do we mention neural approach in the title? The
explanation is simple: the same arguments have been used
to explain the success of traditional neural networks; see,
e.g., [10–12]. The main difference is that in a neural net-
work, we want to be able to approximate any function,
in which case we cannot have a 2-layer arrangement, the
simplest we get is a 3-layer arrangement L-NL-L:

• first, we apply some linear transformations to the in-
puts x1, . . . ,xn, resulting in values

zk = wk0 +
n

∑
i=1

wki · xi;

• then, we apply a non-linear transformation to zk, re-
sulting in yk = sk(zk), and

• finally, we apply a linear transformation to the re-
sults yk, getting

y =
K

∑
k=1

Wk · yk +W0,

where K is the overall number of neurons on the
first (L) layer.

As a result, we get the usual formula describing how, for
a traditional neural network, its output y depends on the
inputs x1, . . . ,xn:

y =
K

∑
k=1

Wk · sk

(
wk0 +

n

∑
i=1

wki · xi

)
+W0.

Other possible applications of this idea. We can use
the same idea to describe how to generalize the number
of elements in a set (also known as the set’s cardinality)
to fuzzy sets, in which we have n elements with degree
of membership a1, . . . ,an. In this case, one linear layer
is sufficient, and, by taking into account that when all ai
are 0 or 1, we should get the actual cardinality, we get
Zadeh’s formula ∑n

i=1 ai.
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