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Terrain analysis is essential to flood disaster risk eval-
uation. It is a complicated evaluation process, in-
volving both quantitative and qualitative data analy-
sis. However, quantitative and qualitative data can-
not be put into operation directly. Based on stochas-
tic and fuzzy mathematics, cloud models allow in-
terchange between qualitative and quantitative data,
dealing with randomness and ambiguity. Two- or
multi-dimensional cloud models can solve the problem
of multivariable analysis. This study used absolute ele-
vation and neighborhood elevation standard deviation
as main factors. Using the model, it demonstrated the
construction of qualitative conditions and risk evalua-
tion clouds and established a set of two-dimensional
cloud reasoning rules to calculate the joint certain-
ties with all the grids in reasoning rules. By selecting
the highest certainty of cloud reasoning, preliminary
evaluation results were obtained. For more accurate
results, the model algorithm was improved, and fur-
ther iterations were performed. The results of two-
dimensional cloud reasoning showed better dispersion
and precision than traditional methods did. The ter-
rain risk distribution of Chaohu Basin, China, agreed
with reality with great detail. A new method regarding
the risk assessment of flood disaster was also proposed.

Keywords: cloud model, risk assessment, terrain hazard,
two-dimensional cloud reasoning, Chaohu Basin

1. Introduction

Recent natural disasters have threatened the sur-
vival and sustainable development of humans. Among
the 14 major natural disasters, floods occur most fre-
quently, causing massive damage and loss of life [1]. The
frequency of floods is predicted to increase as a result of
climate change [2, 3]. Globally, flood risk depends on the
cumulative effect of (a) the hazard risk of a flooded area,
(b) the exposure and vulnerability of the disaster-bearing

body, and (c) the disaster prevention and mitigation abil-
ity [4, 5]. Analysis of these factors along with associated
flood risk distribution maps [6–8] can provide strong sup-
port for (a) the development of disaster precaution pol-
icy before disasters occur, (b) the decision-making pro-
cedures of the disaster prevention command, and (c) the
improvement of post-disaster relief programs.

To reflect human cognitive habits, many studies on
flood hazard risk assessment have used a qualitative cat-
egorized list such as “high, medium, and low” for the
expression of risk [5, 9]. Evaluation factors in the risk
assessment process comprise both quantitative data and
qualitative expressions [10, 11], and the two types of data
cannot easily be combined directly. Furthermore, the
evaluation calculation results need to be converted into
qualitative descriptions [12]. Therefore, qualitative and
quantitative conversion is a basic and important task in
flood disaster risk assessment.

Many researchers have used a variety of conversion
methods to bridge the gap between qualitative and quanti-
tative data in risk assessment, e.g., equal interval [13, 14],
standard deviation [15], natural breakpoint [16, 17], and
similar clustering classification [18] methods. The gen-
eral premise of these methods is to convert qualitative data
into a certain numerical interval according to mathemat-
ical or statistical theory. However, the intervals between
the qualitative categories can be cut directly so that the up-
per and lower bounds of the interval could not represent
the randomness and uncertainty of the qualitative concept
itself. As the qualitative results contain a certain degree
of ambiguity and randomness, it is difficult to objectively
classify the findings. This also happens in flood risk as-
sessment: The exact values often fail to convey the full
meaning of qualitative concepts from the three categories
mentioned above. Thus, it is difficult to accurately ana-
lyze and quantify these concepts.

To address this problem, this study used a cloud model
to analyze the terrain risk of flood disasters. The cloud
model is a tool that can convert qualitative and quantita-
tive data better than other methods can [19]. This model
transforms a “blunt” edge (“either this or that”) into a
“smooth” edge (“both this and that”). It allows proper
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conversion between the concepts from qualitative data and
the values from quantitative data. This study applied the
cloud model to flood risk assessment in Chaohu Basin,
China, and obtained valuable results.

2. Cloud Model

2.1. Concept of Cloud Model

The cloud model is a model of uncertainty conversion
between a qualitative description and its quantitative rep-
resentation, based on traditional fuzzy mathematics and
probability statistics. It mainly reflects the randomness
and ambiguity of concepts in human cognition or objec-
tive things and combines the two to form a map between
qualitative and quantitative results [20].

If U is a quantitative domain represented by exact val-
ues U = {x}, then C is a qualitative concept in domain U .
If x is a random implementation of the concept C, and
μ(x) ∈ [0,1], the degree of certainty of x to C is a random
number with a stable tendency, that is, μ(x): U → [0,1],
∀x ∈U . The distribution in the domain is called the cloud
model, referred to simply as “the cloud” [21]. The cloud
is composed of many “cloud drops.” Each cloud drop is
a quantitative conversion of a qualitative concept. A sin-
gle cloud drop cannot reflect the content, and the over-
all shape of the cloud reflects the basic characteristics of
the qualitative concept. This model has been used in data
mining, knowledge discovery, system evaluation, and de-
cision support [22–24].

CT (x): U → [0,1], ∀x ∈ X(X ⊆U),
x →CT (x) . . . . . . . . . . . . . . (1)

The digital characteristics of the cloud are character-
ized by the expected value (Ex), entropy (En), and hyper-
entropy (He). Ex is the closest to the qualitative concept
in the domain, En represents the acceptable range within
the domain, and He reflects the dispersion degree. The
cloud model builds forms of clouds with a large number
of cloud drops using the above three digital characteris-
tics. It can integrate the randomness and fuzziness of the
qualitative concepts. For example, Fig. 1(a) depicts a one-
dimensional cloud diagram showing the qualitative con-
cept of “height.” The three digital characteristics (Ex, En,
and He) of the cloud model are also shown in the diagram.

When the qualitative concept of the corresponding do-
main is expanded to two or even multiple dimensions, the
one-dimensional cloud model can be extended to a two-
or multi-dimensional cloud model, which is an impor-
tant tool for representing and solving multivariate com-
plex systems. Fig. 1(b) shows a two-dimensional cloud
chart of the evaluation of a student’s comprehensive per-
formance, including their intellectual and moral scores.

In the cloud model, the specific tool used in this study
to achieve qualitative and quantitative conversion was the
cloud generator. It was categorized into forward and back-
ward cloud generators. Specifically, assuming that the
three digital characteristics (Ex, En, and He) of the cloud

(a) One-dimensional cloud model

(b) Two-dimensional cloud model

Fig. 1. Examples of cloud models.

are given, a number of cloud drops can be generated with
the forward cloud generator algorithm. For a group of
samples with a normal distribution, the backward cloud
generator algorithm can be used to calculate the digital
characteristics (Ex, En, and He) of the cloud.

2.2. Reasoning Course Based on Cloud Model
Humans can process information and analyze it to draw

logical conclusions. For example, humans can process a
statement “if A happens, B will occur as well,” where A
and B are qualitative concepts described in natural lan-
guage [25]. In this case, A is called the antecedent of
the rule (referred to as the condition), and B is the con-
sequent of the rule (referred to as the result). For exam-
ple, the statement “if it is summer, the temperature will
be high” is a single-condition-single-rule reasoning pro-
cess, where “summer” and “high temperature” are the an-
tecedent and consequent, respectively. In the real world,
any reasoning process is the result of multiple factors,
and complicated rules, such as double-condition-single-
rule (if A1, A2 then B) and multi-condition-single-rule (if
A1, A2, . . ., An then B) can be generalized. The cloud rea-
soning process is composed of one or more antecedent-
cloud and one consequent-cloud combinations. Fig. 2
shows a diagram of the single-condition-single-rule and
double-condition-single-rule cloud reasoning. The two
algorithms of the cloud reasoning process are as follows:
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(a) Single-condition-single-rule cloud reasoning

(b) Double-condition-single-rule cloud reasoning

Fig. 2. Diagram of cloud reasoning rules.

Algorithm 1: Single-condition-single-rule generator.
The input is the digital characteristics of the antecedent
cloud (ExA, EnA, and HeA), the given value xA, and the
digital characteristics of the consequent cloud (ExB, EnB,
and HeB). The output is the result value xB, which sat-
isfies the consequent concept, and the degree y, which is
concluded by the antecedent concept and xA.

Step 1: Generate a random number EnA
′ that satisfies

the normal distribution Norm(EnA,HeA
2).

Step 2: Calculate the degree of certainty y.

y = exp

{
− (xA −ExA)2

2 (EnA
′)2

}
. . . . . . . . (2)

Step 3: Generate a random number EnB
′ that satisfies

the normal distribution Norm(EnB,HeB
2).

Step 4: Calculate the value of xB based on the value
of xA.

xB =

{
ExB −EnB

′ ×
√
−2 lny (xA ≤ ExA)

ExB +EnB
′ ×

√
−2 lny (xA > ExA)

(3)

In the algorithm, the single-condition-single-rule gen-
erator contains two layers of uncertainty reasoning. A
membership degree of uncertain y is obtained from the
given value of xA and the antecedent cloud on the one
hand. On the other hand, the value of xB is calcu-
lated based on the consequent cloud and uncertain de-
gree y. Therefore, the transfer of uncertainty from sim-
ple cloud reasoning can be realized. However, when the
domain of the antecedent cloud is extended to two di-
mensions, a two-dimensional antecedent cloud and one-
dimensional consequent cloud connection form a dual-
condition-single-rule cloud generator.

Algorithm 2: Dual-condition-single-rule generator.
The input is the digital characteristics of two antecedent
clouds, namely ExA1, EnA1, and HeA1 and ExA2, EnA2,
and HeA2, the given values of xA1 and xA2, and the dig-
ital characteristics of the consequent cloud (ExB, EnB,
and HeB). The output is the result of xB that satisfies the
consequent concept, and the degree y can be concluded by
the two antecedent concepts and two given values of xA1

and xA2.
Step 1: Generate random numbers EnA1

′ and EnA2
′ that

satisfy the normal distributions Norm(EnA1,(HeA1)2)
and Norm(EnA2,(HeA2)2), respectively.

Step 2: Calculate the joint degree of certainty y.

y = exp
{
− (xA1 −ExA1)2

2(EnA1
′)2 − (xA2 −ExA2)2

2(EnA2
′)2

}
. (4)

Step 3: Generate a random number EnB
′ that satisfies

the normal distribution Norm(EnB,HeB
2).

Step 4: Calculate the value of xB based on xA1 and xA2.

(1) If xA1 ≤ ExA1 and xA2 ≤ ExA2, then xB = ExB +
EnB

′ × (
√−2 lny)/2;

(2) If xA1 > ExA1 and xA2 > ExA2, then xB = ExB −
EnB

′ × (
√−2 lny)/2;

(3) If xA1 ≤ ExA1 and xA2 > ExA2, then
y1 = exp{−(xA1 −ExA1)2/2(EnA1

′)2},
y2 = exp{−(xA2 −ExA2)2/2(EnA2

′)2},
xB = ExB +EnB

′ × (
√−2 lny1 −

√−2 lny2)/2;

(4) If xA1 > ExA1 and xA2 ≤ ExA2, then
y1 = exp{−(xA1 −ExA1)2/2(EnA1

′)2},
y2 = exp{−(xA2 −ExA2)2/2(EnA2

′)2},
xB = ExB +EnB

′ × (
√−2 lny2 −

√−2 lny1)/2.

3. Study Area and Data Source

3.1. Study Area
Chaohu Basin lies between the Yangtze and Huaihe

Rivers in central Anhui Province, China (Fig. 3). It is lo-
cated on the left bank of the lower reaches of the Yangtze
River. The total area of the basin is about 13,350 km2,
including Shucheng County, Feixi County, Hefei City,
Feidong County, Chaohu City, Shucheng County, Wuwei
County, Hanshan County, and He County. Chaohu Basin
has a humid monsoon climate in the northern subtropical
zone, and heavy rainstorms often occur around Chaohu
Lake in summer and autumn. The Chaohu water sys-
tem originates from the Dabie Mountains and flows from
west to east. It passes through Chaohu Lake and enters
the Yangtze River from the Yuxi River. The surrounding
rivers are radially injected around Chaohu Lake.

Chaohu Basin surrounds Chaohu Lake and is divided
into two areas by the Yinping and Phoenix Mountains as
well as other mountains to the east. The eastern area of
the basin comprises an alluvial plain along the Yangtze
River and is mainly composed of sandbars, river flood-
plains, and terraces. The terrain is flat and open with an
average elevation of 5–20 m and a low standard deviation
of elevation. However, in the west of the basin, except for
the low terrain of Chaohu Lake, it is basically hilly ter-
rain, especially the Dabie Mountains in the southwest is
higher in altitude, with an average elevation above 300 m.

The topography of Chaohu Basin contributes to its fre-
quent flooding. Nonetheless, the basin is an important
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Fig. 3. Location of Chaohu Basin, China.

grain-producing area and a key industrial region with
a large population. Flood disasters therefore have far-
reaching impacts on the local economy.

3.2. Data Source

Many factors affect flood hazard risk analysis. For ex-
ample, the underlying earth surface attributes, such as ter-
rain factors, are essential to the assessment of flood risk.
These effects of terrain altitude and topographic variation
are often combined to determine flood danger levels.

Topographic data of the Chaohu Basin were mainly
derived from the ASTER Global Digital Elevation
Model V2 30 m digital elevation model dataset, obtained
from the Geospatial Data Cloud site, Computer Network
Information Center, Chinese Academy of Sciences (http:
//www.gscloud.cn).

The criteria for judging the flood risk terrain are usu-
ally described as qualitative concepts, such as “the higher
the elevation and the flatter the terrain is, the higher risk
of flooding will be.” The absolute elevation and neighbor-
hood elevation standard deviation (NESD) of grid units
were considered reliable quantitative data. The terrain ab-
solute elevation data were obtained directly through the
digital elevation model data. By using ArcMap statisti-
cal functions to generate the standard deviation of 25 grid
elevation in a 5 by 5 square areas, NESD was calculated
and analyzed based on the absolute elevation data of the
terrain.

4. Development of Cloud Model

4.1. Data Preprocessing

A cloud model was used in this study, and the cloud rea-
soning method was used to integrate elevation and NESD
data to more accurately convert qualitative concepts to
quantitative values. Before formal cloud reasoning en-
sued, three main steps needed to be carried out.

4.1.1. Qualitative Condition Clouds

The “3En rule” of the normal cloud indicated that the
vast majority (99.74%) of the quantitative values con-
tributed to the qualitative concept in the domain fall in the
range [Ex−3En,Ex+3En] [26]. For these values with
bilateral constraints [Cmin,Cmax], the following algorithm
could be used to construct qualitative cloud [24]:

Algorithm 3: Cloud construction method for qualita-
tive values with bilateral constraints:

(1) Ex is the midpoint of the range, i.e., Ex =
(Cmin +Cmax)/2.

(2) En is one-sixth of the range, i.e., En =
(Cmax −Cmin)/6.

(3) He is usually a constant value that is an order of mag-
nitude less than En. It can be adjusted according to
the physical meaning of the concept.

Based on the distribution of the terrain in Chaohu
Basin [27], the terrain elevation and NESD were divided
into five qualitative ranges, and corresponding condition
clouds were generated according to Algorithm 3 (Ta-
ble 1). For areas with moderate altitude and flat terrain,
the altitude was 50–100 m, and the NESD was within
10 m. By using Algorithm 3, the corresponding absolute
elevation and NESD condition clouds were C(75,8.3,0.1)
and C(5,1.7,0.1), indicating that the values of the two ter-
rain parameters in this area were in the range of these two
conditional clouds (Fig. 4).

4.1.2. Cloud Reasoning Rules Set

During floods, river currents concentrate on the low-
lying flat areas. Therefore, the lower the altitude is, the
more likely water is to converge, and the greater the like-
lihood of flooding becomes. If the terrain is flat and not
conducive to a flood receding, the danger of flooding is
even larger. The correspondence between elevation and
NESD and risk from relevant sources have been extracted.
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Table 1. Grading table of altitude and neighborhood eleva-
tion standard deviation (NESD).

Impact factor Condition cloud
Absolute Absolute
elevation NESD eleveation NESD

[m] [m] cloud cloud
Very low <15 <10 C(8.3,2.2,0.1) C(5,1.7,0.1)

Low 15–50 10–30 C(32.5,5.8,0.1) C(20,3.3,0.1)
Medium 50–100 30–50 C(75,8.3,0.1) C(40,3.3,0.1)

High 100–200 50–70 C(150,16.7,1) C(60,3.3,0.1)
Very high >200 >70 C(784.2,194.7,10) C(85.2,5.1,0.1)

(a) Cloud of absolute elevation

(b) Cloud of neighborhood elevation standard deviation

Fig. 4. Qualitative condition clouds.

Nine reasoning rules were used based on the analysis of
all 25 qualitative concept combinations (Table 2).

Rule 1: If the elevation is very low, and the NESD is
moderate, the risk is very high.

Rule 2: If the elevation is moderate, and the NESD is
very low, the risk is slightly higher.

Rule 3: If the elevation is low, and the NESD is low,
the risk is high.

Rule 4: If the elevation is low, and the NESD is high,
the risk is slightly higher.

Rule 5: If the elevation is moderate, and NESD is mod-
erate, the risk is moderate.

Rule 6: If the elevation is high, and the NESD is low,
the risk is slightly lower.

Rule 7: If the elevation is high, and the NESD is high,
the risk is low.

Rule 8: If the elevation is very high, and the NESD is
medium, the risk is very low.

Rule 9: If the elevation is moderate, and the NESD is
very high, the risk is very low.

These rules are dual-condition-single-rule examples.

4.1.3. Risk Comment Clouds
Intuitive understanding and description of the risk level

is usually qualitative. It requires the establishment of a
qualitative and quantitative relationship between risk con-
cepts and values so that an accurate risk diagram can be
constructed. In this study, the risk was divided into seven
levels corresponding to different risk values (Table 3). In
addition, seven comment clouds were generated based on
Algorithm 3 (Fig. 5). Thus, based on the condition cloud
and reasoning rules discussed above, nine reasoning rules
with digital characteristics were generated (Table 4).

4.2. Single Grid Assessment of Terrain Hazard Risk
To clarify the algorithm process, two grids were ran-

domly selected from the Chaohu Basin digital elevation
model diagram (Table 5). The steps for the assessment
for Grid 1 are as follows:

(1) In line with the nine abovementioned rules (Ta-
ble 4), calculate random numbers EnA1

′ and EnA2
′

that satisfy normal distributions Norm(EnA1,HeA1
2)

and Norm(EnA2,HeA2
2), based on each rule.

(2) Substitute xA1 = 1.831 and xA2 = 4.324 into all nine
rules, and calculate the certainty value y of every rule
according to Eq. (2).

(3) Choose the maximum value y in Rule 3 as the current
reasoning rule.

(4) Generate a random value EnB
′ = 0.3370, which sat-

isfies the normal distribution Norm(EnB,HeB
2) in

Rule 3.

(5) If xA1 < ExA1 and xA2 < ExA2, according to Algo-
rithm 2, step 4(1), calculate xB as xB = ExB +EnB

′ ×
(
√−2 lny)/2 to obtain xB = 0.9179.

The steps for assessment with Grid 2 are as follows:

(1) In line with the nine rules, calculate random num-
bers EnA1

′ and EnA2
′ that satisfy normal distribu-

tions Norm(EnA1,HeA1
2) and Norm(EnA2,HeA2

2)
based on every rule.

(2) Substitute xA1 = 78.287 and xA2 = 30.092 into all
nine rules, and calculate the certainty value y of ev-
ery rule according to Eq. (2).

(3) Choose the maximum value y in Rule 5 as the current
reasoning rule.

(4) Generate a random value EnB
′ = 0.3376, which sat-

isfies the normal distribution Norm(EnB,HeB
2) in

Rule 5.

(5) If xA1 > ExA1 and xA2 < ExA2, according to Algo-
rithm 2, Step 4-(4), calculate y1 = 0.9575 and y2 =
0.0068, based on the equation xB = ExB + EnB

′ ×
(
√−2 lny2 −

√−2 lny1)/2, to obtain xB = 0.5483.
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Table 2. Reasoning rule set.

Neighborhood elevation standard deviation
Very low Low Medium High Very high

Very low Rule 1
Very high risk

Low
Rule 3

High risk
Rule 4

Slightly higher risk

Elevation Medium Rule 2
Slightly higher risk

Rule 5
Slightly higher risk

Rule 9
Very low risk

High Rule 6
Slightly lower risk

Rule 7
Low risk

Very high
Rule 8

Very low risk

Table 3. Grading of risk comment.

Qualitative
comments

Range of
risk value Risk comment cloud

Very low [0,0.1] C(0.05,0.0167,0.001)
Low [0.1,0.3] C(0.2,0.0333,0.001)

Slightly lower [0.3,0.4] C(0.35,0.0167,0.001)
Medium [0.4,0.6] C(0.5,0.0333,0.001)

Slightly higher [0.6,0.7] C(0.65,0.0167,0.001)
High [0.7,0.9] C(0.8,0.333,0.001)

Very high [0.9,1] C(0.95,0.0167,0.001)

Fig. 5. Grading cloud of cloud reasoning.

4.3. Overall Hazard Risk Analysis Process
Based on single grid calculation, this method of cloud

reasoning could be extended to every grid in the entire
study area. All the data were analyzed in MATLAB,
and the original elevation and NESD were converted into
floating-point arrays and implemented in the cloud rea-
soning algorithm in MATLAB. The results were then con-
verted back to the grid file in ArcGIS (Fig. 6).

5. Results and Analysis

5.1. Terrain Risk Analysis
Chaohu Basin is surrounded by mountains and hilly

areas, with the Dabie, Fucuo, and Phoenix and Yinping

Mountains to the southwest, north, and east, respectively.
These mountains are generally higher than 400 m above
sea level, comprising typical moderate cutting tectonic
erosion landforms with a high NESD. Fanghu Hill west
of Chaohu Lake, Baba Hill to the southeast, and Yefu Hill
to the south are categorized as hilly areas with an eleva-
tion of 200–300 m. Some low hills are distributed along
the exterior of the hilly areas and are about 100 m above
sea level. Most of these hills have medium NESD since
they are located in the middle and upper reaches of the
river. Mounds (50–100 m above sea level) occur between
the hills and alluvial plains, with gentle wavy distribu-
tion (Fig. 7).

Figure 8(a) shows the result of cloud reasoning.
Firstly, the alluvial plains of rivers and lakes, along which
Hexian County, Wuwei County, and Chaohu City occur,
are depicted. The absolute elevation is low, and the land is
flat. Therefore, this area is the most susceptible to floods
during the flood season given its location in the immediate
vicinity of the Yangtze River and Chaohu Lake.

Secondly, southeastern Hefei City and Feixi County
and eastern Shucheng and Lujiang Counties are located
between the hills and alluvial plains. The elevation of
these locations is higher than that of the plains. The ter-
rain has some slopes. Thus, the flood risk is relatively low.
However, as this area is highly populated and the eco-
nomic loss and casualties during flood events are likely to
be high, potential flood disasters cannot be disregarded.
Feidong County, central Shucheng County, and most of
Feixi County are located in hilly areas, with an average
elevation of about 50 m and high NESD. Therefore, the
risk of flood disaster is moderate.

Lastly, the Dabie Mountains in southwestern Shucheng
County and the mountainous areas of Chaohu and
Hanshan Counties have an average elevation of above
400 m, varying terrain, and high NESD. Therefore, the
flood hazard is relatively low, and this area is not suscep-
tible to floods. However, this region contains steep moun-
tains, and precipitation may concentrate during flood sea-
son. Precautions are thus needed to prevent other geolog-
ical disasters.
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Table 4. Reasoning rule set.

Rules
Cloud of elevation Cloud of NESD Risk comment cloud
EEExxx EEEnnn HHHeee EEExxx EEEnnn HHHeee EEExxx EEEnnn HHHeee

Rule 1 8 2.2 0.1 40 3.3 0.1 0.95 0.0167 0.001
Rule 2 75.8 8.3 0.1 5 1.7 0.1 0.65 0.0167 0.001
Rule 3 32.5 5.8 0.1 20 3.3 0.1 0.8 0.0333 0.001
Rule 4 32.5 5.8 0.1 60 3.3 0.1 0.65 0.0167 0.001
Rule 5 75.8 8.3 0.1 40 3.3 0.1 0.5 0.0333 0.001
Rule 6 150 16.7 1 20 3.3 0.1 0.35 0.0167 0.001
Rule 7 150 16.7 1 60 3.3 0.1 0.2 0.0333 0.001
Rule 8 784.2 194.7 10 40 3.3 0.1 0.5 0.0167 0.001
Rule 9 75.8 8.3 0.1 95 8.3 0.1 0.05 0.0167 0.001

Table 5. Grading table of risk comments.

Grid 1 Grid 2
Longitude 117◦42′54.108′′E 117◦53′03.268′′E
Latitude 31◦38′47.04′′N 31◦ 50′43.914′′N

Elevation [m] 1.831 78.287
Neighborhood elevation
standard deviation [m] 4.324 30.092

Reasoning result 0.9179 0.5483

Fig. 6. Flowchart of terrain hazard risk analysis of flood disaster based on cloud reasoning.

5.2. Comparative Analysis of Results

The most commonly used method in flood risk assess-
ment depends on traditional mathematical methods: con-
structing a two-dimensional terrain hazard table based on
actual absolute elevations and NESD (or slope) and then
converting qualitative concepts to quantitative data [28,
29]. The advantages of this method are intuitiveness, sim-
ple construction, and fewer calculations. However, this
method does not consider the subjectivity and random-
ness of qualitative concepts and lacks reasonable “soft”

transitions among the qualitative concepts.
To illustrate the advantages of cloud reasoning in as-

sessing the terrain risk of flood, a two-dimensional terrain
hazard determination table (Table 6) was constructed by
using previous research methods and results [27]. The risk
of terrain hazard in Chaohu Basin was evaluated, and the
terrain hazard map based on the two-dimensional table is
shown in Fig. 8(b).

Table 7 shows the statistical results of the whole study
area and individual counties using the cloud reasoning
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(a) Digital elevation model diagram

(b) Neighborhood elevation standard deviation (NESD) diagram

Fig. 7. Underlying surface of Chaohu Basin.

method. The findings showed a higher standard deviation
and degree of dispersion than the two-dimensional table
method did. This means that the results of cloud model-
ing had a greater dispersion degree (Fig. 9(a)–(c)).

When the risk range [0,1] interval was divided into
equal parts of 10, 102, 103, and 104, the cloud reason-
ing method results covered 100, 100, 99.68, and 97.43%
respectively, and were much higher than those of the two-
dimensional table method (Fig. 9(d)). This indicated that
cloud reasoning had a more accurate coverage than the
two-dimensional table method did. Compared to the table
method, the cloud reasoning terrain risk distribution map
was much clearer and more detailed, with richer layers,
and the transition was more natural.

5.3. Improved Cloud Reasoning Method
When some regions of the results of single terrain risk

cloud reasoning were amplified during the experiment,
rough “noise” around the local transition zone was found.
This was due to the existence of randomness and uncer-
tainty in the process of cloud reasoning. Despite the dif-
ferences in cloud reasoning values, the overall trend was
consistent and did not affect the final assessment. This
finding was consistent with the basic characteristics of the
cloud model.

To reduce the noise, the cloud reasoning results were it-
erated several times and average-weighted before the final

(a) Result of cloud model

(b) Result of two-dimensional table

Fig. 8. Distribution of terrain hazard risk assessment of
flood disaster in Chaohu Basin.

Table 6. Two-dimensional table of terrain hazard risk judg-
ment. NESD: neighborhood elevation standard deviation.

Elevation [m]
NESD [m]

< 12 12–36 >36

<15 0.9 0.8 0.7
15–50 0.8 0.7 0.6

50–100 0.7 0.6 0.5
100–200 0.6 0.5 0.4
>200 0.5 0.4 0.3

results were obtained. Thus, we used the same grid data
to produce cloud reasoning results (xBn,yn) by the algo-
rithm. If the results were not inconsistent, these results
could be substituted into Eq. (5) to calculate the weighted
average as the final result:

(xB,y) =

n

∑
i=1

xBi × yi

n

∑
i=1

yi

(1 ≤ i ≤ n) . . . . . (5)

For example, (xB,yi) is one result of Algorithm 2.
Fig. 10(a) shows a section image of one-time cloud rea-
soning, and Fig. 10(b) shows the result with 10 iterations
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Table 7. Reasoning rule set.

Risk result of cloud model method Risk result of two-dimensional table method

Mean Standard
deviation

Coefficient
of variation Mean Standard

deviation
Coefficient
of variation

Whole basin 0.7583 0.2315 0.3053 0.7722 0.1471 0.1905
Feidong 0.7351 0.1144 0.1557 0.7610 0.0711 0.0934

Feixi 0.7666 0.1214 0.1583 0.7786 0.0744 0.0955
Hefei 0.8517 0.0969 0.1138 0.8213 0.0544 0.0662

Chaohu 0.7866 0.2213 0.2814 0.7852 0.1403 0.1787
Hanshan 0.7546 0.2332 0.309 0.7633 0.1451 0.1901
Hexian 0.8711 0.1339 0.1538 0.8506 0.0958 0.1126
Wuwei 0.8678 0.1595 0.1838 0.8504 0.1089 0.1281
Lujiang 0.7984 0.2070 0.2592 0.7897 0.1291 0.1634

Shucheng 0.4811 0.3423 0.7115 0.5895 0.2092 0.3549

(a) Mean comparison (b) Standard deviation comparison

(c) Comparison of coefficient of variation (d) Coverage accuracy

Fig. 9. Comparison of statistical indicators between two methods.

average-weighted in the same section. Fig. 11 shows a
modified cloud reasoning result. After processing, the
cloud reasoning results were clearer and more accurate
than before.

6. Conclusion

This study developed a cloud model that used three
variables, namely expectation, entropy, and hyper-
entropy, to describe qualitative concepts in natural lan-
guage and with some universality [30]. This solves the
problem of conversion between qualitative concepts and
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(a) Result of one iteration (b) Result after 10 iterations

Fig. 10. Enlarged images comparing local details.

Fig. 11. Improved distribution of terrain hazard risk assess-
ment of flood disaster in Chaohu Basin.

quantitative values. Based on the cloud model, a rule gen-
erator was applied to rule derivation, and qualitative con-
cept reasoning was performed.

This study combined two elements of terrain risk in
risk assessment, namely elevation and NESD, to establish
a cloud model. The condition and risk comment clouds
were generated by constructing algorithms. Cloud rea-
soning rule sets were created and joint certainty values
were calculated according to each rule. The rule with the
highest degree of certainty was selected. Reasoning was
subsequently calculated, and the corresponding risk as-
sessment value was obtained.

In contrast to the traditional two-dimensional table
method for flood risk assessment, the cloud model rea-
soning method optimized the situation dealing with the
“blunt” boundary. Using this model, the boundaries of
risk evaluation elements were “softened” to address the
lack of ambiguity and randomness in traditional meth-
ods. This study improved terrain risk estimation in flood
hazard assessment. The boundary of qualitative concept
quantification was softened, and the vagueness and uncer-
tainty of the qualitative concept were reduced. The cloud
model had advantages regarding qualitative and quanti-
tative conversion, and it generated analysis maps more
clearly and accurately, with richer layers and more nat-
ural transitions.

This study nonetheless had limitations. As flood risk
assessment involves numerous contributing factors, the

selection of only elevation and NESD as two major factors
cannot be used to accurately assess any fold risk. Thus,
for future studies, other risk factors, such as precipita-
tion and river reservoir distance, should be considered in
cloud reasoning operation for a more comprehensive as-
sessment. Furthermore, a degree of uncertainty existed in
a single deduction of the cloud reasoning algorithm. The
reasoning result was slightly flawed, and the algorithm
therefore needs to be further optimized in future research.
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