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No consensus exists in the literature on whether stock
prices can be predicted, with most existing studies
employing point forecasting to predict returns. By
contrast, this study adopts the new perspective of
distribution forecasting to investigate the predictabil-
ity of the stock market using the model combina-
tion strategy. Specifically, the Shanghai Composite
Index and the Shenzhen Component Index are se-
lected as research objects. Seven models — GARCH-
norm, GARCH-sstd, EGARCH-sstd, EGARCH-sstd-
M, one-component Beta-t-EGARCH, two-component
Beta-t-EGARCH, and the EWMA-based nonpara-
metric model — are employed to perform distribu-
tion forecasting of the returns. The results of out-of-
sample forecasting evaluation show that none of the
individual models is ‘“qualified” in terms of predic-
tive power. Therefore, three combinations of individ-
ual models were constructed: equal weight combina-
tion, log-likelihood score combination, and continuous
ranked probability score combination. The latter two
combinations were found to always have significant di-
rectional predictability and excess profitability, which
indicates that the two combined models may be closer
to the real data generation process; from the perspec-
tive of economic evaluation, they may have a predictive
effect on the conditional return distribution in China’s
stock market.

Keywords: predictability, distribution forecasting, model
combination, GARCH, nonparametric

1. Introduction

The predictability of capital market returns has been of
great interest to academicians. Two major theories are re-
lated to return predictability: the efficient market hypoth-
esis (EMH) of Fama [1] and the adaptive market hypoth-
esis (AMH) of Lo [2]. [3] extends EMH’s weak-form ef-
fectiveness test to a return predictability test, and consid-
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ers that the unpredictability of the market is equivalent to
“weak-form effectiveness.” However, AMH believes that
the predictability of market returns is determined by the
changing market environment and will respond to changes
in investor statistics, financial systems, and market con-
ditions. Traditional finance believes that the returns on
capital markets are unpredictable; however, several stud-
ies have found predictable returns. Cochrane [4] even
calls the predictability of market returns “new facts” in
finance. Some studies, such as [5] and [6], believe that
the predictability of the stock market is consistent with
the AMH theory, and that there are periods of predictable
returns. The research on the predictability of capital mar-
ket returns is of vital importance to the development of fi-
nancial theory. Cochrane [7] believes that the existence of
predictability will modify all previous results based on the
assumption of random walks in the stock market. Ferson
et al. [8] points out that predictive variables found in the
stock market through regression techniques will play a
role in conditional pricing models. In addition, the out-
of-sample predictability of financial returns has impor-
tant implications for many areas such as asset pricing and
portfolio allocation. Campbell and Thompson [9] find,
through actual data, that even weak predictability can im-
prove the effect of asset allocation.

The non-linear and non-stationary characteristics of the
stock market make it a complex system, and its complex-
ity is further related to various factors such as political
events, market news, quarterly earnings reports, interna-
tional influences, and investor trading behaviors. There-
fore, forecasting stock market returns is a difficult task.
The commonly used methods in the literature are statis-
tical prediction models under a certain error evaluation
criterion, such as ARMA time-series models and grey
prediction models. In recent years, machine learning ap-
proaches have also become popular; see [10]. Affected
by changes in the market environment, parameter insta-
bility of the model exists objectively; as a result, time-
varying parameter models are used in empirical studies
such as [11] and [12]. Model uncertainty is also an im-
portant factor affecting prediction performance. To re-
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duce model uncertainty, combination strategies have been
used, such as in [13] and [14]. However, existing research
on the predictability of the stock market mainly relies
on point prediction. Point forecasting means that infor-
mation is released in a “centralized trend” model, with-
out considering uncertainty or related risks; governments
and investors, however, are more concerned about fore-
casted risk measures, which means that forecasts should
include risk management. Zheng et al. [15] point out that
the predictability of returns has changed from conditional
means predictability to direction predictability, and direc-
tion predictability can come not only from the sequence
dependence of the conditional mean, but also from other
higher-order sequence dependence. Christoffersen and
Diebold [16] find that the sequence-dependent character-
istics of volatility can be used to predict the direction of
the market. In theory, point prediction, risk prediction,
and direction prediction can all be included in distribu-
tion prediction. Distribution prediction estimates the fu-
ture conditional distribution function of a random variable
based on existing information, and can fully describe the
uncertainty characteristics of the predictor. Thus, this ar-
ticle provides new ideas for studying the predictability of
the stock market from the perspective of out-of-sample
distribution prediction, namely, distribution forecasting,
which could lead to different conclusions.

China’s stock markets, in particular, have witnessed
significant sudden uncertainties, causing stock prices to
rise and plunge, which has led to the obvious peak and
thick-tail characteristics of its stock market distribution.
Li et al. [17] explained the microeconomic basis for the
time variation of return distribution, and confirmed the
existence of time variation through an empirical study of
the return data of a complete bull-bearing market cycle of
the Shanghai Composite Index. Therefore, the one-step-
ahead rolling window method is used to forecast distribu-
tion in this paper. Parametric methods are most frequently
used for distribution forecasting in the literature. In par-
ticular, the GARCH family model, a simple and popular
parametric model, has been widely used in the modeling
and prediction of economic and financial time series. The
model uses a two-step method to construct the distribution
forecasting. First, it models the conditional dynamics of
the mean and the conditional volatility of the studied time
series. The mean equation uses a point forecasting model
such as the ARMA model or the neural network model,
while the volatility equation is set to a GARCH process
such as the GJIR-GARCH or EGARCH process. Second,
it sets the residual distribution as a parameter distribution,
such as normal distribution or Student t-distribution. Af-
ter the parameters are estimated, the distribution of the
residuals is simulated to obtain the predicted distribution.

To improve the explanation power of the GARCH
model, the GARCH-norm, GARCH-sstd, EGARCH-sstd,
and EGARCH-sstd-M models are employed, consider-
ing the setting of residual distribution, leverage effect,
and risk compensation effect, and so on. The Beta-
t-EGARCH model, which is robust to sudden uncer-
tainty modeling, is employed as well, including both one-
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component and two-component models. The EWMA-
based nonparametric model, which gains a good fitting
effect in Yao and Xu [18], is also included. Due to the
different focuses of the different models and the existence
of model uncertainty, this study will also examine the
strategy of combined models under the guidance of the
marginal calibration figure.

Distribution is a complete description of the random
variable. With the prediction of the return distribution, the
corresponding direction forecasting and point forecasting
can also be derived. Compared with statistical predictabil-
ity, market investors are more concerned about the prof-
itability of making investment decisions using return fore-
casts [19]. Therefore, the evaluation of forecasting per-
formance is carried out from the perspective of economic
predictability. Two test statistics are employed. One is
the directional accuracy test of Pesaran and Timmermann
(the PT test) [20], and the other is the excess profit test of
Anatolyev and Gerko (the AG test) [21]. To investigate
the excess profitability of the return forecast, a simulated
trading strategy is designed for the mean and median fore-
casts generated from the forecasted distribution of returns.

2. Models and Methods

As mentioned in [22], investors face real-time decision-
making problems; therefore, the following individual
models are considered from a time-varying perspective,
that is, the model type is unchanged, but the preset pa-
rameters may change over time. Seven individual models
will be detailed below, followed by an explanation of how
distribution forecasts are obtained.

2.1. Models

Given the sequence of return variables for financial as-
sets, a large number of empirical studies have shown that
their distributions have the following characteristics: (i) a
heavy tail, that is, a tail that is heavier than normal distri-
bution; (ii) volatility clustering, that is, large fluctuations
that tend to follow large fluctuations, and alternating peri-
ods of gradual change and large fluctuations; and (iii) an
accumulation of the Gaussian property. When the sam-
pling frequency is reduced, the central limit theorem is es-
tablished, and the return over a long period of time tends
to be normally distributed. The ARCH model proposed
by [23] and the GARCH model of [24] can capture the
above three characteristics.

2.1.1. GARCH-norm Model

In the financial volatility modeling, the GARCH (1,1)
model with normal distribution residuals is often chosen
as the baseline model, specifically defined as M1, that is:

iid

M, : Y, =u+g, &lL—1 ~ N(0,h), (1)

: ) )
hy=w0+og | +Bh_.

Vol.24 No.4, 2020

and Intelligent Informatics



2.1.2. GARCH-sstd Model

Wang and Wang [25] argue that the skewed-t distri-
bution provides the best choice for the characterization
and prediction of the actual volatility characteristics of
China’s stock markets. Therefore, GARCH (1,1) with
skewed-¢ distribution residuals, named the GARCH-sstd
model, is employed. It is defined as:

Y[:ﬂ+8[,

=0+ o | +Bh_1,
iid

8t|1t—1’\’

M : ) { ( & ) 2
— il —= ) 1(g>0
TESEnwA L A (& 20)

&
v 4 I 9
o (1<)

where () is a indicator function, f,(-) represents the den-
sity function of Student t-distribution with the freedom
degree v, which is

fv(x) -

v v+1
)y
v=2 2 (1+x>2..(3)

oy U

2.1.3. EGARCH-sstd

Many studies have shown that the negative skew of
stock returns is because traders react more strongly to
unfavorable information than to favorable information.
Therefore, many scholars believe that the leverage ef-
fect of returns should be considered. The relevant mod-
els are the TARCH model (or GIR-GARCH model) and
the EGARCH model. The EGARCH model introduced
by [26] is widely used. The EGARCH (1,1) model
with skewed-# distribution residuals is denoted as the
EGARCH-sstd model and it is defined as:

}/t:“+£t7
&1 &1
Inh, = Inh,
“’ fj““ v Rty
Myl &l ) . 4)
— £y I(g>0
<z+w>¢h—,[f (Aﬁ) (& 20)
&
(21 0)].
o (1<)

2.1.4. EGARCH-sstd-M Model

Financial theory suggests that assets with higher ob-
servable risks can achieve higher average returns because
people generally believe that the return on financial as-
sets should be proportional to their risk. The greater the
risk, the higher the expected return. The ARCH model,
which includes conditional variance (or standard devia-
tion) to represent expected risk, is called the ARCH-M
model and was introduced by [27]. In this paper, the
conditional standard deviation is used to reflect the condi-
tional risk and produce the EGARCH-sstd model, obtain-
ing the EGARCH-sstd-M model, that is:
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2.1.5. One-Component Beta-Skew-t-EGARCH Model

The Beta-t-EGARCH model was originally proposed
by [28] and [29]. Harvey and Sucarrat [30] extended it
to the skewed case, producing the Beta-Skew-t-EGARCH
model. Blazsek and Villatoro [31] and Blazsek and Men-
doza [32] have shown that compared with other GARCH
models, this model exhibits strong robustness against
jumps or outliers and, empirically, can effectively cap-
ture the sudden uncertainty of financial returns. The one-
component Beta-Skew-t-EGARCH model is defined as:

Y, =p+ere =pu+Vvhe,
&l %sstd(o,og, v,7),
Ms:{ A =w+A, N ()
AtT = (])17%[1 + Kjur—1
+K*sgn(=Y—1)(u—1 +1).
To meet the stability conditions, additional restrictions are
required: |¢]| < 1,v >2,7> 0. u, is called conditional

score, which represents the derivative of the log likelihood
score of ¥; to A; at time ¢, that is:

_ 3lnfy,(y,)

I\
(V+ 1) (3 + yittee™)? )

- 1
VKZA,[ /)/ngn(yﬂrugelf) + (Yt + “862,;)2 ’
where sgn(-) represents a symbolic function. As de-

scribed by [30], u; can also be conveniently written as:

t vy2sgn(87)+gt*2 g e e e e e e

where & is a non-centralized skewed ¢ distribution vari-
able. When the conditional distribution is symmetrical,
i.e., y=1, then:

M1+1 1 \%
~Beta| =, = ). . . . ... ... 0
ey ©
This is why the model is called as Beta-t-EGARCH
model.

2.1.6. Two-Component Beta-Skew-t-EGARCH Model

As stated in [33], the square of financial returns tends
to exhibit long-term memory characteristics. The two-
component model of volatility can be adapted to the long-
memory nature by decomposing volatility into a long-
term component and a short-term component. The tran-
sient changes produced by shocks are only reflected in the
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short-term component. The two-component Beta-Skew-t-
EGARCH model proposed by [30] is represented as:

=pu+ehg =p+he,
&l " sstd (0, o2, v,y),
=0+l +2],
/112 = ¢111T’,_1 + K11,
l;’t = %AZT,:*I + Kou;q
Tt sgn(—Y) (1 + 1),

M : - (10)

where )»IT ,and )»ZT , represent the long-term component and
the short-term component respectively, the definition of
other parameters is the same as in Ms. Here the leverage
effect only displays in the short-term fluctuation. To make
the model identifiable, the restrictions v > 2,7 > 0,|¢; | <
1,|¢| < 1and ¢ # ¢, are needed.

2.1.7. NP-EWMA Model

The NP-EWMA model refers to the EWMA-based
nonparametric model proposed by [34]. [18] shows that
from the perspective of quantile evaluation, the model has
a better in-sample fitting effect than the GARCH-norm
model, and has a certain typical fact interpretation abil-
ity. Like [18], the kernel method is used to investigate the
modeling of the overall condition distribution of returns.
Contrary to [18], the out-of-sample forecasting is consid-
ered here rather than an in-sample fit. It is recorded as
model M7, specially,

My ) = 00+ (-0 (22).a

where F(y) represents the cumulative distribution func-
tion of return at time ¢, H(-) is the kernel function with a
cumulative distribution form, @ is a decay factor and # is
the bandwidth.

2.2. The Estimation and Return Distribution Fore-
casting of Individual Models

Elliott and Timmermann [35] propose the full-
parameter method of density estimation, which assumes
that the conditional density py(y|Z,0) is known except
the parameters 6. The classical method uses data Z to
obtain parameter estimates 6(Z), and substitutes these
estimates to obtain the density forecasts py(y|Z,0(Z)) ,
at the same time as the cumulative distribution function
F012,6(2)) A

To achieve the estimation 6(Z), some form of loss
function needs to be assumed to obtain an estimate by
maximizing or minimizing these specific forms of loss
functions. The most common loss function focuses on
the degree of “proximity” between the candidate density
p(¥|Z,0) and the true density “po(y|Z, 6p),” which is the
Kullback-Leibler (KL) distance. The KL distance be-
tween the true distribution pg and the parameter distri-
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bution p is:

. Po
KL(po,p) = Ep, (ln;> (12)

= Ep,y[In(po(y|Z, 60))] — Ep, [In(p(y|Z,6))].

Obviously, minimizing the KL distance is equivalent to
maximizing Ep, [In(p(y|Z,0))]. Ep,[In(p(y|Z,0))] is the
expectation of the log likelihood function on 6, also
known as the expected logarithmic score. Therefore, in
terms of density (or distribution) forecasting, the methods
of Maximum Likelihood Estimation (MLE) and minimiz-
ing the KL distance are the same.

As to the model My, ¥; ~ N(0,h), then the density
function of ¥; is:

1 _o-w?
fy,(y):\/me N ¢ &)
so the log likelihood contribution of ¥; at time 7 is:
L= —%111(27:) - %mh, - %L ;t“)z, . (14)
hence:
T
E,[In(p(yZ,0)) Z

! ”)2 (15)
= TlIn(2 Inh - .
2T l Il TC + I_Zl nn; + t; ht ‘|
MLE:s of the parameters in M) are achieved by maximiz-
ing Eq. (15).
As to models M;, M3, the skewed-t distribution is used
for the residual distribution, so the distribution of Y; is

Fy,(y) = P(Y; <y) = P(+\/hz <)
- v oy—p\ - . -6
—P<Zt§ \/]’l_t)_FZt<\/th>’

where z; = & /+/I; is the standardized residual, with the
mean 0 and the variance 1, F;,(+) is the cuamulative distri-
bution of z;, thus the density of ¥; is:

_ L yzk
fy,(y)—\/h_tfz,<\/}7t>. L

Furthermore, similar to the processing of Mj, the para-
metric estimates of M, and M3 can be obtained by maxi-
mizing Ey, [In(p(y|Z, 6)).

As to the models My, M5, Mg, it is only necessary to use
the conditional mean equation for refinement. Similarly,
the parameter estimates can be obtained by MLE.

Thus, as to My, M>, ..., Mg, after obtaining the param-
eter estimation, the distribution forecasting is available,
which is:

N N

y— R
FYt-H\t(y) = Et+1\t

. (18)

~

he v

As to M7, the initial m samples are employed to gen-
erate the initial distribution F (y) according to [34]. Here
we set m = 100. Thus,
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Table 1. P value of the Berkowitz test.

| SHCI | SZCI
Model |  Whole 5% tail 1% tail | Whole 5% tail 1% tail
M, 0.2143  <0.0001 <0.0001 0.3836 <0.0001 <0.0001
M, 0.1135 0.5876 0.0430 0.2585 0.2035 0.2324
M 0.2483 0.3214 0.0641 0.5028 0.0843 0.1311
My 0.1716 0.2546 0.1417 0.3438 0.0895 0.1632
Ms5 <0.0001 0.0298 0.4404 | <0.0001 0.1047 0.7620
Mg <0.0001 0.0128 0.1775 | <0.0001 0.0701 0.6645
M7 <0.0001 <0.0001 <0.0001 | <0.0001 <0.0001 <0.0001

1 T-1 R
Epy[In(p(y|Z,0)) = T—m Z Infi 1, (1)
t=m

1 & TG (e =i
ZZ{K(%)WM((D) :
=

=— In
T—m t=m

where K(-) is a kernel function with a density form, here

it is Gaussian. According to [36], the weight function W; ;

is set as:

19)

-0 ,;
Wi = T—o ! . (20)
After obtaining the parameter estimates of @ and A, the

distribution forecast of M7 is:

By, () = OF;_1 () + (1 - 0)H (S”) . @D

3. Empirical Study

3.1. Data Description

In this study, the Shanghai Composite Index (SHCI)
and the Shenzhen Component Index (SZCI) are selected
as research objects. The time span is from January 2, 2004
to December 30, 2016, with a total of 13 years of transac-
tion data. The return is calculated as a percentage of the
logarithmic yield, that is:

Y, =100 x (Inp, —Inp;_y), . . (22)

where p; is the close price at time . The sample size is
T = 3158. As shown in [18], the returns of SHCI and
SZCI have similar volatility characteristics. The violent
ups and downs are frequent, the volatility is clustering and
the ARCH effect is significant.

Rolling samples are used to estimate the parameters
and forecast the distribution of the returns, the fitting sam-
ple size is Ty = 2425, the period of first estimation corre-
sponds to January 2, 2004 to December 31, 2013, and the
forecasting sample size is n =T — Ty = 733.

3.2. Statistical Evaluation of Distribution Forecasts
3.2.1. PIT Evaluation

Nowotarski and Weron [37] point out that according
to the preamble principle of [38], the distribution fore-
casting evaluation only needs to perform the pairwise
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performance of the forecasting distribution and the re-
alized value, i.e., (F,|,_1,y,). Dawid [38] and Diebold
et al. [39] propose to use Probability Integral Transform
(PIT). Berkowitz [40] converts the PIT into a normal dis-
tribution. In addition, Ghalanos [41] points out that the
Berkowitz test also provides a tail test based on a trun-
cated normal distribution. The null hypothesis is that the
normalized tail data has a mean of 0 and a variance of
one. Hong and Li [42] refer to PIT as generalized resid-
ual, and based on [43], a nonparametric omnibus test is
proposed. HL test can simultaneously test identically dis-
tributed random variables (IID) and U|0,1]. Thus, the
Berkowitz test and HL test are performed in this paper.

The Berkowitz test is performed on the PIT sequences,
from three types respectively: the whole distribution, the
5% tail, and the 1% tail. The P value of the test is shown in
Table 1, and the significant value at 5% level is displayed
in bold.

From Table 1, M5 and M, for SHCI and SZCI with
M, for SZCI fail to reject the null hypothesis, which is
considered that the PITs obey IID U[0, 1]; M; does not
reject the null hypothesis Hy from the whole distribution,
but rejects Hy for the tails, while M5 and Mg both reject
Hy for the whole distribution but do not reject Hy for the
1% tail. M7 seems to be the worst one, and all three tests
reject the null hypothesis significantly.

Further, the statistic results of HL test are shown in Ta-
ble 2. The critical value of HL test at 5% level is 1.6445,
the significant values (>1.6445) are emphasized in bold.
According to the W statistic, all the PIT sequences reject
the null hypothesis. However, from the relative size of
W statistic, the models: M5, M3, and My are significantly
better than other models. Use > to represent “is better
than,” then we can get that M3 > M, > M, for SHCI and
My > M3 > M, for SZCL. According to the M (i, j) statis-
tics, the forecasting performance of SZCI is better than
that of SHCI for all models, only M(4,4) of SZCI for
M7 reject the null hypothesis. It is worth mentioning that
for M(1,2) of SHCI, only the nonparametric model M
does not reject the null, which implies that it is effective
for modeling the influence of the second moment on the
first moment. From PIT evaluation, it can be concluded
that EGARCH-sstd (M3) and EGARCH-sstd-M (M) are
relatively better than other models for the given samples.
EGARCH-sstd and EGARCH-sstd-M are both of residu-
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Table 2. Statistics of the HL test.

Index Model M(1,1) M(2,2) M(3,3) M(4.4) M(1,2) M(2,1) w
M, 0.9881 2.3171 4.0204 5.0232 5.0477 —0.2937 27.2216
M, 0.1031 1.7596 3.7017 5.0224 3.9549 —0.7258 8.3930
M; —0.5612 0.5300 1.7098 2.3341 2.6123 —1.2473 7.6999

SHCI My —0.4528 0.2735 1.2683 1.8425 24420 —1.2653 8.7487
M;s —0.2583  —0.1601 0.5022 0.8807 1.9689 —1.4915 38.664
Ms 0.3777 1.2616 3.1638 5.0018 3.2661 —0.9842 41.4306
M; —1.0435 0.7069 4.2543 7.6053 0.5634 —1.3167 36.1231
M, —0.6151 —0.8919 —0.4603 0.1098 1.6088 1.4292  20.7278
M, —1.1497 —1.1871 —0.8793 —0.5250 0.7277  —1.3447 7.3893
M; —1.4604 —1.4671 —1.3898 —1.3219 —0.0254 —1.2099 5.9005

SZCI My —1.3712 —1.5429 —-1.6324 —-1.7193 —-0.2495 —1.1385 5.1786
M;s —1.0691 —1.4588 —1.3900 —1.3445 0.2781 —1.5529 21.0483
Ms —0.6608 —1.1809 —0.6767 0.2743 1.2988 —1.8940  20.8097
M7 —1.8199  —0.9490 1.3478 4.0676 03184 —1.4521 25.4860

als with skewed- distribution and examining the leverage
effect. EGARCH-sstd-M also examines the risk compen-
sation effect of returns.

3.2.2. Logarithmic Score

The logarithmic score is the negative of the logarithm
of putting the observations into the predicted density (see
[44]). Many academic works consider this scoring rule to
be correct and to have many desirable attributes. In order
to reflect the characteristic of the higher the score then the
better the model, the logarithmic score here is defined as:

e =1nfo—1 (). . (23)

We call the model with the highest logarithmic score
the Bayesian winner, and the i-th model becomes the
Bayesian winner at time ¢ means:

S >89 (W) #i).

Obviously, the more the model becomes the Bayesian
winner, the better the forecasting performance of the
model. Hence, the times of the i-th model becomes
Bayesian winner are counted as:

B =#{s\" > s}, (vj #1),

where #{-} represents the counting operator.

The number and ranking of each model as the Bayesian
winner are listed in the third and fourth columns of Ta-
ble 3. The situations of SHCI and SZCI are similar, and
only the orders of M, and Mg are slightly different. Sur-
prisingly, M7, which is quite unsatisfactory in PIT evalu-
ation, is far ahead, followed by M4, then M.

The average log-scores and ranking are shown in the
fifth and sixth columns of Table 3, and the results are con-
sistent with the PIT evaluation. For the individual models,
the rankings of SHCI and SZCI are identical, and M, M3,
and M, are the top three with the order: M3 > M4 > M.

. (24)

. (25)

3.2.3. Calibration, Sharpness, and CRPS

Marginal calibration, sharpness, and CRPS provided
by [44] are a set of powerful distribution forecasting eval-
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uation tools; they are nonparametric evaluation methods
that do not rely on nested models. The marginal calibra-
tion charts of SHCI and SZCI are shown in Fig. 1. As a
whole, the calibration of SZCI is better than that of SHCI,
with the tail, especially the right tail, better calibrated than
the middle part. M, M3, and M4 have better middle part
calibration, and M5 and Mg have the best calibration at
the tail. M; and M7 seem to be underperforming, and
M, is different from other models in the return interval
(0.5,4), M7 is also different from other models in the re-
turn range (—3.5,—1.5) of SHCI, which leads us to com-
bine the distribution forecasts to improve the calibration.
Next, the sharpness is examined, and the average widths
of the 50% and 90% confidence intervals are used for
characterization, referring to [44]. The smaller the values,
the better the sharpness. Confidence intervals are gener-
ated based on quantiles. The 50% confidence interval is
[F~1(0.25),F~1(0.75)] and the 90% confidence interval
is [F~1(0.05), F~1(0.95)]. The results are shown in Ta-
ble 4. Surprisingly, Ms, Mg, and M7 have better sharpness.
For SHCI, M7 has a significantly smaller average width.
For SZCI, M5, Mg and M7 have significantly smaller aver-
age widths than M, M,, M3, and M4. Finally, the CRPS
scores and ranking of each model are calculated and listed
in Columns 7 and 8 of Table 3. The difference between
CRPS and the logarithmic score is that CRPS takes into
account the sharpness and has better robustness generally.
The smaller the CRPS, the better the model. It can be seen
from Table 3 that, like the logarithmic score, M, M3 and
M, are ranked in the top three, and M3 is still the first,
but under the CRPS criterion, M, is better than M. Com-
pared to the logarithmic score evaluation, the ranking of
M has improved, from 6th to 4th, and the nonparametric
model M5 is superior to the Beta-t-EGARCH models Ms
and M.

3.3. Combination and Economic Evaluation
3.3.1. Combination Strategy of Models

Each model has its own advantages and disadvantages.
In PIT evaluation, M3 and My are relatively superior. In
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Table 3. Score and ranking of SHCI and SZCI.
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Index Model | Bayesian Winner | Average Log-score | CRPS CRPS
winner ranking | log-score ranking ranking
M, 146 3 —1.7572 6 0.8557 4
M, 41 6 —1.7070 3 0.8497 2
Mj 102 4 —1.7026 1 0.8489 1
SHCI My 153 2 —1.7042 2 0.8505 3
Ms 30 7 —1.7513 4 09113 6
Mg 64 5 —1.7536 5 0.9142 7
M7 210 1 —1.9629 7 0.8990 5
M, 124 3 —1.9388 6 0.9993 4
M, 68 5 —1.8871 3 0.9933 2
M; 105 4 —1.8818 1 0.9920 1
SZCI My 144 2 —1.8833 2 0.9942 3
Ms5 35 7 —1.9141 4 1.0571 7
Mg 56 6 —1.9150 5 1.0568 6
M7 212 1 —2.0811 7 1.0477 5
Marginal calibration plot of SHCI Marginal calibration plot of SZCI
E— M1: G-Norm — m; g:SNSi;m
——————————— M2: G-sstd M3: EG-sstd
~ M3: EG-sstd ~ - M4: EG-sstd-|
Sl s M4: EG-sstd-M °
$ B M5: Betategarch-1 g B
7777777 M6: Betategarch-2 M5: Betategarch—1
M?7: Nonparametric N ms Ezf;:?:;f:t;i
T T T T T T T
-5 0 5 -10 -5 0 5
Return Return
Fig. 1. Marginal calibration charts of SHCI and SZCI.
Table 4. Average width of forecasting intervals.
Index Interval M, M, M3 My Ms Mg My
SHCI 50% 2.1591 1.8402 1.8001 1.7964 1.8260 1.8805 1.5542
90% 5.2647 5.0515 4.9320 4.9332 49803 5.1739 4.0838
SZCI 50% 2.5083 22171 2.1783 2.1837 1.7078 1.7513 1.9366
90% 6.1172 59295 5.8099 5.8396 4.5539 47128 4.9835
Vol.24 No.4, 2020 Journal of Advanced Computational Intelligence
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the logarithmic likelihood score evaluation, M7 is the best
Bayesian winner, but M,, M3, and M4 have better average
logarithmic likelihood scores. Ms, Mg, and M7 have better
sharpness, but My, M3, and M4 have better average CRPS
scores. Due to the different focuses of the models, model
uncertainty exists objectively. According to [45], model
uncertainty can be reduced using a combination strategy.
Hall and Mitchell [46] and Massacci [14] argue that fore-
casts combination can also resist structural breakpoints.
Billio et al. [47] point out that when multiple forecasts can
be obtained from different models or sources, these fore-
casts can be combined to take advantage of all relevant
information about the variables to be forecasted, resulting
in better forecasting. Pesaran et al. [48] show that model
averaging techniques that allow parameter and model un-
certainty are particularly important in risk management.
For the seven individual models used in this paper, the
marginal calibration result of Section 3.2.3 also leads us
to consider the combination of models. For the above rea-
sons,three linear dynamic combination strategies are con-
sidered, which are equal weight combination (EW), log-
arithmic score combination (SW) and CRPS combination
(CW).

For the forecasting distribution of individual models
F,(j ) (y) (j=1,2,...,7), equal weight combination fore-
cast distribution is defined as

FE . ( ZF Y 1))

The logarithmic score combination distribution is:
sw :
Fomi(y Z% N 01!

where a)ftj ) indicates the weight assigned to the j model
at the time ¢ according to likelihood scores, and

i 00)

o) = M @28

1V
7 .
Y AP o0
j=1

where f i 1(y,) is the likelihood score for the j-th model
at time 7. The dynamic distribution of CRPS weighted is:

7
Fom () Z%, R ¢1%))

where wét] ) indicates the weight assigned to the j-th model

at time ¢, and

. (30)

3.3.2. Direction Predictability and Economic Evaluation

Two-point forecasts are derived from the forecasted
distribution of returns, which are mean J,,.4,, and median
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50.57,. The calculation is implemented by the following
two formulas:
N-1

~ Y yilFi(yis1) —F ()], (3D

~ oo
Ymeant = / ydE
- i=1

Esi=inf{yeR:F(y)>05}. . . . . .. .32
Hence the forecasting accuracy of the direction can be ob-
tained by

T
Z I(yAmean,t'yt>0), ... (33)

&5,y >0), . . . . (34

where T — Ty represents the out-of-sample size. Direc-
tional predictability is statistically tested by the PT direc-
tional accuracy test [20].

As we all know, profit maximization is the goal of re-
turn forecasting in financial markets. As pointed by [49]
and [14], the forecasting performance of the model should
also be evaluated economically through profit-based mea-
sures. Referring to [50], the mean transaction return
(MTR) of the out-of-sample forecast can be used to eval-
uate the performance of the trading strategy. The MTR
measures the true profit of the financial market when the
transaction costs are ignored. According to [50], it is more
appropriate to evaluate the performance of the forecasting
market movement than the traditional mean square pre-
diction residual or the average absolute forecasting error.

In the case of allowing short selling, if the forecasting
of y; is accurate every time, then the ideal MTR is

T
(1)
MTR:. E B € 1)
tdeal T Yb = |)’t| ( )

Referring to [21], a simple trading strategy is designed, in
which a virtual investor can sell short; a point forecast is
made based on the distribution of return forecasts: if the
forecast for the next period of return is positive, then the
trading strategy issues a buy signal; otherwise, it is a sell
signal. The MTR of this trading strategy is

MTRY =

(S >0)
T - Tot%:+1 | . (36)

_I()A’t\tfl <0)}yr

The ratio of the strategy MTR to the ideal MTR is defined
as
MTRW
Rate = ——— x100%. . . . . . . .(37)

(1)
MTtheal

The ratio can be used to measure the profitability of trad-
ing strategies in the case of short sales. The larger the
value, the better the economic benefits. Whether the trad-
ing strategy can achieve higher returns can be statistically
tested by the AG excess profitability test of [21].

For China’s stock market, short selling is not allowed,
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Table 5. Direction accuracy and economic evaluation of forecasts (unit: %).

| Mean | Median
Index Model | DA, Rate() Rate® | DA, Rate() Rate®
M, 55.66 4.54 8.69 55.66 4.54 8.69
M, 55.66 4.94 9.07 55.66 4.54 8.69
M3 54.98 3.26 7.47 55.66 4.54 8.69
My 52.11 —0.05 4.30 54.57 2.93 7.15
SHCI Ms 44.34 —4.54 0 44.34 —4.54 0
Me 44.34 —4.54 0 44.34 —4.54 0
M7 44.34 —4.54 0 44.34 —4.54 0
EwW 44.75 —-1.41 3.00 48.57* 1.08 5.38
SW 46.79*** 6.43%+* 10.50 64127 49.94** 52.12
CW | 46.52"*  6.32% 10.39 | 68.76™*  50.39*** 52.55
M, 52.93 2.27 4.43 52.93 2.27 4.43
M, 52.52 1.28 347 52.93 2.27 4.43
M3 52.80 1.91 4.08 52.93 2.27 4.43
My 52.80 0.32 2.53 53.21 2.61 7.67
SZCI Ms 47.07 —2.27 0 47.07 —2.27 0
Me 47.07 —-2.27 0 47.07 —-2.27 0
M7 47.07 —-2.27 0 47.07 —2.27 0
EwW 46.38 —9.44 —7.02 47.75 —6.45 —4.08
SW 51.57%* 15.51% 17.38 58.80"**  38.91* 40.26
CwW 49.93*** 3.57 5.71 58.94%*  32.84*** 34.33
Notes:  ** represent significant result at the 5% confidence level.

Hokok

therefore, the ideal MTR should be amended to:

T
2 1
MTREdzal:m Y max{y,0}.. . . . (38

0 /=Tp+1

The trading strategy becomes: when the return forecast
of the next period is positive, if a unit of asset is owned at
hand, then continue to retain it; if there is no asset at hand,
then buy one unit of the asset; when the return forecast of
the next period is non-positive, if there is a unit of asset
at hand, then sell it; if there is no asset at hand, then do
nothing and maintain the short position. In fact, the strat-
egy makes the trading always maintains a unit of the asset
or a short position. The MTR of the trading strategy is

MTR® =

T
Z I()A’t\t—l >0) - yr.
- 0[=T0+1

. (39)

The corresponding ratio of the strategy MTR to the ideal
MTR is

MTR®

2
MTRideal

Rate® = x 100%. . (40)

Table 5 shows the direction accuracy of point forecasts
using the mean and median, respectively, of the seven in-
dividual models and the three combined models, and the
ratios of the strategy MTR to the ideal MTR in both short-
selling and not-short-selling environments. The signifi-
cance of the PT and AG tests is also indicated in the table.
In Table 5, none of the individual models has significant
directional predictability and excess profitability. The EW
model is only excessively profitable for SHCI at a signif-
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represent significant result at the 1% confidence level.

icance level of 5%, while all SW and CW models shows
significant directional predictability and excess profitabil-
ity at the 5% level. Furthermore, in addition to the CW
model for SZCI under the means forecasting, other mod-
els are significant at the 1% level. When the mean is used
for point forecasting, the direction accuracy rates of SW
and CW are not higher than those of all individual mod-
els; surprisingly, the individual models have no significant
direction predictability, but SW and CW models are not
higher, perhaps because we only perform a simple con-
stant fitting for the conditional mean when modeling, and
when the rolling window is too wide, it shows that the
“one-sided” is all positive or negative, so the result of the
test is not significant direction predictability, while the
combined model is not. In the case where the direction
accuracy rate is lower than the individual model, the SW
and CW models can also have a higher excess profit than
the individual model, which may be because the two com-
bined models have a more favorable distribution of return
in the case of a sharp rise and fall. When using the median
for point forecasting, we can find that the direction accu-
racies of SW and CW models are significantly higher than
that of any individual model. Whether it is short-selling or
not, the ratio of the strategy MTR to the ideal MTR far ex-
ceeds that of any individual model. The combined mod-
els of SW and CW have significant directional accuracy
and higher excess profitability than the individual models,
which means that the appropriate model combination may
be closer to the real data generation process, and from the
perspective of economic evaluation, they may have better
forecasting performance for the conditional distribution
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of returns.

4. Conclusions

In this paper, the predictability of stock market returns
is studied from the perspective of distribution forecast-
ing. Seven individual models are used, namely, GARCH-
norm, GARCH-sstd, EGARCH-sstd, EGARCH-sstd-M,
one-component Beta-t-EGARCH, two-component Beta-
t-EGARCH, and EWMA-based nonparametric models.
The rolling window modeling and out-of-sample forecast-
ing are performed on the conditional distribution of the
returns of SHCI and SZCI. PIT evaluation, the average
log-likelihood scores, and the average CRPS scores show
that GARCH-sstd, EGARCH-sstd, and EGARCH-sstd-M
are superior to the other models. However, the nonpara-
metric model is the best Bayesian winner, and the one-
component Beta-t-EGARCH, the two-component Beta-t-
EGARCH and the nonparametric model have better tail
calibration and sharpness. However, no model can pass
the statistical test completely, that is, no one is an ab-
solute qualified distribution forecasting model. Further-
more, none of the individual models has both predictabil-
ity power and excess profitability.

Three combination strategies of the models are de-
signed, which are equal weight combination (EW), log-
likelihood score combination (SW), and CRPS score
combination (CW). It was found that SW and CW models
have significant direction predictability and excess prof-
itability compared to the individual model, whether it is
for SHCI or SZCI. It indicates that the log-likelihood
score combination and the CRPS score combination may
be closer to the real data generation process, and from
the perspective of economic evaluation, the SW and CW
models maybe have a predictive effect on the conditional
return distribution in China’s stock market.
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