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The study of the relationship between the concentra-
tion of PM2.5 and the local air quality index (AQI)
is significant for the improvement of urban air qual-
ity. This study not only considered multifractal cross-
correlation but also the fluctuation conduction mech-
anism. An asymmetric multifractal detrended cross-
correlation analysis (MF-DCCA) method based on
fluctuation conduction is introduced here to empiri-
cally explore the causality and conduction time be-
tween air quality factors and PM2.5 concentration.
The empirical results indicate the existence of a bidi-
rectional fluctuation conduction effect between PM2.5
and PM10, SO2, and NO2 in Hangzhou, China, with a
conduction time of 30 hours; this effect is non-existent
between PM2.5 and O3. In addition, there is a unidi-
rectional fractal fluctuation conduction between PM2.5
and CO with a conduction time of 21 hours.

Keywords: symmetric MF-DCCA, fluctuation conduc-
tion, causality, PM2.5

1. Introduction

Atmospheric pollution has become a serious problem
as a result of the current rapid economic growth and grad-
ual expansion of the city of Hangzhou, China. Prior pol-
lution events and their effects, such as the first recognized
occurrences of photochemical smog in the United States
in 1943, the Great Smog of London event of 1952, the
recognition of asthma in relation to air pollutants in Japan
in 1961, and the Bhopal incident in India in 1984, alert
people to the necessity of air pollution control. Elevated
concentrations of pollutants in the atmosphere can not
only seriously harm human health, but also threaten the
earth’s ecosystems.

One of many air pollution factors currently in focus,
the pollutant PM2.5 is also referred to as fine particulates,
whose diameter in the atmosphere is less than or equal
to 2.5 μm. In October 2011, serious and persistent smog
occurred in many areas such as China’s Huang-Huai-Hai

and the Yangtze River Delta. In the same year, the US
Embassy in China detected local concentrations of PM2.5
exceeding the relevant standard. These events were the
catalyst that made PM2.5 a topic of great concern to the
public. As a result, China announced the “Environmental
Air Quality Standards” (GB3095-2012) in the first half
of 2012 to replace the original API (Air Pollution Index)
with the current AQI (Air Quality Index). The current
AQI now includes the particulate pollutant PM2.5. This
newly issued AQI is a dimensionless index composed of
the indices of six pollutants, including inhalable partic-
ulates, referred to as PM10, as well as particulates that
can directly access the lungs, PM2.5. Other pollutants in-
cluded in the AQI are NO2 (Nitrogen dioxide), SO2 (Sul-
fur dioxide), CO (Carbon monoxide), and O3 (Ozone).
PM2.5 is of obvious concern as it can enter the lungs di-
rectly and is a major cause of smog formation.

At present, the multifractal detrended cross-correlation
analysis (MF-DCCA) method is widely used in the study
of fractal characteristics of atmospheric environmental
data. Vassoler and Zebende [1] used the DCCA method to
analyze the fractal characteristics of the cross-correlation
between relative humidity and average daily temperature
in 50 regions of the world during the time period from
1997 to 2010; it was found that the degree of cross-
correlation varies in different regions, which is mainly
affected by seasonal factors. Kang et al. [2] analyzed
the cross-correlation by the DCCA method between the
hourly PM10 time series and three meteorological ele-
ments (temperature, wind speed, and relative humidity)
in eight cities in Korea from January 2006 to December
2010, and found that the strength of cross-correlation be-
tween the various meteorological elements and PM10 is
affected by the geographical location of the city. Hajian
and Movahed [3] used DCCA and MF-DCCA methods
to study the relationship between the flow fluctuations of
four rivers (Daugava, Holston, Nolichucky, and French
Broad) and sunspots. The results showed that there is a
fractal cross-correlation between the sunspot activity time
series and the river flow fluctuation time series. Shi [4]
used the DCCA method to analyze the cross-correlation
between the previous 15 years of rainfall, daily average
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temperature, PM10 and environmental dioxins in Hong
Kong. The results indicated that when the time scale was
between one month and one year, rainfall, PM10 and envi-
ronmental dioxins exhibited long-range cross-correlation;
however, when the scale was greater than one year, there
was no cross-correlation between daily average temper-
ature and environmental dioxins. Shen et al. [5] used
DCCA and MF-DCCA to explore the cross-correlation
at different scales between the air quality index of indi-
vidual pollutants and wind speed, relative humidity, rain-
fall and other meteorological factors in Nanjing over a pe-
riod of 12 consecutive years. The results showed persis-
tence in the relationship between AQIs and the difference
in daily temperature, and the relationship between wind
speed, relative humidity and rainfall on differing scales
exhibited anti-persistence.

However, correlation does not necessarily indicate
causality. Inspired by Cao et al. [6], this paper introduces
the use of asymmetric MF-DCCA methodology based on
fluctuation conduction to study the relationship between
the AQI and PM2.5 concentration in Hangzhou. Most
of the current research only considers the fractal features
of the cross-correlation, whereas we explore further the
fluctuation conduction of the fractal features. This paper
is presented as follows: an introduction of the nonlinear
Granger causality test; the introduction of the asymmet-
ric MF-DCCA method based on fluctuation conduction;
discussion of the empirical research; and, presentation of
conclusions and outlook.

2. Nonlinear Granger Causality Test

In information theory, the correlation integral method
is the most common method used to test causality for two
time series, and is derived from a method proposed by
Baek and Brock [7] to test the nonlinear causality of a
series. Specially, this method can detect the correlation
according to the average probability of the state similarity
of two vectors. The correlation integral is as follows:

VV (ε) = P(‖V1 −V2‖ ≤ ε)

=
∫ ∫

I(‖x−y‖≤ε) fV (x) fV (y)dxdy, . . (1)

where V1, V2 indep.∼V .
The H-J test proposed by Hiemstra and Jones [8]

widened the independence hypothesis of the aforemen-
tioned method, allowing for the existence of weak corre-
lation in the time series and thus improving the properties
of small samples. Because of the normality of statisti-
cal distribution, the H-J test has become the most popular
test method of nonlinear causality in economics and other
fields. This paper addresses the nonlinear causality in an
air pollution series. The specific method is described be-
low.

Given two time series {Xt} and {Yt}, that are strictly
stable and weakly dependent, then a vector and its lag
vector are constructed as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xm
t ≡ (Xt ,Xt+1, . . . ,Xt+m−1),

Y m
t ≡ (Yt ,Yt+1, . . . ,Yt+m−1),

XΔt1
t−Δt1

≡ (Xt−Δt1 ,Xt−Δt1+1, . . . ,Xt−1),

Y Δt2
t−Δt2

≡ (Yt−Δt2 ,Yt−Δt2+1, . . . ,Yt−1),

. . (2)

where⎧⎪⎨
⎪⎩

m = 1,2, . . . ; t = 1,2, . . . ;

Δt1 = 1,2, . . . ; t = Δt1 +1,Δt1 +2, . . . ;

Δt2 = 1,2, . . . ; t = Δt2 +1,Δt2 +2, . . . .

For a given m, Δt1, Δt2 > 1 and e > 0, the time series
{Yt} fails the nonlinearity Granger cause {Xt} if:

Pr
(∥∥∥Xm

t −Xm
s

∥∥∥< e
∣∣∣ ∥∥∥XΔt1

t−Δt1
−XΔt1

s−Δt1

∥∥∥< e,∥∥∥Y Δt2
t−Δt2

−Y Δt2
s−Δt2

∥∥∥< e
)

= Pr
(∥∥∥Xm

t −Xm
s

∥∥∥< e
∣∣∣ ∥∥∥Xm

t−Δt1 −Xm
s−Δt1

∥∥∥< e
)

,

. . . . . . . . . . . . . . . . . . . (3)

where Pr(·) indicates the probability density and ‖ · ‖ in-
dicates the maximum norm.

The probability is marked as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1(m+Δt1,Δt2,e)

≡ Pr
(∥∥∥Xm+Δt1

t−Δt1
−Xm+Δt1

s−Δt1

∥∥∥< e,∥∥∥Y Δt2
t−Δt2

−Y Δt2
s−Δt2

∥∥∥< e
)

,

C2(Δt1,Δt2,e)

≡ Pr
(∥∥∥XΔt1

t−Δt1
−XΔt1

s−Δt1

∥∥∥< e,∥∥∥Y Δt2
t−Δt2

−Y Δt2
s−Δt2

∥∥∥< e
)

,

C3(m+Δt1,e)

≡ Pr
(∥∥∥Xm+Δt1

t−Δt1
−Xm+Δt1

s−Δt1

∥∥∥< e
)

,

C4(Δt1,e) ≡ Pr
(∥∥∥XΔt1

t−Δt1
−XΔt1

s−Δt1

∥∥∥< e
)

.

(4)

Then the null hypothesis of Eq. (3) is developed into a
conditional probability form as follows:

H0 :
C1(m+Δt1,Δt2,e)

C2(Δt1,Δt2,e)
=

C3(m+Δt1,e)
C4(Δt1,e)

. . (5)

I(Z1,Z2,e) indicates the indicative function, which is
equal to 1 when two conformable vectors, Z1 and Z2, are
within the maximum-norm distance e of each other and is
equal to 0 otherwise:

I(Z1,Z2,e) =

{
1, ‖Z1 −Z2‖ ≤ e,

0, ‖Z1 −Z2‖ > e.
. . . (6)
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Then expand Eq. (4) is expanded as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1(m+Δt1,Δt2,e)

≡ 2
n(n−1) ∑ ∑

t<s
I
(

Xm+Δt1
t−Δt1

,Xm+Δt1
s−Δt1

,e
)

×I
(

Y Δt2
t−Δt2

,Y Δt2
s−Δt2

,e
)

,

C2(Δt1,Δt2,e)

≡ 2
n(n−1) ∑ ∑

t<s
I
(

XΔt1
t−Δt1

,XΔt1
s−Δt1

,e
)

×I
(

Y Δt2
t−Δt2

,Y Δt2
s−Δt2

,e
)

,

C3(m+Δt1,e)

≡ 2
n(n−1) ∑ ∑

t<s
I
(

Xm+Δt1
t−Δt1

,Xm+Δt1
s−Δt1

,e
)

,

C4(Δt1,e)

≡ 2
n(n−1) ∑ ∑

t<s
I
(

XΔt1
t−Δt1

,XΔt1
s−Δt1

,e
)

,

(7)

where{
t,s = max(Δt1,Δt2)+1, . . . ,T −m+1,

n = T −max(Δt1,Δt2)−m+1.

The condition that the null hypothesis cannot be re-
jected is then converted in order to test whether the fol-
lowing formula is established as follows:

√
n
[

C1(m+Δt1,Δt2,e)
C2(Δt1,Δt2,e)

− C3(m+Δt1,e)
C4(Δt1,e)

]Δt1

∼ N
(
0,σ2(m,Δt1,Δt2,e)

)
. . . . . . . (8)

3. Asymmetric MF-DCCA Method Based on
Fluctuation Conduction

The MF-DCCA method can only analyze the fractal
correlation at the same moment for two series, and does
not analyze the direction in which the fractal fluctuations
are conducted between the two series. Cao et al. [6] used
an asymmetric MF-DCCA method based on fluctuation
conduction to explore the conduction direction and delay
time of fractal fluctuations between two time series.

Given two time series {x(t)} and {y(t)} which have
the same length N, where t = 1,2, . . . ,N. The time se-
ries {y(t)} is lagged by Δt hours, and then calculate the
cumulative dispersion is calculated as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x(m) =

m

∑
t=1

(
x(t)− x̄

)
,

y(m) =
m

∑
t=1

(
y(t +Δt)− ȳΔt

)
,

. . . . . (9)

where m = 1,2, . . . ,N −Δt.
Although the series can effectively alleviate the au-

tocorrelation effect after eliminating the trend, the au-

tocorrelation of time series {y(t)} is still retained. We
make further improvements to attain higher rigorousness
by adding a noise to the time series {y(t)}. In accordance
with Cao et al. [6], the new series is then written as fol-
lows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(m) =
m

∑
t=1

(
x(t)− x̄

)
,

y(m) =
m

∑
t=1

(
y(t +Δt2)− ȳΔt2

+αx(t +Δt1)−α x̄Δt1

)
,

(10)

where Δt1 ≥ Δt2, m = N −Δt1, Δt1 < Δt2, m = N −Δt2.
The value of α is calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α =

m

∑
t=1

y(t +Δt)2

(N −Δt1)
m

∑
t=1

x(t +Δt)2
,

Δt1 ≥ Δt2, m = N −Δt1,

α =

m

∑
t=1

y(t +Δt)2

(N −Δt2)
m

∑
t=1

x(t +Δt)2
,

Δt1 < Δt2, m = N −Δt1.

(11)

Then the time series is split into Nn = int(N/n) seg-
ments of length N. In order to fully utilize the data, the
same operation is taken after the time series is reversed.
Thus, 2N segments are obtained.

Then splitting the time series into Nn = int(N/n) seg-
ments of length N. In order to fully utilize the data, the
same operation is taken after the time series is reversed.
Thus, 2N segments are obtained.

For each segments xv and yv, the least squares method
is used to fit the corresponding local trend as follows:

x̃v = axv +bxvk, ỹv = ayv +byvk,
k = 1,2, . . . ,n. . (12)

Then we get the wave function:

Fv(n) =
1
n

n

∑
k=1

∣∣xv,k − x̃v,k
∣∣ · ∣∣yv,k − ỹv,k

∣∣ . . . . (13)

In relation to the trend bxv of the segment xv, the q-order
mean wave function under different trends is obtained as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fq(n) =

(
1

2Nn

2Nn

∑
v=1

[
F2(n,v)

q
2

]) 1
q

,

F+
q (n) =

(
1

M+

2Nn

∑
v=1

sign(bxv)+1
2

[
Fv(n)

] q
2

) 1
q

,

F−
q (n) =

(
1

M−
2Nn

∑
v=1

−[sign(bxv)−1
]

2
[
Fv(n)

] q
2

) 1
q

,

. . . . . . . . . . . . . . . . . . . (14)
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Table 1. Basic statistics of the data.

Statistics Mean Max Min
PM2.5 45.618 243 3
PM10 72.913 336 5
SO2 10.799 51 3
NO2 41.283 133 6
O3 56.271 260 3
CO 0.817 2.236 0.346

Statistics Skewness Kurtosis J-B statistic
PM2.5 1.542 6.109 6998.208
PM10 1.503 6.052 6695.69
SO2 1.545 6.573 8143.465
NO2 0.774 3.396 932.205
O3 1.225 4.096 2630.54
CO 1.023 3.921 1837.197

where M+(M−) indicates the number of segments that are
rising (falling).

Finally, the power-law relationship between the q-order
mean wave function and the length of segments n is ob-
tained:

Fq(n) ∼ nh(q); F+
q (n) ∼ nh+(q);

F−
q (n) ∼ nh−(q). . . . . . . . . . . . (15)

If h(q) is affected by q, then there is a multifractal of
cross-correlation. If h(q), h+(q), h−(q) are not equal,
then it means that there are asymmetric features.

In order to explore fluctuation conduction, we consider
the Hurst exponent h(2): if h(2) > 0.5, long-term mem-
ory is indicated, and if h(2) < 0.5, there is a mean reply.
Therefore, we can use h(2) to monitor the similarity of
fluctuations between two time series. When {y(t)} lags,
then the effect of {x(t)} on {y(t)} can be detected and we
can check the influence of {x(t)} on {y(t)}. Conversely,
when {x(t)} lags, then the effect of {y(t)} on {x(t)} can
be detected.

4. Empirical Analysis

4.1. Data Sources and Description
This paper has selected Hangzhou AQI data, which in-

cludes the indices of six pollution factors (PM2.5, PM10,
SO2, NO2, O3, and CO). The time period chosen for
hourly data is from March 1, 2016, to February 28, 2017.
The length of the selected time series is 8,760 hours; the
rate of missing hours is less than 1%. This paper adopts
the sliding average filling process, in that each of the miss-
ing values is replaced by the average value from the fixed
window. Additionally, this paper focuses on PM2.5 and
explores the fractal features of cross-correlation between
PM2.5 and other air quality indices.

It can be seen from Table 1 that the skewness of each
air quality index is greater than 0, indicating that the data

Fig. 1. Cross-correlation between PM2.5 and PM10.

Fig. 2. Cross-correlation between PM2.5 and SO2.

Fig. 3. Cross-correlation between PM2.5 and NO2.

is right-biased. The kurtosis values are greater than 3,
indicating that they are all in peak tail. The values of the
J-B statistic are far greater than the critical value at the 5%
and 1% significant level, indicating that the data disobeys
normal distribution.

4.2. Empirical Analysis of Asymmetric Cross-
Correlation

Figures 1–5 show the asymmetric multifractal corre-
lation between PM2.5 and the other air quality indices in
Hangzhou.
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Fig. 4. Cross-correlation between PM2.5 and O3.

Fig. 5. Cross-correlation between PM2.5 and CO.

Figures 1 through 5 show the generalized Hurst expo-
nent values for the asymmetric multifractal of the cross-
correlation between the AQI and PM2.5 in Hangzhou,
where q is from −10 to 10. It is obvious that the three
curves in each graph do not overlap, which indicates
that the cross-correlation between each AQI and PM2.5
is asymmetric. Moreover, the curves of each graph vary
with q, denoting that the cross-correlation between each
AQI and PM2.5 has multifractal features in any trend of
the PM2.5 series.

Table 2 shows the fractal characteristics of the cross-
correlation between the various air quality indices and
PM2.5 in Hangzhou. It can be seen from h(2) that the
Hurst exponent between each AQI and PM2.5 is greater
than 0.5, indicating that there is persistence. The Hurst
exponent of the overall series and the downwards trend
series are close, while the Hurst exponent between each
AQI (with the exception of O3) and PM2.5 are smaller
than those of the overall series and the downwards trend
series in the upwards trend, indicating that their cross-
correlation persistence is weak when PM2.5 rises, but it is
stronger when PM2.5 declines, while the other air quality
indices indicate the opposite behavior. It can be seen from
Δh and Δα that the fractal strength of the cross-correlation
between each AQI and PM2.5 is stronger in the overall and
downward series, and weak in the upward series.

Table 2. The values of h(2), Δh, Δα .

Series PM2.5/
PM10

PM2.5/
SO2

PM2.5/
NO2

PM2.5/
O3

PM2.5/
CO

Overall 0.874 0.864 0.889 0.831 0.885
h(2) Upwards 0.905 0.891 0.932 0.750 0.918

Downwards 0.876 0.874 0.874 0.890 0.887
Overall 0.622 0.615 0.429 0.513 0.504

Δh Upwards 0.511 0.501 0.326 0.404 0.385
Downwards 0.689 0.628 0.516 0.431 0.565

Overall 1.464 1.574 1.328 1.410 1.357
Δα Upwards 1.213 1.235 0.993 0.948 0.903

Downwards 1.414 1.533 1.276 1.258 1.301

Table 3. Nonlinear causality test result.

Δt 1 2 3 4 5

PM2.5→
PM10

Forwards 2.696
***

4.211
***

3.933
***

3.738
***

3.658
***

Backwards 4.905
***

4.745
***

4.59
***

3.925
***

3.573
***

PM2.5→
SO2

Forwards 1.576
*

2.142
**

1.967
**

2.004
**

1.759
**

Backwards 2.516
***

2.186
**

2.48
***

2.511
***

2.733
***

PM2.5→
NO2

Forwards 2.362
***

3.509
***

2.903
***

2.593
***

2.053
**

Backwards 1.986
**

2.166
**

1.733
**

1.635
*

1.732
**

PM2.5→
O3

Forwards 1.432
*

0.555 0.613 0.922 1.017

Backwards 1.105 1.079 0.869 0.888 0.85

PM2.5→
CO

Forwards 2.684
***

2.807
***

2.507
***

2.462
***

2.466
***

Backwards 2.642
***

2.418
***

2.793
***

2.332
***

2.205
**

4.3. Nonlinear Granger Causality Test
In order to monitor the causal relationship between

PM2.5 and the various air pollutant time series, we in-
troduced the nonlinear Granger causality test as proposed
by Baek and Brock [7]. Table 3 gives the statistical val-
ues of the mutual causality test between PM2.5 and the
other air pollution factors. We set m = 1, Δt = Lx =
Ly = 1,2, . . . ,5, while ***, **, and * represent 1%, 5%,
and 10% significance levels, respectively.

It can be seen from Table 3 that the nonlinear Granger
causality test statistic between PM2.5 and four of the air
pollution factors can reject the overall at a high level of
significance at different orders, which demonstrates that
causal relationships exist between them. It can be seen
from the statistical values that the causal relationship be-
tween PM10 and PM2.5 is most evident. The statistical
value between O3 and PM2.5 can no longer reject the null
hypothesis at a higher level of significance, indicating that
the causal relationship between these two indices is not
obvious.

Vol.23 No.5, 2019 Journal of Advanced Computational Intelligence 827
and Intelligent Informatics



Xiang, C. et al.

Fig. 6. Fluctuation conduction between PM2.5 and PM10.

Fig. 7. Fluctuation conduction between PM2.5 and SO2.

Fig. 8. Fluctuation conduction between PM2.5 and NO2.

4.4. Empirical Analysis of Asymmetric Fluctuation
Conduction Effect

In this section, we analyze the results of the com-
bination of fluctuation conduction with the MF-DCCA
method to detect the fractal characteristics of the fluctu-
ation conduction between PM2.5 and the various air qual-
ity indexes. For convenience, the lag time Δt1 = Δt2, with
values from 1 to 120 (for a total of 5 days).

The fluctuation conduction has been delayed, signify-
ing that if {x(t)} has an influence on {y(t)}, then the
two series have the strongest correlation when the series
{y(t)} lags a certain order. Therefore, if {x(t)} has a fluc-

Fig. 9. Fluctuation conduction between PM2.5 and O3.

Fig. 10. Fluctuation conduction between PM2.5 and CO.

Table 4. Fractal fluctuation conduction delay time.

PM2.5 →
PM10

PM2.5 →
SO2

PM2.5 →
NO2

PM2.5 →
O3

PM2.5 →
CO

Forwards 29 38 14 21 21
Backwards 34 41 31 43 27

tuation conduction to {y(t)}, then the h(2) of {x(t)} to
{y(t)} will increase initially and then decline as Δt be-
comes larger and, in addition, the Δt corresponding to
the maximum value of h(2) is the delay time of {x(t)}
to {y(t)}. If this trend is not obvious, then {x(t)} has no
effect on {y(t)}.

In Figs. 6 through 10, it can be seen that the fluctuation
conduction between PM2.5 and PM10, SO2, and NO2 in
Hangzhou show a significant initial increase followed by
decreasing trend, indicating that there exist bidirectional
fluctuation conduction between PM2.5 and PM10, SO2,
and NO2. As shown in Table 4, the forward and back-
ward fluctuation conduction delay time between PM2.5
and PM10 are 29 and 34 hours, respectively. The fluc-
tuation conduction delay time between PM2.5 and SO2 is
about 40 hours. The forward fluctuation conduction time
between PM2.5 and NO2 is 14 hours, while the backward
fluctuation conduction takes 31 hours.

When observing the fluctuation conduction of PM2.5
and O3 in Fig. 2, it can be seen that the Hurst exponent
reaches the maximum value at 21 hours in the forward
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conduction, but there is no significant decrease at a later
point. In addition, we can see that the Hurst exponent
reaches a larger value after 90 hours; therefore fluctuation
conduction is not obvious. Conversely, backward con-
duction is less obvious. In combination with the results
presented in Table 4, it can be concluded that there is no
obvious fractal fluctuation conduction between PM2.5 and
O3 in Hangzhou.

Finally, as indicated from the fluctuation conduction
between PM2.5 and CO, as shown in Fig. 2, it can be
seen that both curves rise initially and then fall; however,
this trend of the forward conduction curve is not obvious
while, conversely, the trend of the backward conduction
curve is obvious. These results show that the fractal fluc-
tuation of PM2.5 to CO in Hangzhou is weak, while that
from CO to PM2.5 is strong. As can be seen in Table 4,
the fractal fluctuation conduction time of CO to PM2.5 is
27 hours.

5. Conclusions

In our study, we determined the causal relationship be-
tween various air quality indexes and PM2.5 in Hangzhou
using the nonlinear Granger causality test. Then, using
the asymmetric MF-DCCA method based on fluctuation
conduction, we analyzed the value of the cross-correlation
between the various air quality indexes and PM2.5 under
different delay times. The results are summarized as fol-
lows:

(1) Using the nonlinear Granger causality test, we found
that there exists a bidirectional causal relationship be-
tween the four pollutants PM10, SO2, NO2, and CO
and PM2.5 in Hangzhou; there is no obvious causal
relationship between O3 and PM2.5.

(2) Through application of the asymmetric MF-DCCA
method based on fluctuation conduction, it is ob-
served that there is bidirectional fluctuation conduc-
tion between the three pollutants PM10, SO2, and
NO2 and PM2.5 in Hangzhou with a delay time of
fluctuation conduction of approximately one day;
however, there is no obvious fluctuation conduction
between O3 and PM2.5. In addition, there is a unidi-
rectional fractal fluctuation conduction between CO
and PM2.5 with a conduction time of 21 hours.

Accordingly, it is necessary to consider not only the
multifractal cross-correlation, but also the fluctuation con-
duction, when studying the fractal relationship of mete-
orological environmental data. The meteorological envi-
ronment is a complex and chaotic system making it impor-
tant to analyze the interaction between the various envi-
ronmental elements. This paper provides a theoretical ref-
erence for the study of the fractal causality of an AQI. In
future research, the fluctuation conduction between mul-
tiple elements will be more fully considered in order to
gain a deeper understanding of the intrinsic mechanisms
that influence air quality.
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