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A repetitive controller contains a pure-delay positive-
feedback loop that makes it difficult to stabilize a
strictly proper system. A low-pass filter is inserted
in a repetitive controller to relax the stability condi-
tion of the modified repetitive-control system at the
cost of degrading the tracking performance. In this
study, a modified repetitive-control approach is de-
veloped, which reaches a balance between the sta-
bility and tracking performance for a class of affine
nonlinear systems based on the Takagi–Sugeno fuzzy
model. First, a 2D model is established to adjust con-
tinuous control and discrete learning actions prefer-
entially induced by exploiting the 2D property in a
repetitive-control process. Then, the Lyapunov sta-
bility theory and 2D system theory are used to de-
rive a sufficient stability condition in the form of lin-
ear matrix inequalities to design parallel-distributed-
compensation-based state-feedback controllers. Fi-
nally, an application-oriented example is used, and a
comparison is performed to show that an extra vari-
able is introduced such that the developed method has
a better tracking performance.

Keywords: affine nonlinear systems, modified repetitive
control, Takagi–Sugeno fuzzy model, two-dimensional
model, parallel distributed compensation

1. Introduction

There exist many tasks of tracking periodic references
or rejecting periodic disturbances in industrial applica-
tions [1, 2]. Repetitive control (RC), which has been pro-
posed by the team of professor Michio Nakano, meets the
goal of tracking periodic signals with a high accuracy in
a short time. It tracks or rejects periodic references effec-
tively without a steady-state error for linear systems as it
is based on the internal model theory [3, 4]. However, it
is difficult to stabilize RC systems that introduce a pure-
delay positive-feedback line. Modified repetitive control

(MRC) was proposed to improve the stability conditions
by incorporating a low-pass filter in the delay positive-
feedback loop [5]. Such a low-pass filter guarantees the
system stability at the cost of the tracking performance of
high-frequency signals. Moreover, the relative degree of
the system is not zero, which is the case in the majority of
control engineering systems.

There are two types of actions in an RC process: con-
tinuous control within a period and discrete learning be-
tween periods. Wu et al. [6, 7] presented a 2D model for
depicting an RC system. Thus, the system control issue
of an RC system is converted into a stability issue of a
2D system. Moreover, the continuous–discrete 2D hybrid
model takes into consideration the effect of the two ac-
tions and is more in line with the self-learning nature of
an RC process. The continuous–discrete 2D model and
2D control law facilitate the regulation of the learning and
control preferentially. Thus, the system exhibits good dy-
namic responses when it is stable.

It should be noted that these researches have been
mainly conducted in the linear system framework. How-
ever, the majority of physical systems in industrial pro-
cesses are nonlinear, and nonlinearities seriously affect
the system performance. It is difficult to solve the issue
of tracking periodic signals in nonlinear systems using the
linear RC theory. In recent years, the study of RC in non-
linear systems has drawn increasing attention [8]. The
issue of control in complex nonlinear systems is difficult
to solve using conventional control theory [9, 10]. Theo-
retically, previously reported methods have been based on
some assumptions for nonlinear systems, which are not
always accurate for real systems; Thus, they have limita-
tions. This means that the tracking problem of periodic
signals in nonlinear systems remains a challenging issue.

The Takagi–Sugeno (T–S) fuzzy model relates nonlin-
ear control to linear control using fuzzy rules. It has been
used as a universal approach for representing a nonlin-
ear system based on its universal approximation proper-
ties [11]. It utilizes linear-invariant models combined with
nonlinear fuzzy membership functions that are “close” to
a nonlinear system in some local regions. Linear system
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theory can be directly applied in order to analyze the per-
formance of nonlinear systems. The Lyapunov stability
theory is a common method for dealing with the stability
analysis of fuzzy systems [12]. Sharma et al. [13] used
the Lyapunov stability theory to solve the stability prob-
lem of fuzzy systems. Although the general Lyapunov
method has certain limitations, it is simple and straight-
forward. It has been an effective method for solving the
stabilization problem of T–S fuzzy systems. Thus, many
scholars have conducted researches on solving fuzzy sys-
tem stabilization conditions based on the Lyapunov sta-
bility theory [14, 15].

In this study, a new MRC approach is developed to
track periodic signals effectively for a class of affine non-
linear systems. The general affine nonlinear system is de-
picted by the T–S fuzzy model with several fuzzy rules.
Thus, the RC theory is directly applied to linear subsys-
tems. Using the 2D system theory and Lyapunov stability
theory, a sufficient stability condition in the form of a set
of linear matrix inequalities (LMIs) is obtained to design
the stabilization controllers. Lastly, an example is used,
and a comparison is performed to verify the effectiveness
of the method. The following are the main contributions
of this paper:

• The T–S fuzzy model is used to depict a class of
affine nonlinear systems. Thus, linear RC theory
is directly employed to analyze the tracking perfor-
mance of nonlinear systems.

• A new MRC approach that possesses both the ad-
vantages of RC and MRC is developed. The extra
variable w reaches a balance between the control per-
formance and stability. This is a great improvement
as compared to that in [16].

• A 2D continuous–discrete hybrid model that adjusts
two actions in an RC process preferentially is used
to improve the transient performance of the system.

The rest of this paper is organized as follow: Section 2
presents the problem formulation and system description.
The stability analysis and controller design are presented
in Section 3. An application-oriented example is pre-
sented in Section 4. Finally, Section 5 concludes the pa-
per.

Notation: throughout the paper, the n-dimensional Eu-
clidean space is represented by R

n. Z+ is the set of non-
negative integers. Ψ−1 and ΨT denote the matrix inverse
and matrix transposition of Ψ, respectively. All n× p real
matrices are defined by R

n×p. The notations diag{. . .}
stands for a diagonal matrix. P, symmetric and positive
definite or negative definite, is denoted by P > 0 or P < 0,
respectively. ∗ represents the symmetric term in a matrix.
If the matrices are not stated explicitly, they are assumed
to have appropriate dimensions.

2. Problem Formulation

In this paper, a general affine nonlinear system with a
single input and single output is under consideration. Its
dynamics are described as⎧⎪⎨

⎪⎩
ẋ(t) = f (x(t))+g(x(t))u(t)
y(t) =h(x(t))
x(t) =ξ (t), t ∈ [−τ,0]

. . . . . . . (1)

where x(t) ∈ R
n is the state of the plant, y(t) ∈ R is the

system output and u(t) ∈ R is the control input. ξ is the
continuous initial state function of the plant. f , g, and h
represent continuous nonlinear functions.

Figure 1 [17] shows the configuration of a new MRC
system based on the T–S fuzzy model. The new MRC
structure contains two delay positive-feedback lines e−sT

with a low-pass filter q(s) and a constant value w, which
improves the tracking performance of periodic signals.
Without the loss of generality, the low-pass filter is pre-
sented as

q(s) =
ωc

s+ωc
. . . . . . . . . . . . . (2)

where ωc is the cut-off frequency. In order to track the
periodic signals of all frequencies as much as possible, it
is better to select ωc as a value 5–10 times greater than the
highest frequency of the given periodic references [18].
For the convenience of design and implementation, the
low-pass filter is expressed as

q(s) =
ρωc

s+ωc
,ρ ≈ 1. . . . . . . . . . . (3)

Thus,

Xq(s) =
1

1−q(s)e−sT E(s). . . . . . . . . (4)

We then take the inverse Laplace transform of formula-
tion (4). The state–space description of the new repetitive
controller is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋq(t) =−ωcxq(t)+ωcxq(t −T )+ωce(t)+ ė(t)
vw(t) =wvw(t −T )+ e(t)

e(t) =r(t)− y(t)
xq(t) =0, t ∈ [−T,0]

(5)

where xq(t) is the state variable. r(t) and e(t) are a peri-
odic input with a period of T and the tracking error, re-
spectively. vw(t) is the output of the repetitive controller.

Let us consider a nonlinear system (1) based on the T–S
fuzzy model with r fuzzy rules.

Ri: If λ1(t) is F1i, λ2(t) is F2i and . . . and λp(t) is Fpi,
then {

ẋp(t) =Aixp(t)+Biu(t)
yp(t) =Cixp(t)

. . . . . . . . (6)

where Ri represents the i-th fuzzy rule for the fuzzy
system, i = 1,2, . . . ,r. λ1(t),λ2(t), . . . ,λp(t) are known
premise variables, and F1i,F2i, . . . ,Fpi are fuzzy sets. Ai,
Bi, and Ci are known real-system matrices with compati-
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q u(t)
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Fig. 1. Configuration of the new MRC system based on the T–S fuzzy model.

ble dimensions.
We make the following assumptions for the T–S-fuzzy-

model-based system to ensure the internal stability [19]:
Assumption 1: The linear subsystem plant (Ai,Bi,Ci)

is observable and controllable.
Assumption 2: The linear subsystem plant (Ai,Bi,Ci)

has no zeros along the imaginary axis.
Subsequent to the singleton fuzzifier, product infer-

ence, and weighted average defuzzifier, the global model
of the T–S fuzzy system (6) is depicted as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋp(t) =
r

∑
i=1

θi(λ (t))[Aixp(t)+Biu(t)]

yp(t) =
r

∑
i=1

θi(λ (t))Cixp(t)

. . . (7)

where θi(λ (t))=(σi(λ (t))/∑r
i=1 σi(λ (t))) with σi(λ (t))

= ∏p
m=1 Fmi(λ (t)), Fmi(λ (t)) is the grade of the member-

ship value of λm(t) in Fmi,λ (t) = [λ1(t),λ2(t), . . . ,λp(t)].
It should be noted that ∑r

i=1 θi(λ (t)) = 1 and 0 <
θi(λ (t))< 1 for all t and i = 1,2, . . . ,r.

Correspondingly, according to the parallel distributed
compensation (PDC) control strategy, the state-feedback
controllers are designed as

R j: If λ1(t) is F1 j, λ2(t) is F2 j and , . . . , and λp(t) is
Fp j, then

u(t) = Kp jxp(t)+Kq jxq(t)+Kw jvw(t) . . . (8)

where Kp j, Kq j, and Kw j are controller gains. The overall
output of the fuzzy controller is then represented as

u(t)=
r

∑
j=1

θ j(λ (t))[Kp jxp(t)+Kq jxq(t)+Kw jvw(t)]. (9)

The design problem of the nonlinear system is to find
the controller gains with the control law (9) to stabi-
lize the system shown in Fig. 1 and ensure a satisfac-
tory tracking performance. The reference input r(t) is set
as zero. Furthermore, in order to simplify the complex-
ity of design and computation to a great extent, all the
system output matrices are assumed to be the same, i.e.,
C1 =C2 = · · ·=Ci =C [20]. Hence, the derivative of the
error is simplified as ė(t) =−ẏp(t) =−Cẋp(t).

Moreover, by taking advantage of the 2D property
in an RC process, that is, the control action during a
period and learning action between periods, a vector-

valued continuous-time signal ζ (t) is converted into a
function-valued discrete-time sequence ζk(τ) using a lift-
ing technique [21]. τ and k are the time-continuous vari-
able within a period and the number of discrete vari-
ables between periods, respectively. The time axis t is
sliced into intervals of period T where t = kT + τ with
k ∈ Z

+,τ ∈ [0,T ]. Thus, we obtain the equation ζ (t) =
ζk(τ)= ζ (k,τ). Then, Eqs. (5) and (7) yield the 2D model
of the MRC for the T–S fuzzy system in Fig. 1.[

ϕ̇(k,τ)
vw(k,τ)

]
=

r

∑
i=1

μi (z(k,τ))
[
Ā 0
C̄ w

][
ϕ(k,τ)

vw(k−1,τ)

]

+

[
Ad 0
0 0

][
ϕ(k,τ −T )
vw(k−2,τ)

]
+

[
B̄
0

]
u(k,τ)

. (10)

where
ϕ(k,τ) = [ xT

p(k,τ) xT
q (k,τ) ]T,

Ā =

[
Ai 0

−ωcC−CAi −ωcI

]
, Ad =

[
0 0
0 ωcI

]
,

B̄ =

[
Bi

−CBi

]
, C̄ =

[ −C 0
]
.

The control law of the time domain space (Eq. (9)) rep-
resents the overall effects of learning and control. It is
rewritten in the form of a 2D space (Eq. (11)) to adjust
the learning and control. Thus, the tuning parameters K̃p j,
Kq j, and Kw j allow us to regulate the two actions preferen-
tially, thereby enhancing the tracking performance. This
is an obvious advantage over the 1D methods. However,
we cannot adjust them completely independently as the
low-pass filter and the additional loop mix learning and
control.

u(k,τ) =
r

∑
j=1

θ j(λ(k,τ))
[
Kp jxp(k,τ)+Kq jxq(k,τ)

+Kw jvw(k,τ)]

=
r

∑
j=1

θ j(λ (k,τ))
{[

K̃p j Kq j
]

ϕ(k,τ)

+Kw jwvw(k−1,τ)
}

(11)

where K̃p j = Kp j −Kw jC.
From Eqs. (10) and (11), we obtain a 2D model of the

closed-loop augmented system
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ϕ̇(k,τ)=
r

∑
j=1

r

∑
i=1

θi(λ (k,τ))θ j(λ (k,τ))
[
Ãϕ(k,τ)

+Ãdϕ(k−1,τ)+ B̃vw(k−1,τ)
] (12)

where
ϕ(k,τ) = [ xT

p(k,τ) xT
q (k,τ) ]T,

Ã =

[
Ai +BiK̃p j BiKq j

−ωcC−CAi −CBiK̃p j −ωcI −CBiKq j

]
,

Ãd =

[
0 0
0 ωcI

]
, B̃ =

[
wBiKw j

−wCBiKw j

]
.

It should be noted that vw(k−1,τ) is the learning vari-
able, and ϕ(k,τ) is the control variable. Thus, tuning K̃p j,
Kq j, and Kw j allows us to achieve a trade-off between the
control performance and stability.

3. Fuzzy MRC System Design

Lemma 1: (Schur complement) [22]: For a given
symmetric matrix, there is

X =

[
X11 X12
XT

12 X22

]
.

It is noted that the three conditions are easily confirmed
and are equivalent to be the following:

(1) X < 0;
(2) X11 < 0, X22 −XT

12X−1
11 X12 < 0;

(3) X22 < 0, X11 −X12X−1
22 XT

12 < 0.

Theorem 1: For a given ωc and four positive scalars α ,
β , γ , and w, it is assumed that there are symmetrical and
positive-definite matrices X1, Y1, X2, and Y2, and arbitrary
matrices with appropriate dimensions W1i, W2i, and W3i
such that the LMIs hold for 1 ≤ i ≤ j ≤ r :

Λii < 0 . . . . . . . . . . . . . . . . (13)

Λi j +Λ ji < 0 . . . . . . . . . . . . . (14)

where

Λi j=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λi j
1,1 Λi j

1,2 0 0 Λi j
1,5 αX1 0 Λi j

1,8

∗ Λi j
2,2 0 γωcY2 Λi j

2,5 0 β X2 0
∗ ∗ −Y1 0 0 0 0 0
∗ ∗ ∗ −γY2 0 0 0 0
∗ ∗ ∗ ∗ Λi j

5,5 0 0 0
∗ ∗ ∗ ∗ ∗ −Y1 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γY2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γY2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λi j
1,1 = α(Ai +BiK̃p j)X1 +αX1(Ai +BiK̃p j)

T,

Λi j
1,2 = β BiKq jX2 +αX1(−ωcC−CAi −CBiK̃p j)

T,

Λi j
1,5 = γwBiKw jY2 −αwX1CT, Λi j

1,8 =−αX1CT,

Λi j
2,2 =−2β ωcX2 −βCBiKq jX2 −β X2(CBiKq j)

T,

Λi j
2,5 =−γwCBiKw jY2, Λi j

5,5 = γY2(w2−1).

Then, the closed-loop augmented system is asymptot-
ically stable. Moreover, the 2D fuzzy repetitive con-
troller gains are given by K̃pi = W1iX1

−1, Kqi = W2iX−1
2 ,

Kwi =W3iY−1
2 , and Kpi =W1iX−1

1 +KwiC.
Remark 1: The structure of the developed system guar-

antees the tracking performance when the system is sta-
ble. V1(k,τ), V2(k,τ), and V3(k,τ) are quadratic items
concerned with the system control performance. The tun-
ing parameters α , β , γ , and w in LMIs (13) and (14) in-
fluence the gains Kp j, Kq j, and Kw j to regulate the control
performance. The specific effects of adjusting the tuning
parameters are presented in Section 4.

Remark 2: The new modified repetitive controller has
properties of both the repetitive controller and modified
repetitive controller. The extra positive-feedback line in
Fig. 1 adds a relaxing variable W3 j to ensure a feasible
solution of the LMIs. The variable w adjusts the weight
between RC and MRC to achieve a trade-off between the
tracking performance and stability. Moreover, when w =
0, the developed repetitive controller is the same as a basic
modified repetitive controller. Thus, it is easy to compare
the effects of the two methods.

Proof: Consider a 2D Lyapunov functional candi-
date as

V (k,τ) =V1(k,τ)+V2(k,τ)+V3(k,τ) . . . (15)

where

V1(k,τ) = ϕT(k,τ)Pϕ(k,τ),

P = diag{ 1
α

P1
1
β

P2},

V2(k,τ) =
∫ τ

τ−T
ϕT(k,s)Qϕ(k,s)ds,

Q = diag{Q1
1
γ

Q2},

V3(k,τ) =
1
γ

vT
w(k,τ)Q2vw(k,τ).

The system is stable when the derivative of V (k,τ) is
less than zero. P1, Q1, P2, and Q2 are positive-definite
matrices to be determined. Let P1 = X−1

1 , Q1 =Y−1
1 , P2 =

X−1
2 , and Q2 = Y−1

2 .
Along the closed-loop system (12), the following incre-

mental functions are yielded.

δV (k,τ) =
dV1(k,τ)

dτ
+

dV2(k,τ)
dτ

+ΔV3(k,τ),

V̇1(k,τ) = 2ϕT(k,τ)Pϕ̇(k,τ)

= 2ϕT(k,τ)PÃϕ(k,τ)

+2ϕT(k,τ)PÃdϕ(k−1,τ)

+2ϕT(k,τ)PB̃vw(k−1,τ),

V̇2(k,τ) = ϕT(k,τ)Qϕ(k,τ)

−ϕT(k−1,τ)Qϕ(k−1,τ),
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ΔV3(k,τ) =
1
γ

vT
w(k,τ)Q2vw(k,τ)

−1
γ

vT
w(k−1,τ)Q2vw(k−1,τ)

=
1
γ

ϕT(k,τ)C̄TQ2C̄ϕ(k,τ)

+
1
γ

wϕT(k,τ)C̄TQ2vw(k−1,τ)

+
1
γ

wvw
T(k−1,τ)Q2C̄ϕ(k,τ)

+
1
γ
(w2−1)vw

T(k−1,τ)Q2vw(k−1,τ).

The derivative of V (k,τ) is rewritten as

δV (k,τ) =
r

∑
j=1

r

∑
i=1

θi(λ (k,τ))θ j(λ (k,τ))

χT(k,τ)Πi jχ(k,τ)
. . . (16)

where

χ(k,τ) = [ϕT(k,τ) ϕT(k−1,τ) vT
w(k−1,τ)],

Πi j =

⎡
⎢⎢⎢⎢⎣

Πi j
1,1 PÃd PB̃+

1
γ

C̄TQ2w

∗ −Q 0

∗ ∗ 1
γ

Q2(w2 −1)

⎤
⎥⎥⎥⎥⎦ ,

Πi j
1,1 = 2PÃ+

1
γ

C̄TQ2C̄+Q.

The right-hand side of Eq. (16) is the same as
r

∑
i=1

r

∑
j=1

θi(λ (k,τ))θ j(λ (k,τ))χT(k,τ)Πi jχ(k,τ)

=
r

∑
i=1

θ 2
i (λ (k,τ))χ

T(k,τ)Πiiχ(k,τ)

+
r

∑
i=1

r

∑
i< j

θi(λ (k,τ))θ j(λ (k,τ))

χT(k,τ)(Πi j +Π ji)χ(k,τ).

(17)

When Πii < 0 and Πi j + Π ji < 0, V̇ (k,τ) < 0 for
χ(k,τ) �= 0. Furthermore, according to Lemma 1, Πi j < 0
is equivalent to the LMI as follows:

Πi j =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Πi j
1,1 Πi j

1,2 0 0 Πi j
1,5 Q1 0 −CT

∗ Πi j
2,2 0 Πi j

2,4 Πi j
2,5 0 Πi j

2,7 0
∗ ∗ −Q1 0 0 0 0 0
∗ ∗ ∗ Πi j

4,4 0 0 0 0
∗ ∗ ∗ ∗ Πi j

5,5 0 0 0
∗ ∗ ∗ ∗ ∗ −Q1 0 0
∗ ∗ ∗ ∗ ∗ ∗ Πi j

7,7 0
∗ ∗ ∗ ∗ ∗ ∗ ∗−γQ−1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (18)

where

Πi j
1,1 =

1
α

P1(Ai +BiK̃p j)+
1
α
(Ai +BiK̃p j)

TP1,

Πi j
1,2 =

1
α

P1BiKq j − 1
β

ωcCTP2

− 1
β

Ai
TCTP2 − 1

β
K̃T

p jBi
TCTP2,

Πi j
1,5 =

1
α

wP1BiKw j − 1
γ

wCTQ2,

Πi j
2,2 =−(2/β )ωcP2 − 1

β
P2CBiKq j

− 1
β
(CBiKq j)

TP2,

Πi j
2,4 =

1
β

P2ωc, Πi j
2,5 =− 1

β
wP2CBiKw j,

Πi j
2,7 =

1
γ

Q2, Πi j
4,4 =−1

γ
Q2,

Πi j
5,5 =

1
γ
(w2 −1)Q2, Πi j

7,7 =−1
γ

Q2.

Pre- and post-multiplying Eq. (18) by diag{αX1 β X2
Y1 γY2 γY2 Y1 γY2 I } yield Eqs. (13) and (14), respec-
tively. Further, the controller gains are K̃pi = W1iX1

−1,
Kqi =W2iX−1

2 , Kwi = W3iY−1
2 , and Kpi =W1iX−1

1 +KwiC.

4. Numerical Example

Consider the voltage control of Chua’ circuit sys-
tems [23, 24].

ẋp1(t) =−σ1xp1(t)+σ1xp2(t)−σ1 f (xp1(t))+u1(t)

ẋp2(t) =xp1(t)− xp2(t)+ xp3(t)+u2(t)

ẋp3(t) =−σ2xp2(t)+u3(t)

yp(t) =xp1(t)

(19)

where σ1 = 10, σ2 = 14.87, and d = 1.8. xp1(t), xp2(t),
and xp3(t) are the two voltages and current of the Chua’s
circuit, respectively. f (xp1(t)) = gbxp1(t) + 0.5(ga −
gb)(|− |xp1(t)− 1|+ xp1(t)+ 1|), where ga =−1.27 and
gb =−0.68, is nonlinear term.

The dynamic systems (19) is represented by the T–S
fuzzy model with two fuzzy rules.

R1: If xp1(t) is F1(xp1(t)), then

ẋp(t) =A1xp(t)+B1u(t),

yp(t) =Cxp(t).
. . . . . . . . . (20)

R2: If xp1(t) is F2(xp1(t)), then

ẋp(t) =A2xp(t)+B2u(t),

yp(t) =Cxp(t).
. . . . . . . . . (21)

The membership functions of the fuzzy sets are then
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(a) α = 40, β = 0.001, γ = 1, w = 0 (b) α = 40, β = 0.001, γ = 1, w = 0.2 (c) α = 40, β = 0.001, γ = 1, w = 0.7

Fig. 2. Tracking error curves for the additional variable w.

(a) α = 30, β = 0.01, γ = 0.1, w = 0.2 (b) α = 40, β = 0.01, γ = 1, w = 0.2 (c) α = 40, β = 0.001, γ = 1, w = 0.2

Fig. 3. Tracking error curves for the scalars α , β , γ, and w.

expressed as

μ1(xp1) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
1− f (xp1(t))

dxp1(t)

)
, xp1(t) �= 0

1
2

(
1− ga

d

)
, xp1(t) = 0

μ2(xp1) = 1−μ1(xp1).

where u(t) = [u1(t) u2(t) u3(t)]T is the control input.
xp(t) = [xp1(t) xp2(t) xp3(t)]T is the state variable. xp1(t)
is the premise vector. The system matrices are given as
follows:

A1=

⎡
⎣σ1(d −1) σ1 0

1 −1 1
0 −σ2 0

⎤
⎦, B1=B2=

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦,

A2=

⎡
⎣−σ1(d +1) σ1 0

1 −1 1
0 −σ2 0

⎤
⎦, C =

[
1 0 0

]
.

Let us consider the tracking problem of a periodic ref-
erence input for a nonlinear system. The given periodic
input is r(t) = 0.5sin(πt)+ sin(0.5πt). In order to track
the periodic references as completely as possible, we set
T = 4 s and ωc = 100 rad/s.

For the purpose of stabilizing the developed system,
the search range for the tuning parameter w is selected as
w∈ [0,1). The variable w achieves a trade-off between the
tracking performance and stability. As shown in Fig. 2,

the system almost always enters a stable state after about
two periods for different variables w. Therefore, it influ-
ences the learning rather than the control. The variable w
has a primary effect on the tracking performance as com-
pared to other variables. Thus, w = 0.2 is first selected to
achieve a good control performance.

As mentioned in Remark 1, tuning α , β , γ , and w in
LMIs (13) and (14) influences the gains Kp j, Kq j, and Kw j
to regulate the control and learning preferentially. It is
noted that tuning β and w influences Kq j and Kw j. The
system exhibits a significant improvement as tuning β and
w is related to a greater extent with the control perfor-
mance than the other parameters. The tracking error in
Fig. 3(c) at the first period is much smaller than that in
Figs. 3(a) and (b). Thus, regulating β mainly affects the
control behavior. Some of the obtained results are shown
in Fig. 3.

The determined parameters are then finally selected as
shown below:

α = 40, β = 0.001, γ = 1.

Subsequent to solving the LMIs shown in Theorem 1,
we obtain a feasible solution. Then, it is easy to obtain the
resulting feedback controller gains:

Kp1 =

⎡
⎣ −26.0726 −5.0199 0.0000
−126.3846 −0.3598 6.9350

0.0000 6.9350 −1.3598

⎤
⎦ ,
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Kp2 =

⎡
⎣ 9.9274 −5.0199 0.0000
−126.3846 −0.3598 6.9350

0.0000 6.9350 −1.3598

⎤
⎦ ,

Kq1 =

⎡
⎣287.7037

477.1813
0.0000

⎤
⎦ , Kq2 =

⎡
⎣287.7037

477.1813
0.0000

⎤
⎦ ,

Kw1 =

⎡
⎣30.0472

0.0000
0.0000

⎤
⎦ , Kw2 =

⎡
⎣30.0472

0.0000
0.0000

⎤
⎦ .

The initial state of the system for different parameters
is xp(0) = [0.2 0.5 1]T. Thus, all the initial tracking errors
are 0.2. They are presented in Figs. 2 and 3.

The simulation results show that the constant w has an
optimal value when the system has a good dynamic re-
sponse. As mentioned in Remark 2, when w is selected
to be an appropriate value or change in a certain inter-
val, the developed system achieves a good tracking perfor-
mance. The adjustment of the other parameters is related
to a lesser extent with the control performance. Therefore,
the complexity of the parameter adjustment is reduced.
Moreover, when w is zero, the developed repetitive con-
troller is a modified repetitive controller. The comparison
shown in Figs. 2(a) and (b) demonstrates that the devel-
oped method has a better tracking performance.

Figure 4 displays the periodic reference signal and the
output of the fuzzy system, which shows that the system
has a good tracking performance. The output tracks the
reference quickly after approximately two periods. Fig. 5
exposes the states of the fuzzy system. It shows that the
system quickly enters the steady state. All the simulation
results verify that the control performance of the devel-
oped method is satisfactory.

5. Conclusion

This paper presents a new MRC method that exhibits a
balance between the control performance and stability for
a class of affine nonlinear systems. First, the T–S fuzzy
model was used to transform a nonlinear system into lin-
ear subsystems. The methods for a linear RC system can
be simply extended to a nonlinear RC system. By ex-
ploiting the 2D nature of an RC process, a 2D representa-
tion of the system was established, and the 2D control law
regulated the control and learning preferentially. A suffi-
cient condition in terms of LMIs was then obtained to de-
sign the PDC-based state-feedback controllers using the
Lyapunov stability theory and 2D system theory. Finally,
simulations and a comparison show that the new method
provides a better periodic reference tracking performance
than the conventional MRC method, and the developed
system has the best tracking performance when the con-
stant w appropriately takes a value from 0 to 1.

The method of obtaining the exact value of w will be
discussed further in the near future. In addition, the inde-
pendent adjustment of the control and learning is also an
interesting topic for potential future research.

Fig. 4. Periodic tracking reference r(t) and system output y(t).

Fig. 5. System states x1(t), x2(t), and x3(t).
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