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Human posture recognition has been a popular re-
search topic since the development of the referent
fields of human-robot interaction, and simulation op-
eration. Most of these methods are based on super-
vised learning, and a large amount of training infor-
mation is required to conduct an ideal assessment. In
this study, we propose a solution to this by applying a
number of unsupervised learning algorithms based on
the forward kinematics model of the human skeleton.
Next, we optimize the proposed method by integrat-
ing particle swarm optimization (PSO) for optimiza-
tion. The advantage of the proposed method is no pre-
training data is that required for human posture gen-
eration and recognition. We validate the method by
conducting a series of experiments with human sub-
jects.

Keywords: human posture recognition, growing neural
gas, particle swarm optimization, human-robot interac-
tion

1. Introduction

Human posture recognition has been a popular research
topic ever since first computer computational recogni-
tion method appeared, and many state-of-the-art methods
have been proposed by researchers and engineers around
the world. It has been applied to various areas, such as
human-robot interaction [1–3], operating simulations, and
games development.

Human-robot interaction might be the area with the
most applications of posture recognition. It makes it pos-
sible for humans to communicate with robots not only
though cold commands inputted from the keyboard, but
also though gesture language understood by computers [1,
4].

At the same time, with the increase of the number of
elderly people all over the world, health care issues are
getting more and more important. To solve these issues,
human motion capture systems are required for the elders

who live alone. And elders’ state of health can be moni-
tored by determining his or her posture, and an alert can
be given in the case that high risk postures, such as fall
down, are detected. These series of systems will reduce
the burden of human resources while improving the effi-
ciency of posture recognition [5].

Previous human skeleton recognition research was con-
ducted using standard pin-hole digital cameras. However,
it is impossible to detect a human’s real spatial posture
during a period of time owning to the natural weakness
of the pinhole camera. The recently developed electronic
devices, such as the RGBD camera, stereo camera, and
depth sensors, have made it possible to capture objects in
a real-world shape. In recent years, the most widely used
sensors in the referent field are depth cameras.

In general, depth cameras are divided into two types:
stereo cameras and time of flight (TOF) cameras. Stereo
cameras capture the detail of depth based on the binocu-
lar stereo vision theorem [6, 7], which calculates the dis-
tance of points in the real world by the principle of paral-
lax and applies two images for measuring the targets that
are captured by two parallel cameras from different posi-
tions. The method calculates the positional deviation be-
tween the corresponding points of the image for obtaining
the three-dimensional geometric information of an object.
By combining the two images and observing the differ-
ences between them, it is possible to obtain a clear sense
of depth, establish the correspondence between the fea-
tures, and map the same spatial physical point in different
images.

By contrast, TOF cameras, also refferred to flight time
cameras, obtain the targets’ distance by continuously
transmitting light pulses to the targets and receiving the
light returned from the object. Next, the camera measures
the flight (round-trip) time of the light pulse [8–10]. This
technique is essentially similar to the principle of a 3D
laser sensor; however, while the 3D laser sensor on; y
scans the target point-by-point, the TOF cameras also ob-
tain the information of flight time from a 2D area.

In this paper, we propose a framework for recognizing
human postures by simulating the human body skeleton
and its movements according to the 3-dimensional points
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cloud data using a series of unsupervised learning algo-
rithms.

This paper is organized as follows. In Section 2, we
review several state-of-the-art methods for human body
recognition. In Section 3, we explain the details of the
proposed method, and in Section 4, we discuss the exper-
imental results. Finally, concluding remarks are made in
the last section.

2. Related Works

Researchers have been working on the referent field for
a long time [11–13]. Consequently, various methods have
been proposed. In this section, we give a brief review
for several typical methods which have been widely ac-
cepted and implemented. In [14], Aggarwal developed a
taxonomy that divided all the proposed methods into two
main groups: single-layer approaches and hierarchical ap-
proaches.

In [15], the authors proposed the supervised pose
recognition method, which can be considered the most
popular method today. The process described in the pa-
per is mainly divided into two steps: first, the body part
is marked from a single depth image for segmenting, and
then the key nodes are marked. The body joint position-
ing is then performed, and the marked human body parts
are remapped into the three-dimensional space to form a
highly reliable spatial position for the key nodes.

The authors in [16] proposed a method for human full-
body pose estimation from depth data that can be ob-
tained using TOF cameras and the Kinect device. Their
approach consists of robustly detecting anatomical land-
marks in the 3D data and fitting a skeleton body model
using constrained inverse kinematics. Instead of rely-
ing on appearance-based features for interest point detec-
tion, which can vary strongly with illumination and pose
changes, they built a graph-based representation of the
depth data to measure geodesic distances between body
parts. As these distances do not change with body move-
ment, it is able to localize anatomical landmarks indepen-
dently of the pose.

Recently, in [17], the authors proposed a vector-shaped
pose descriptor, which allows for the retrieval of similar
poses and is easier to use with many machine learning
libraries by constructing a feature space for appearances
of human poses. This method has improved the limited
scope of many methods based on a kinematic or surface
mesh model, and performed efficiently in experiment.

Nevertheless, the methods mentioned above are based
on supervised learning algorithms, which require a large
amount of data for training before they are applied. Dif-
ferently from the concept of these methods, in this paper,
we propose a method for human posture recognition by a
series of unsupervised algorithms, which does not require
collection of training data.

3. Proposed Method

In this paper, we propose a human posture recognition
method based on the concept of unsupervised learning.
The framework of this method is shown in Fig. 1. The
learning process can be generally divided into three steps:
preprocessing, growing neural gas (GNG) based rough
structure generation, and parameters optimization by par-
ticle swarm optimization (PSO). Detail of each step will
be given in the following section.

3.1. GNG for Human Structure Construction
The particle points cloud data is computationally costly

without peprocessing the data. The GNG is used for rep-
resenting the points cloud data to a lower density struc-
ture, thus we utilized it for the construction of humans’
rough structure.

The GNG is a typical self-organizing map (SOM) al-
gorithms for unsupervised learning. It is known that un-
supervised learning algorithms are a series of learning
methods that work without any prior input data for train-
ing and give the desired output. Input data are consec-
utively represented by SOM in the form of input signals
and the SOM changes its topological structure for repre-
senting the input data with the self-adaptation mechanism.
Next, a growing mechanism is used for gradual adapta-
tion and self-adjustment of size. The growing neural net-
work starts in some minimal state (e.g., with some mini-
mal number of neurons in the network), which is adapted
to the input data. Then, it continually grows (increases
its size) and adapts again. This cycle is repeated until the
desired resolution of the neural network is achieved.

In the GNG learning algorithm, the following notations
are used:

wi: n dimensional vector of a node (wi ∈ Rn)
G: set of nodes
Ni: set of nodes connected to the i-th node
c: set of edges
ai, j: age of the edge between the i-th and the j-th node

The steps of the standard GNG algorithm are as fol-
lows:

Step 0. Initialize the network by creating two nodes at
random positions, wc1 and wc2 in Rn. Then, set
the connection between them.

Step 1. Randomly generate an input data v according to
selecting function p(v), which is the probability
density function of data v.

Step 2. Select the nearest unit (winner) g1 and the
second-nearest unit g2 by:

g1 = argmin
i∈G

‖ v−wi ‖ . . . . . . . . (1)

g2 = argmin
i∈G/g1

‖ v−wi ‖ . . . . . . . . (2)

Step 3. Generate the connection a connection between
g1 and g2, is such connection does not exist al-
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Fig. 1. Framework of proposed method.

ready. Set the age of the connection between g1
and g2 to zero:

ag1,g2 = 0 . . . . . . . . . . . . . (3)

Step 4. Add the squared distance between the input data
and the winner to a local error variable:

Eg1 ← Eg1+ ‖ v−g2 ‖2 . . . . . . . (4)

Step 5. Update the reference vectors of the winner and
its direct topological neighbors by the learning
rate η1 and η2 respectively, of the total distance
to the input data:

wg1 ← wg1 +η1 · (v−wg1) . . . . . . (5)

w j← w j +η2 · (v−w j) if cg1, j = 1 (6)

Step 6. Increment the age of all edges emanating from
s1:

ag1, j ← ag1, j +1 if cg1, j = 1 . . . (7)

Step 7. Remove edges with an age larger than a pre-
defined threshold. If this results in units having
no more emanating edges, remove those units as
well.

Step 8. If the error Eq is higher than the predefined
threshold, insert a new unit as follows:
Select the unit f with the maximum accumulated
error among the neighbors of q.

Add a new unit r to the network and interpolate
its reference vector from q and f :

Wr = 0.5 · (wq +w f ) . . . . . . . . (8)

Create a new edge that connects the new unit r
with units q and f , and remove the existing edge
between q and f .
Decrease the error variables of q and f by a frac-
tion α:

Eq← Eq−αEq . . . . . . . . . . (9)

E f ← E f −αE f . . . . . . . . . . (10)

Interpolate the error variable of r from q and f :

Er = 0.1 · (Eq +E f ) . . . . . . . . . (11)

Step 9. Decrease the error variables of all units:

Ei← Ei−β Ei (∀i ∈ G) . . . . . . (12)

Step 10. Continue with Step 1 if a stopping criterion (e.g.,
net size or some performance measure) is not yet
fulfilled.

The number of point could be reduced largely from
the original point cloud. Therefore the computation time
would also be cut down.

Nevertheless, the standard GNG does not perform in
dynamic environments. Considering this, an improved
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GNG, named GNG with utility (GNG-U) was developed
by Fritzke [18]. It is only slightly the standard GNG in
that it updates not only the local errors but also the utility
Ug1 with

Ug1 ←Ug1 +Eg2 −Eg1 . . . . . . . . . . (13)

Then, it removes the node gi if the following inequality
is satisfied:

Egi

Ugi

> γ . . . . . . . . . . . . . . . (14)

where γ is a parameter that controls the number of nodes.
GNG-U can perform dynamic distributions. Based on

this, Toda [19] proposed the modified GNG-U (GNG-U2)
by introducing the weight vector and has achieved the su-
perior results in 3D structures.

3.2. Human Skeleton Modeling
In this paper, we utilized a simplified kinematic model

for representing the human skeleton. The i-th skeleton is
constructed as m ∈M joints (M = 15 in this paper):

Ji = { jk
i }= {center shoulder, le f t shoulder,

right shoulder, le f t elbow, le f t hand,
right elbow,right nand,center torso,
center hip, le f t hip, le f t knee, le f t f oot,
right hip,right knee,right f oot}

(15)

The positions of joints are shown in Fig. 2. Each joint
in jk

i ∈ Ji is represented by 3D coordinates (x jki
,y jki

,x jki
).

Subsequently the length of the links between each
joints is described as:

Li = {l1, l2, . . . , ln} . . . . . . . . . . . (16)

and the spatial coordinates of the skeleton are represented
as

Pi = {xi,yi,zi} . . . . . . . . . . . . . (17)

Despite being more convenient than the previous model
in terms of computation, it is still unstable for generating
the same skeleton for the same person in different frames.
This is because there are two parameters in a skeleton
model: the angles and length of each pair of joints. We
know that the angles of the joints change dynamically-
when changing posture, but the length of each pair of
joints is always a constant for one person.

Thus, we try to make the preliminary experiment of
evaluating the length and angels separately. In this model,
there are 16 joints for controlling human posture. We do
not calculate the positions of these joints directly. Instead,
we generate the lengths and angles for each part as shown
in Fig. 2 (initial step), and we then calculate the position
of each joints by forward kinematics.

The first part of initialization will solve the parameters
of lengths. Given a special posture (e.g., T posture, as
shown in Fig. 2), we randomly generate different values,
and then choose the best one (because the angles are fixed
owing to the fixed posture). In the second part, it ran-
domly generates angles and selects the fittest one accord-

Fig. 2. Indices of human body’s joints and links.

ing to the fitness function.
To compute the fitness of the skeleton model, we in-

troduced the joints of ribs for auxiliary calculation, even
though these rib joints have no meanings and can be hid-
den for human representation.

Because edged nodes contain much more information
than the nodes in the center, as they have more probabili-
ties of representing the limbs of the human, it is necessary
to give them a higher weight than other nodes.

To weight them, first we search for their geographic
center.

Given a weighted skeleton model, our target is to find
the optimized parameters of rotation angles to obtain the
fitness skeleton. The proposed method is divided into two
parts, i.e., the initial step and the prediction step.

3.3. Denavit-Hartenberg Parameters for Human
Skeleton Modeling

Even though the number of nodes is limited, the con-
struction of the skeleton can to achieved. It is difficult to
directly model the skeleton. Therefore, we applied a more
convenient way for the representation of skeleton param-
eters.

The Denavit-Hartenberg (DH) parameters representa-
tion is the most widely used in kinematics today. It is
named after Jacques Denavit and Richard Hartenberg who
introduced this representation in 1955 [20, 21]. It calcu-
lates the coordinate transformation frame by frame mak-
ing a list of parameters, with four parameters for each
transformation:

1. Rotation angle α about X axis
2. Translation a along X axis
3. Translation d along Z axis
4. Rotation angle θ along Z axis.

Because all of the coordinate systems satisfy the con-
straint, all of the transformation can be represented by a
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Table 1. DH parameters of the human body’s joints.

Position Joint ID Index α θ a d

Left arm

3 1 0 0 l2 0

4
2 θ1 0 0 0
3 θ2 +90◦ 0 0 0
4 θ3 0 l3 0

5 5 θ4 0 l3 0

Right arm

6 6 0 0 l2 0

7
7 θ5 +90◦ 0 0 0
8 0 θ6 +90◦ 0 0
9 θ7 0 l3 0

8 10 θ8 0 l4 0

Head 2 11 θ9−90◦ 0 0 0
12 θ10 −90◦ l1 0

Torso 9 13 θ11−90◦ 0 0 0
14 θ12 −90◦ l5 0

Left leg

10 15 −90◦ 0 l6 0

11
16 θ13−90◦ 0 0 0
17 0 θ14 +90◦ 0 0
18 θ15 0 l7 0

12 19 θ16 0 l8 0

Right leg

13 20 90◦ 0 l6 0

14
21 θ17−90◦ 0 0 0
22 0 θ18 +90◦ 0 0
23 θ19 0 l7 0

15 24 θ20 0 l8 0

set of quadruple of parameters as

Ti = Tθ j Td j Ta j Tα j . . . . . . . . . . . . (18)

where Tθ j ,Td j ,Ta j ,Tα j ,( j ∈ m) represent the rotation ma-
trix of the four steps listed above. The combined matrix
Ti is⎡
⎢⎣

cosθ −cosα sinθ sinα sinθ acosθ
sinθ cosα cosθ − sinα cosθ a sinθ

0 sinα cosα d
0 0 0 1

⎤
⎥⎦ (19)

We distribute all of the joints according to the parame-
ters in Table 1. In this table, joint 1–4, 5–8, 9–12, 13–16
represent the DH parameters for the rotation angles of the
left arm, right arm, left leg, and right leg, respectively.
The indices of the joints and links are shown in Fig. 3.

By applying the DH parameters shown in Table 1, it is
easy to build up the simulated human skeleton. Based on
the DH parameters, the target for determining a human’s
posture is optimized by rotational angles of each joints.

3.4. PSO for Human Posture Recognition
We apply PSO to optimize all of the rotational angles

to properly simulate the human posture. The PSO is a
computational method that optimizes a problem by itera-
tively trying to improve a candidate solution according to
given measures of quality. It was originally proposed by
Kennedy and Eberhard [22], and has been extended to a
series of advanced solutions.

The motivation from the PSO algorithm is inspired by
the flocking behavior of birds nature. It contains a set

Fig. 3. Illustration of GNG node weights.

of particles, where each particle represents a bird in the
flock. In this paper, we assume that each particle repre-
sents a skeleton candidate with a different series of rota-
tion angles. The purpose is to iterate all of the particles
with their velocities of rotational angle, and selecting the
best series with the minimum value, which correspond to
that the best skeleton for representing the human posture.
The speed of the rotational angle in the PSO algorithm
can be represented as

vk
i = vk−1

i +w1r1(Pbesti−Xi)+w2r2(Gbesti−Xi)

. . . . . . . . . . . . . . . . . . (20)

where vk
i is a vector representing the angle velocities of

the i-th agent at k-th iteration. vk
i is controlled by three

factors: the global best velocities Gbesti, the personal best
velocities Pbesti and the previous velocities vk−1

i . Thus,
the current angles for xk

i will be calculated as

θ k
i = θ k−1

i + vk
i . . . . . . . . . . . . (21)

Different human postures are generated by the angles
calculated from the above equation, depending on the pre-
vious knowledge and random factors.

Because the GNG nodes have roughly described struc-
tures of the human skeleton, it is necessary to optimize all
of the parameters of the skeleton model to optimize the
rotational angles. In order to calculate the value of the
global best and the personal best, it is necessary to pro-
pose a proper evaluation function. Here we optimize the
best skeleton by searching for the minimum value of the
following evaluating function:

F(x) =
M

∑
i=1

wgid(gi) . . . . . . . . . . . (22)

where M is the number of GNG nodes that were obtained
from the previous step, wgm is the weight of the m-th GNG
node gm, and the function d(gm) is represented as

d(gi) =

⎧⎨
⎩

e−
‖gi− jn‖2

2a2 if argmin
jn∈J

e−
‖gi− jn‖2

2a2 ≤ K

τ otherwise
. . . . . . . . . . . . . . . . . . (23)
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where a is a constant, and τ is a constant threshold with a
large value. This evaluation function means that the skele-
ton with the smallest sum of distances for the total GNG
nodes is more likely to be the fittest posture. Considering
that each link is represented by a cylinder with a radial
threshold of K, the value of d(i) is valuable if and only
if the node i is inside this cylindrical space. Nodes that
are closer to the axis of the cylinder would have a higher
possibility to be part of it.

Despite the advantages of GNG , it is obvious that GNG
nodes are generated randomly, which means that each of
the node has the same importance for constructing the
whole GNG network. However, they should be separated
into different levels based on their representations of hu-
man body. The reason is that different locations in human
body have different importance when representing the hu-
man body. For example, the nodes that surround the el-
bow provide more information than the nodes located in
the torso, therefore, these nodes should be given a higher
weight when reconstructing the human body.

In this paper, we tried a simple but efficient weighted
methods. It is obvious that nodes that are near to the cen-
ter would have more edges than those located in the edge.
Therefore we suppose that the weight of the i-th node is
represented as wi, then the weight is

wgi = ∑
g j∈G

D(gi,g j) . . . . . . . . . . . (24)

where D(si,s j) denotes

D(gi,g j) =

{
0 if cgi,g j = 0
1 otherwise . . . . . (25)

This also means that the weight of gi depends on the
number of edges linked to it, as shown in Fig. 3. It is ob-
vious from the figure that the n1 that contains less edges
than n2 provides more significant information for gener-
ating the human skeleton.

4. Experiment Setup and Results

For the experiment in this study, we applied ASUS
Xtion PRO live depth camera as the frame capturing sen-
sor, shown in Fig. 4 and Table 2. Compared with the other
widely used depth cameras, such as Microsoft Kinect,
Xtion, it has a low-budget projects or systems.

In the first step, we applied the frame differential algo-
rithm to extract the foreground points, which is regarded
as the construction part of human body. Considering that
it contains a large amount of noise, we also applied the
median filter to reduce them. The result can be seen in
Fig. 5.

Figure 6 shows the experiment result comparison be-
tween the standard GNG and the GNG-U2. It is obvious
that the GNG-U2 provides a more stable network from a
series of video frames compared with the standard GNG,
the number of points have been reduced dramatically but
the rough structure of the network remained the same.
Next, Fig. 7 shows that the number of points for pro-

Fig. 4. Profile of the Xtion sensor.

Table 2. Features of the Xtion sensor.

Weight 490g
Interface USB2.0

Available view angle 70 degree
fps 30 to 60

Resolution 640*480

Fig. 5. Performance of foreground extraction.

cessing is reduced dramatically after GNG learning. The
left figure shows the point number of the original frame,
whereas the right one shows the number of point for the
GNG network. It is obvious that the number of points has
been dramatically reduced after the GNG learning.

As mentioned earlier, our solution contains a large
number of parameters that need to be optimized, and it is
difficult to localize all of them in one step. To overcome
this issue, we seek to optimize part of the parameters in
the initial step, and make the prediction in the following
steps.

To locate the human body as fast as possible, we made
the restriction at the initial part, i.e., we defined a special
initial posture. In this experiment, we suppose that the
human skeleton as a special T-posture because it is eas-
ier to determine the length of each link of such posture.
In this case, all of the parameters of the rotational angles
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Fig. 6. Experiment result between the standard GNG and the GNG-U2 in a series of input frames. The first row represents the
original frame, the middle row shows the standard GNG, and the last row shows the GNG-U2.

Fig. 7. Comparison of point number for processing for the same given input frames.

are fixed at the initial part, and the optimized parameters
are only the spatial coordinates of the skeleton. Once the
original coordinates are located, the following predictions
will be simpler.

The result of the human posture is shows in Fig. 8,
where the top row shows the original structure and the
bottom row shows the result of human posture recogni-
tion.

The computational time in PSO is affected by the num-
ber of particles and iterations. We evaluate the run time
cost based on three different conditions with different it-
eration times. Fig. 9 illustrates the time taken by different
particles and iterations. It is obvious that the time rises
dramatically if the iterations increase. It is important to
choose a proper iteration under different environment.

5. Discussion and Conclusion

In this paper, we proposed an unsupervised human pos-
ture recognition method that is different from most of the
previous proposed methods. The proposed method con-
tains a series of unsupervised learning algorithms, such
as GNG, and PSO. Thus, no pre-training data is required,
which is crucial for real world applications. By applying
GNG, it deduces the run time cost dramatically compared
with tackling the whole point cloud directly. In addition,
the PSO made it possible to find the best simulated pos-
ture without any training.

Overall, this paper provides a preliminary method for
human posture recognition. However, the run time cost
for optimization would be a factor that limits the method
for real-time implementation. In the next stage, we will
focus on reducing the run time cost of optimization step.
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Fig. 8. Experiment results of human posture recognition generated by the proposed method.

Fig. 9. Experiment result for different iteration times.
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