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Modularity is one of the evaluation measures for net-
work partitions and is used as the merging criterion
in the Louvain method. To construct useful cluster
validity measures and clustering methods for network
data, network cluster validity measures are proposed
based on the traditional indices. The effectiveness of
the proposed measures are compared and applied to
determine the optimal number of clusters. The net-
work cluster partitions of various network data which
are generated from the Polaris dataset are obtained
by kkk-medoids with Dijkstra’s algorithm and evaluated
by the proposed measures as well as the modularity.
Our numerical experiments show that the Dunn’s in-
dex and the Xie-Beni’s index-based measures are ef-
fective for network partitions compared to other in-
dices.

Keywords: network clustering, cluster validity measures,
modularity, k-medoids

1. Introduction

Network clustering in particular community detection
is a recent research topic in many research fields such
as social network services, e-commerce, and bioinformat-
ics [1]. A community in network clustering is a group of
nodes that are connected strongly to each other than the
other nodes. The “community” is considered as the same
concept as a “cluster” in the context of clustering. Mod-
ularity is a well-known evaluation measure for network
partitions [2].

The modularity takes better values when the edges
within clusters are dense, and the edges between clusters
are sparse. The Louvain method is considered a recent
representative method for detecting community structures
from network data [3]. The Louvain method merges clus-

ters one by one by maximizing the modularity and de-
termines the optimal number of clusters by searching the
maximum value of the modularity. The modularity is used
as not only a merging criterion but also as an evaluation
measure in the Louvain method.

In the traditional clustering approach, various cluster
validity measures are also used to evaluate cluster parti-
tions and determine the optimal number of clusters [4–9].
These cluster validity measures are constructed by con-
sidering geometric features such as compactness and sep-
arateness. Compactness means the degree of denseness
of the objects in each cluster, while separateness means
the degree of distance of the clusters from each other.
The modularity and traditional cluster validity measures
are assumed to be based on the same concept from the
viewpoint of functionality and the construction of mea-
sures. However, very few studies have been conducted
on the usefulness of traditional cluster validity measures
for network partition except for [10]. In addition, several
network data did not obtain better partitions by the Lou-
vain method and their optimal number of clusters were
determined by the modularity [11]. The novel evaluation
measures and network clustering methods are required to
obtain better network partitions from massive and com-
plex network data.

Herein, network cluster validity measures are pro-
posed and the effectiveness of these measures are verified
through numerical experiments to construct novel evalu-
ation measures and clustering methods for network data.
The network cluster validity measures are based on tra-
ditional cluster validity measures such as Dunn’s index
(DI) [4], the sum of the trace of fuzzy covariance matrix
(Wtr) [5], and Xie-Beni’s index (XB) [6]. These measures
are re-written to evaluate network partitions. The numeri-
cal experiments are conducted with network datasets that
are described as a weighted undirected graph. To obtain a
network cluster partition, k-medoids, [12] which is known
as a variant of k-means [13] is applied to a weighted undi-
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rected graph.
The reminder of this paper is organized as follows: In

Section 2, we introduce the notation, k-medoids, cluster
validity measures, and the modularity. In Section 3, we
propose the network cluster validity measures. In Sec-
tion 4, we describe the experiments that show the effec-
tiveness of the proposed method. In Section 5, we provide
some concluding remarks regarding this research.

2. Preliminaries

A set of objects to be clustered is given and denoted
by X = {x1, . . . ,xn} , in which xk (k = 1, . . . ,n) is an ob-
ject. In most cases, each object xk is a vector in the
p-dimensional Euclidean space ℜp, that is, an object
xk ∈ ℜp. When the network data is assumed, the dis-
similarity di j ≥ 0 between two objects xi, x j is denoted
by di j = d(xi,x j) and the dissimilarity matrix is denoted
by D = (di j)i=1∼n, j=1∼n. We assume D is symmetric
di j = d ji and dii = 0. A network data (X ,D) is assumed
to be given, and that objects X and the weight di j of edges
(xi,x j) are given. A cluster is denoted by Gi, and a collec-
tion of clusters is given by G = {G1, . . . ,Gc}. A cluster
center of Gi is denoted by vi ∈ ℜp, and a set of vi is given
by V = {v1, . . . ,vc}. The membership degree of xk be-
longing to Gi and a partition matrix is denoted as uki, and
U = (uki)1≤k≤n, 1≤i≤c.

2.1. kkk-Medoids
k-medoids is a variant of k-means clustering. The

cluster center is used as a cluster representative in k-
means [13]. In contrast, an object in each cluster is chosen
as a cluster representative in k-medoids [12]. An objective
function of k-medoids is as follows:

Jkd(U,W) =
c

∑
i=1

n

∑
k=1

n

∑
l=1

ukiwlirkl. . . . . . . (1)

Here, rkl represents a measure of relationship between ob-
jects and W = (wli)1≤l≤n, 1≤i≤c is a variable called proto-
type weight. In many cases, rkl is considered as a dis-
similarity between objects. An algorithm of k-medoids
is based on the alternating optimization with uki and wli
under the constraints on uki and wli as follows:

Uh =

{
(uki) : uki ∈ {0,1} ,

c

∑
i=1

uki = 1, ∀k

}
, . (2)

Wh =

{
(wli) : wli ∈ {0,1},

n

∑
l=1

wli = 1, ∀i

}
. . (3)

The l-th-object that takes wli = 1 is the representative
in a cluster. The important feature of k-medoids is that
it handles relational data denoted as a table of distances
between objects such as network data.

Algorithm 1 k-medoids

KMdd1 Set initial medoids.

KMdd2 Calculate uki ∈U by Eq. (4).

KMdd3 Calculate wli ∈W by Eq. (5).

KMdd4 If convergence criterion is satisfied, stop.
Otherwise go back to KMdd2.

The optimal solutions for uki and wli are as follows:

uki =

⎧⎪⎨
⎪⎩

1

(
i = argmin

s

n

∑
l=1

wlsrkl

)

0 ( otherwise )
, . . . (4)

wli =

⎧⎪⎨
⎪⎩

1

(
l = argmin

t

n

∑
k=1

ukirkt

)

0 ( otherwise )
. . . . (5)

The medoid of Gi is denoted in another form as follows:

Mdd(Gi) = arg min
xk∈Gi

∑
xl∈Gi

d (xk,xl) . . . . . . (6)

Eqs. (5) and (6) mean the same optimal solution. By con-
sidering the optimization problem of Jkd , the optimal so-
lution of wli is described in Eq. (5). Further, Eq. (6) is
considered by considering k-medoids in the algorithmic
procedure. The algorithm of k-medoids is summarized as
Algorithm 1.

2.2. Cluster Validity Measures
Cluster validity measures are used to evaluate clus-

ter partitions and determine the optimal number of clus-
ters [7, 9].

2.2.1. Dunn’s Index
Dunn’s index (DI) [4] is constructed by the cluster com-

pactness dia(Gl), and the separateness dis(Gi,G j) and is
described as follows:

DI =
min

1≤i, j≤c, i �= j
dis(Gi,G j)

max
1≤l≤c

dia (Gl)
, . . . (7)

dis(Gi,G j) = min
x∈Gi,y∈G j

d(x,y),

dia(Gl) = max
x,y∈Gl

d(x,y).

d(x,y) is the dissimilarity between objects x and y. In
addition, dis(Gi,G j) indicates the minimum dissimilarity
between two clusters and dia(Gl) is the maximum dissim-
ilarity within a cluster. If DI is large, the cluster partition
is considered to be good.

2.2.2. Trace of Fuzzy Covariance Matrix
Gath-Geva’s index [5] is based on a fuzzy covariance

matrix Fi. The sum of the traces of Fi is considered as
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follows:

Wtr =
c

∑
i=1

trFi. . . . . . . . . . . . . . (8)

The fuzzy covariance matrix Fi is defined as follows:

Fi =

n

∑
k=1

(uki)
m (xk − vi)(xk − vi)

T

n

∑
k=1

(uki)
m

. . . . . . (9)

m is a fuzzified parameter used in fuzzy clustering [8, 14].
For crisp partition, fuzzified parameter m = 1 in Fi. T is a
transposition operator. If Wtr is small, the cluster partition
is considered to be good.

2.2.3. Xie-Beni’s Index

Xie-Beni’s index (XB) [6] is constructed by consider-
ing the objective function and the minimum dissimilarity
between cluster centers, described as follows:

XB =

n

∑
k=1

c

∑
i=1

(uki)
m ‖xk − vi‖2

n min
1≤i, j,≤c, i �= j

‖vi − v j‖2 . . . . . . . (10)

m is also a fuzzified parameter. For k-means, m = 1 in
the numerator as well as for Fi. If XB is small, the cluster
partition is considered to be good.

2.3. Modularity

Modularity takes better values when the edges within
a cluster are dense and the edges between clusters are
sparse [2]. Modularity is used as not only a merging
criterion, but also an evaluation measure in the Louvain
method [3].

The modularity Q is described as follows:

Q =
1

2M

c

∑
i=1

n

∑
k=1

n

∑
l=1

[
akl − degkdegl

2M

]
ukiuli . . (11)

where, M is the total weight of the edges, akl is the weight
of the edge between node k and l, degk is the total weight
connected k. For an unweighted graph, akl = 1 if nodes k
and l are connected. If no edges exist between nodes k and
l, akl = 0 when the adjacent matrix is considered, while
dkl =+∞ when the dissimilarity matrix is considered.

3. Network Cluster Validity Measures

Herein, three network cluster validity measures indices
are discussed based on traditional indices. One is the orig-
inal Dunn’s index, and other two indices are based on
Wtr and XB. DI can be applied to network partition by
the original form Eq. (7).

Next, Wtr for fuzzy partition is re-written for network

partitions. Eq. (8) is written in following form:

Wtr =
c

∑
i=1

n

∑
k=1

(uki)
m ‖xk − vi‖2

n

∑
k=1

(uki)
m

. . . . . . . (12)

The numerator of Eq. (12) means the sum of the errors
in each cluster. The sum of the errors within a cluster
is defined by using the medoids in each cluster Eq. (6).
According to the procedures above, Wtr for crisp network
partition (NWtr) is written as follows:

NWtr =
c

∑
i=1

∑
xl∈Gi

d (xl,Mdd(Gi))

|Gi| . . . . . . (13)

XB for crisp network partition (NXB) is constructed sim-
ilariy as follows:

NXB =

c

∑
i=1

∑
xl∈Gi

d (xl,Mdd(Gi))

n min
1≤i, j,≤c, i �= j

d(Mdd(Gi),Mdd(G j))
. . (14)

The average of the errors in the clusters are rewritten by
introducing the medoids, and the dissimilarity between
clusters are defined between medoids instead of cluster
centers. The NXB is a reformulation form of the extended
Xie-Beni’s index discussed in [10] by using medoids as
representatives of each cluster.

NWtr and NXB can be fuzzified by using a fuzzy mem-
bership degree calculated by fuzzy clustering procedures
and fuzzification parameters [8, 14]. If only the fuzzy
membership degree is required, it can be calculated from
the optimal solutions of fuzzy clustering by considering
the medoids obtained from the k-medoids algorithm. As
such, NWtr and NXB are easily fuzzified. The fuzzy clus-
tering methods and fuzzified measures are considered as
useful in detecting overlapping clusters.

4. Experiments

We conducted numerical experiments with several
datasets to verify the effectiveness of the proposed
method. To verify the effectiveness of the cluster validity
measures, the numerical experiments must be conducted
with several datasets. Herein, several network datasets
are generated randomly based on the coordinates of the
Polaris dataset and used for the numerical experiments.
First, we describe the calculation conditions of the numer-
ical experiments. Next, we describe the clustering results
by network cluster validity measures. Finally, we summa-
rize the and features of the proposed measures.

4.1. Experimental Setup
We compared the measures above using randomly gen-

erated network data based on the Polaris data and eval-
uated the number of clusters. The Polaris dataset con-
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Fig. 1. Data 1 (25%–1%). Fig. 2. Data 2 (25%–5%).

Fig. 3. Data 3 (50%–1%). Fig. 4. Data 3 (50%–5%).

sists three clusters of 51 objects, and has two attributes
in the original form. Each cluster has 13, 15, and 23
objects. The edges within the same clusters are gener-
ated by 25% or 50% of the whole, and the edges between
clusters are also generated 1% or 5% of the whole. The
edge weights are calculated as the squared L2-distance
from each attribute in the original form. Four conditions
are considered in each combination. For each condition,
100 patterns of network datasets are generated randomly.
For each generated network data, k-medoids is executed
100 times with different initial values.

Figures 1–4 are illustrative examples of the network
data, which are classified into adequate clusters. In these
figures, the big circle means the medoid in each clus-
ter obtained by the k-medoids. Each network data is as-
sumed to be a complete graph by Dijkstra’s algorithm, and
is clustered by k-medoids. By applying Dijkstra’s algo-
rithm, the dissimilarity between nodes that are not con-
nected directly are obtained and used in the k-medoids
procedures. When the minimal value of the objective
function is obtained from the 100 trials, the value of mea-
sures are calculated. Subsequently, the average and stan-
dard derivation of 100 network dataset patterns are shown
in Figs. 5–12. These procedures are executed with the
number of clusters from two to six.

4.2. Experimental Results
We show the experimental results to demonstrate the

effectiveness of the cluster validity measures and the mod-
ularity. Table 1 shows the summary of the evaluation
by each measure. In this table, “◦” means that the mea-
sure estimates the optimal number of clusters, while “–”
means that the measure can not estimate the optimal num-
ber of clusters. DI and NXB evaluate the optimal number

Fig. 5. Result of DI with
Data 1 (25%–1%).

Fig. 6. Result of NXB
with Data 1 (25%–1%).

Fig. 7. Result of DI with
Data 2 (25%–5%).

Fig. 8. Result of NXB
with Data 2 (25%–5%).

Fig. 9. Result of DI with
Data 3 (50%–1%).

Fig. 10. Result of NXB
with Data 3 (50%–1%).

Fig. 11. Result of DI with
Data 4 (50%–5%).

Fig. 12. Result of NXB
with Data 4 (50%–5%).

of clusters in data 1, 3, and 4. However, DI and NXB
can not evaluate the optimal number of clusters in data 2.
NWtr and modularity can not evaluate the optimal number
of clusters for all data. The value of NWtr and modularity
monotonically increase/decrease for all data.

Figures. 5–12 are the results of DI and NXB with each
condition. The results of NWtr and modularity are omit-
ted here because these measures can not obtain the opti-
mal number of clusters by a monotonic increase/decrease.
“×” means the average of 100 datasets and the vertical
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Table 1. Result of network cluster validity measures with each condition.

Data 1 (25%–1%) Data 2 (25%–5%) Data 3 (50%–1%) Data 4 (50%–5%)
DI © – © ©

NWtr – – – –
NXB © © © ©

Q – – – –

Fig. 13. An example of Data 2 (25%–5%).

Fig. 14. Another example of Data 2 (25%–5%).

bar means the standard derivation. “◦” means the result
when the value of the objective function is minimized in
100 datasets with 100 different initial values. “�” means
the best value of measures in 100 datasets. Figs. 5, 6,
9–12 show that DI and NXB obtain better results for opti-
mal cluster number c = 3 on average, i.e., the result when
the objective function is minimal, or the best value of the
measures. However, the average of DI fails to estimate
the optimal number of clusters, as shown in Fig. 7. In ad-
dition, NXB also fails to estimate the optimal number of
clusters, as shown in Fig. 8.

4.3. Discussions
First, we show the overview of the indices. Table 1

shows that DI and NXB are suitable for the network clus-

ter validity measures. However, NWtr and Q can not ob-
tain the optimal number of clusters. Figs. 13 and 14 are
illustrative examples of data 2. If many edges are present
between clusters, the dissimilarity between objects in the
other cluster becomes smaller. This causes adverse effects
to the cluster partitions.

The features of the measures are summarized as fol-
lows:

• DI obtains better results except for data 2. The
medoids in each cluster is not considered in DI. If a
few edges are present between clusters, the minimum
distance between clusters is large. In such cases, DI
obtains better results than others, as shown in Figs. 5
and 9.

• NXB obtains better results for all datasets. If many
edges are present between clusters, the minimum
distance between medoids is small. In such cases,
NXB can not obtains better results, as shown in
Figs. 8 and 12.

• NWtr does not obtain better results for all datasets.
The value of NWtr monotonically decreases for the
crisp partition as the number of clusters increases.
This feature of Wtr for crisp partition is trivial. The
fuzzy membership degree is an effective extension to
overcome this problem. The fuzzification of NWtr is
required to evaluate the network partition and to esti-
mate the optimal number of clusters from that sense.

• Modularity does not obtain better results for all
datasets. The modularity value changes monotoni-
cally for network partitions obtained by k-medoids.
Modularity is considered the suitable evaluation
measure when it is used in the Louvain method.

These experiments show that DI and NXB are suitable
for the network cluster validity measures. The advantage
of the proposed network cluster validity measures is their
usefulness for complex structures by introducing fuzzifi-
cation and kernelization. For example, kernelized XB and
Wtr have been proposed to improve the performance of
traditional cluster validity measures [9].

In addition, traditional k-medoids and cluster validity
measures have been actively studied until now. By ex-
tending the traditional approach to network clustering,
various extensions could be proposed as novel cluster va-
lidity measures for network partitions. In addition, diffu-
sion kernel [15] is a well-known kernel method to cal-
culate the similarity between nodes for an unweighted
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graph. As a natural extension of the kernel method to net-
work clustering and cluster validity measures, the kernel
method is one of the useful methods.

5. Conclusions

Herein, network cluster validity measures that are
based on traditional indices were studied and the effec-
tiveness of these measures were verified through numeri-
cal experiments. The numerical experiments showed that
DI and NXB are effective for network partitions compared
to other indices.

In future works, we will consider novel cluster valid-
ity measures including fuzzification and kernelization ac-
cording to numerical experiments. Next, we will con-
struct new clustering methods for network data based on
the proposed indices. Moreover, we will conduct numer-
ical experiments with large network data to demonstrate
the effectiveness of our proposed methods.

Several network data exist, such as unweighted, di-
rected, and bipartite. To handle various network struc-
tures, the fuzzy clustering approach [8, 14], kernel
method [9, 15], probabilistic model, and other approaches
are required. In addition, the relation among cluster valid-
ity measures, modularity, kernel methods, and the proba-
bilistic should be discussed.
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