
Sakai, H., Shen, K.-Y., and Nakata, M.

Paper:

On Two Apriori-Based Rule Generators:
Apriori in Prolog and Apriori in SQL
Hiroshi Sakai∗, Kao-Yi Shen∗∗, and Michinori Nakata∗∗∗

∗Department of Basic Sciences, Graduate School of Engineering, Kyushu Institute of Technology
Tobata, Kitakyushu 804-8550, Japan

E-mail: sakai@mns.kyutech.ac.jp
∗∗Department of Banking and Finance, Chinese Culture University (SCE)

Da’an District, Taipei City, Taiwan
E-mail: kyshen@sce.ppcu.edu.tw

∗∗∗Faculty of Management and Information Science, Josai International University
Gumyo, Togane, Chiba 283-8555, Japan

E-mail: nakatam@ieee.org
[Received December 12, 2017; accepted March 30, 2018]

This paper focuses on two Apriori-based rule genera-
tors. The first is the rule generator in Prolog and C,
and the second is the one in SQL. They are named
Apriori in Prolog and Apriori in SQL, respectively.
Each rule generator is based on the Apriori algorithm.
However, each rule generator has its own properties.
Apriori in Prolog employs the equivalence classes de-
fined by table data sets and follows the framework of
rough sets. On the other hand, Apriori in SQL em-
ploys a search for rule generation and does not make
use of equivalence classes. This paper clarifies the
properties of these two rule generators and considers
effective applications of each to existing data sets.

Keywords: rule generation, apriori algorithm, associa-
tion rules, prolog, SQL

1. Introduction

Under conditions of uncertainty, we have been in-
vestigating the Apriori algorithm [1], rough sets [2, 3],
non-deterministic information [4], incomplete informa-
tion databases [5], missing values [6], among others, for
rule generation, data mining, and decision support [7].

Our interest comprises three issues. The first is improv-
ing the theoretical framework of rule generation. The sec-
ond is implementing rule generators with proven proper-
ties. The third is applying the rule generators to exist-
ing data sets. Each obtained rule becomes fundamental
knowledge for decision support. In the theoretical frame-
work, we already proposed the framework of Rough Sets
Non-deterministic Information Analysis (RNIA), which
combines rough sets and non-deterministic information
for rule generation under uncertainty [8–11]. In the appli-
cation of rule generators, the second author handled exist-
ing data sets like credit card evaluation and banking data
sets [12].

This paper is closely related to the second issue: the
implementation of rule generators. Apriori in Prolog em-
ploys the concept of rough sets and makes use of equiva-
lence classes defined in tables. There are, of course, rule
generation systems based on rough sets [13, 14]. How-
ever, Apriori in SQL follows the framework of relational
data bases and sequentially manipulates tables to obtain
the final table, including rules. We clarify the property of
these two rule generators and consider more effective uses
of them.

We are also coping with the Apriori algorithm for ta-
ble data sets with non-deterministic information. This
is an extension from the Apriori algorithm handling de-
terministic information to that handling non-deterministic
information. This paper is the foundation for NIS-Apriori
in Prolog [15] and NIS-Apriori in SQL [16]. Currently,
Apriori in SQL may be familiar, but NIS-Apriori in SQL
is a new framework for uncertain information.

This paper is organized as follows. Section 2 considers
the framework of Apriori-based rule generation. Section 3
investigates the properties of equivalence classes defined
by table data sets and describes Apriori in Prolog by using
the actual execution logs. Section 4 clarifies the function-
ality of SQL and investigates Apriori in SQL. Section 5
extends Apriori in SQL to NIS-Apriori in SQL for rule
generation from uncertain information. Section 6 com-
pares Apriori-based rule generation with rough set-based
rule generation. Section 7 concludes this paper.

2. Apriori-Based Rule Generation in Table
Data Sets

This section describes some definitions for Apriori-
based rule generation. We follow the framework of rough
sets and handle each table data set as a Deterministic In-
formation System (DIS).

394 Journal of Advanced Computational Intelligence Vol.22 No.3, 2018
and Intelligent Informatics

https://doi.org/10.20965/jaciii.2018.p0394

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Apriori in Prolog and Apriori in SQL

Table 1. An exemplary DIS ψ1.

OB color shape price
1 red square low
2 red triangle low
3 blue round high
4 blue square high
5 blue square low

2.1. Table Data Sets and Rules

DIS ψ is a quadruplet

ψ = (OB,AT,{VALA| A ∈ AT}, f), (1)

where OB is a finite set, whose elements are called ob-
jects; AT is a finite set whose elements are called at-
tributes; VALA is a finite set whose elements are called
attribute values, and f is such a mapping that f : OB×
AT →∪A∈ATVALA. An attribute Dec ∈ AT is usually pre-
defined and is called a decision attribute. A subset CON
of AT \{Dec} is called a set of condition attributes. In ψ ,
a pair [A,val] (A ∈ AT , val ∈VALA) is called a descriptor,
and a formula τ in the following is called an implication.

τ : ∧A∈CON [A,valA]⇒ [Dec,val],
valA ∈VALA,val ∈VALDec. (2)

Definition 1. [2, 3] For DIS ψ , two given threshold values
0 < α, β ≤ 1.0, an implication τ satisfying (1) and (2) is
called (a candidate of) a rule in ψ .

(1) support(τ)

=
|OBJ(∧A∈CON [A,valA]∧ [Dec,val])|

|OB| ≥ α,

(2) accuracy(τ)

=
|OBJ(∧A∈CON [A,valA]∧ [Dec,val])|

|OBJ(∧A∈CON [A,valA])| ≥ β .

. (3)

Here, OBJ(∗) is a set of the objects satisfying the for-
mula ∗, and |M| (M is a set of objects) is the cardinality
of the set M. If |OBJ(∧A∈CON [A,valA])| = 0, we define
support(τ) = accuracy(τ) = 0.

Example 1.
(1) For an exemplary DIS ψ1 in Table 1, we sup-
pose two threshold values α = 0.2 and β = 0.7,
and an implication τ1 : [color,blue] ⇒ [price,high].
Since |OBJ([color,blue])| = |{3,4,5}| = 3 and
|OBJ(τ1)| = |{3,4}| = 2, support(τ1) = 2/5 > 0.2
and accuracy(τ1) = 2/3 < 0.7 hold. Thus, we see τ1 is
not a rule.
(2) For τ2 : [color,blue]∧ [shape,round]⇒ [price,high],
we have |OBJ([color,blue]∧ [shape,round])|= |{3}|= 1
and |OBJ(τ2)|= |{3}|= 1, and support(τ2) = 1/5 ≥ 0.2
and accuracy(τ2) = 1/1 > 0.7 hold. Thus, we see τ2 is a
rule.

The support(τ) value means the occurrence ratio of τ
in ψ , and the accuracy(τ) means the consistency ratio of

τ in ψ . The purpose of rule generation in ψ is to obtain
all rules specified in Definition 1.

2.2. The Adjusted Apriori Algorithm to Table Data
Sets

The Apriori algorithm was proposed by Agrawal, and
it is known as the representative algorithm in data min-
ing [1, 17]. This algorithm originally handled transaction
data sets instead of table data sets. However, if we iden-
tify each descriptor in a table data set with an item, we can
consider the Apriori algorithm in tables [9, 15]. For exam-
ple, we see the tuple of the object 1 in Table 1 implies an
item set {[color,red], [shape,square], [price, low]}. We
name this algorithm an adjusted Apriori algorithm.

The Apriori algorithm does not take such a method that
each implication τ is sequentially created and two values
support(τ) and accuracy(τ) are evaluated for examining
(1) and (2) in Definition 1. Instead, the Apriori algorithm
enumerates each implication τ , which may satisfy (1) in
Definition 1. This method reduces the number of implica-
tions to be handled. In order to clarify the adjusted Apriori
algorithm, we consider the following proposition.

Proposition 1. In DIS ψ , let P be an attribute in (AT \
CON). For two implications below:

τ : ∧A∈CON [A,valA]⇒ [Dec,val],
η : ([P,valP]∧ (∧A∈CON [A,valA]))⇒ [Dec,val].

. (4)

we have the following.
(1) support(η)≤ support(τ) always holds.
(2) Regarding accuracy(τ) and accuracy(η), we theoret-
ically do not have one unique inequality. The inequality
depends on each data set.

(Proof)
(1) In η , we need to add another condition [P,valP] to each
object, so the number of objects satisfying η is less than
that of τ . This causes the unique inequality.
(2) In Table 1, accuracy(τ1)(= 2/5) ≤ accuracy(τ2)(=
1.0) holds. For τ3 : [color,blue] ∧ [shape,square] ⇒
[price,high], accuracy(τ3) = 1/2 holds. Thus, in this
case, accuracy(τ3) ≤ accuracy(τ1). This is an example,
and we cannot conclude one inequality.

Remark 1. For τ and η in Proposition 1, we say η is
redundant to τ . If τ is a rule, we say η is a redundant
rule.

(A∧B ⇒ Dec) = (¬(A∧B)∨Dec)
= (¬A∨¬B∨Dec) = ((¬A∨Dec)∨ (¬B∨Dec))
= ((A ⇒ Dec)∨ (B ⇒ Dec)).

. (5)

Owing to the above formula (5), we can conclude A∧B⇒
Dec from A ⇒ Dec. For simplicity, we do not consider
any redundant rule. We only handle each rule whose con-
dition part is minimum, which may be called a prime im-
plicant.

Vol.22 No.3, 2018 Journal of Advanced Computational Intelligence 395
and Intelligent Informatics

Sakai, H., Shen, K.-Y., and Nakata, M.

Definition 2. For DIS ψ , a threshold value α , and each
implication τ : ∧A∈CON [A,valA] ⇒ [Dec,val], we define
IMPi = {τ | |CON| = i and support(τ) ≥ α}. The sub-
script, i, in IMPi means the number of descriptors in the
condition part.

For example,
IMP1 = {τ : [A,valA]⇒ [Dec,val], support(τ)≥ α},
IMP2 = {τ : [A,valA]∧ [B,valB]⇒ [Dec,val],

support(τ)≥ α},
IMP3 = {τ : [A,valA]∧ [B,valB]∧ [C,valC]⇒ [Dec,val],

support(τ)≥ α}.

Because every implication τ is an element in IMP|CON|,
we do no miss any τ if we sequentially examine IMP1,
IMP2, IMP3, On the other hand, we need to handle a
large number of meaningless implication, if we consider
each IMP1, IMP2, IMP3, . . ., independently. However, it
is enough to consider implications related to IMP1 based
on the next Proposition 2. This is an effective property for
handling IMP1, IMP2, IMP3,

Proposition 2 For each implication τ : [P,valP] ∧
[Q,valQ] ⇒ [Dec,val] ∈ IMP2, [P,valP] ⇒ [Dec,val] ∈
IMP1 and [Q,valQ]⇒ [Dec,val] ∈ IMP1 must hold.

(Proof) If [P,valP] ⇒ [Dec,val] �∈ IMP1, this implication
does not satisfy the condition of support. Owing to (1) in
Proposition 1, we have support(τ)≤ α .

Because Proposition 2 is recursively applicable, we can
reduce the elements of IMPi by using Proposition 2. It is
enough for us to consider IMP1, IMP2, . . ., whose ele-
ments are the combination of implications in IMP1.

The following Algorithm 1 is the adjusted Apriori al-
gorithm to table data sets and employs Propositions 1 and
2.

Algorithm 1. The adjusted Apriori algorithm.
Input: DIS ψ , the decision attribute Dec, the threshold
values α and β .
Output: A set Rule(ψ) consisting of all rules.
begin
Rule(ψ) := {}; i := 1; generate IMPi;
while (|IMPi| ≥ 1)
{Rest := {};
for each τ ∈ IMPi, if accuracy(τ) ≥ β then add τ to
Rule(ψ) else add τ to Rest;
i := i+1;
generate IMPi by using Rest and Propositions 1 and 2,
where τ(∈ IMPi) is not any redundant implication to rules
in Rule(ψ) }
end.

Regarding the adjusted Apriori algorithm, we have the
following theorem. Thus, Algorithm 1 is necessary and
sufficient for obtaining rules (excepting the redundant
rules) in Definition 1.

Theorem 1. [9] The adjusted Apriori algorithm is sound
and complete for a set of rules (excepting the redundant
rules) defined by support(τ) ≥ α and accuracy(τ) ≥ β
in DIS ψ . Namely, each τ ∈ Rule(ψ) is a rule (sound-

ness) and any rule τ belongs to Rule(ψ) (completeness).

3. Apriori-Based Rule Generator in Prolog and
its Property

This section considers Apriori in Prolog and its imple-
mentation by using rough set-based concepts.

3.1. Equivalence Classes in Tables
In DIS ψ , we see there is a relation between two ob-

jects x and y for AT R, if f (x,A) = f (y,A) holds for ev-
ery A ∈ ATR ⊆ AT . This relation is known as an equiv-
alence relation over OB [2]. Let eq(ATR) denote a set
of the equivalence classes with respect to AT R, and let
[x]AT R ∈ eq(ATR) denote an equivalence class below:

{y ∈ OB | f (y,A) = f (x,A) for every A ∈ AT R}. (6)

We connect the calculation of support(τ) and
accuracy(τ) with the equivalence classes. For an object
x, CON and Dec, we automatically have an implication
τx : ∧A∈CON [A, f (x,A)] ⇒ [Dec, f (x,Dec)] (We employ
the notation τx, if we need to specify the object x). Since
OBJ(∧A∈CON [A, f (x,A)]) is a set of objects with attribute
values f (x,A) for A ∈ CON, it is the same set of [x]CON .
Similarly, OBJ(τx) is an equivalence class [x]CON∪{Dec}.

Proposition 3. [2] For A, B ∈ AT , let [x]{A} and [x]{B}
be two equivalence classes with an object x, then we have
[x]{A,B}=[x]{A} ∩ [x]{B}.

Proposition 3 shows us that any equivalence class
[x]AT R is equal to ∩A∈AT R[x]{A}, and we have the formulas
in the following:

support(τx)

=
|[x]CON∪{Dec}|

|OB|
=

|(∩A∈CON [x]{A})∩ [x]{Dec}|
|OB| ,

accuracy(τx)

=
|[x]CON∪{Dec}|

|[x]CON |
=

|(∩A∈CON [x]{A})∩ [x]{Dec}|
|∩A∈CON [x]{A}|

.

. (7)

Remark 2. An original property in Prolog is the manip-
ulation of lists. Prolog has the good performance for the
list processing. Here, we express each equivalence class
[x]{A} by a list and make use of the list processing func-
tionality in Prolog.

3.2. Apriori in Prolog with Equivalence Classes
This subsection considers the calculation of support(τ)

and accuracy(τ) in Algorithm 1. We employ the
list processing functionality in Prolog. For simplicity,

396 Journal of Advanced Computational Intelligence Vol.22 No.3, 2018
and Intelligent Informatics

Apriori in Prolog and Apriori in SQL

we use Table 1 below, which is expressed in Prolog.
support(0.2). accuracy(0.7).

decision(3). condition([1,2]).

data(1,[red,square,low]).

data(2,[red,triangle,low]).

data(3,[blue,round,high]).

data(4,[blue,square,high]).

data(5,[blue,square,low]).

The following is the execution logs. The step 1 command
generates rules from IMP1, and three rules are generated.
There is no rule from IMP2 nor IMP3.

?- step 1.

File Name for Read Open:jaciii.rs.

SUPPORT:0.2,ACCURACY:0.7

[1] MINSUPP=0.0,MINACC=0.0

[2] MINSUPP=0.4,MINACC=1.0

[color,red] => [price,low][1,2]

: : : :

[8] MINSUPP=0.2,MINACC=1.0

[shape,triangle] => [price,low][2]

[9] MINSUPP=0.2,MINACC=1.0

[shape,round] => [price,high][3]

[10] MINSUPP=0.0,MINACC=0.0

(Next Candidates are Remained)

[[[1,2],[3,1]],[[1,2],[3,2]],[[2,1],[3,1]],

[[2,1],[3,2]]]

EXEC_TIME=0.0(sec)

yes

?- step 2.

[1] MINSUPP=0.2,MINACC=0.5

[2] MINSUPP=0.2,MINACC=0.5

(Next Candidates are Remained)

[[[1,2],[2,1],[3,1]],[[1,2],[2,1],[3,2]]]

EXEC_TIME=0.0(sec)

yes

?- step 3.

(System Terminated)

EXEC_TIME=0.0(sec)

Internally, the following lists (they are called predicates
in Prolog) are generated at first. Each descriptor satisfies
the condition |OBJ(∗)| ≥ 0.2. The pair of the first and the
second arguments is the index of each descriptor, and the
fourth argument is the equivalence class. We name each
predicate eq with four arguments a primitive predicate of
a descriptor.

eq(1,1,[color,red],[1,2]).

eq(1,2,[color,blue],[3,4,5]).

eq(2,1,[shape,square],[1,4,5]).

eq(2,2,[shape,triangle],[2]).

eq(2,3,[shape,round],[3]).

eq(3,1,[price,high],[3,4]).

eq(3,2,[price,low],[1,2,5]).

By Proposition 2, the following list (the Cartesian prod-
ucts) is internally generated in step 1.

conjunction([[[1,1],[3,1]],[[1,1],[3,2]],

[[1,2],[3,1]],[[1,2],[3,2]],[[2,1],[3,1]],

[[2,1],[3,2]],[[2,2],[3,1]],[[2,2],[3,2]],

[[2,3],[3,1]],[[2,3],[3,2]]]).

The first list [[1,1], [3,1]] means an implication
[color,red] ⇒ [price,high] by the index of each de-
scriptor. Each implication is expressed by such list.
After step 2, we see [[1,2], [2,1], [3,1]] in the next can-
didates. This means τ : [color,blue]∧ [shape,square]⇒
[price,high], and this is an element of Rest in Algorithm
1. By Proposition 3, OBJ([color,blue]∧ [shape,square])
is equal to OBJ([color,blue]) ∩ OBJ([shape,square]),
thus {3,4,5} ∩ {1,4,5} = {4,5} is derived, and
OBJ(τ) = {4,5} ∩ OBJ([price,high]) = {4}. In
this way, we have support(τ) = 2/5 > 0.2 and
accuracy(τ) = 1/2 < 0.7. Like this, we can calcu-
late support(τ) and accuracy(τ) in Algorithm 1.

3.3. Implementation and Some Properties of Apri-
ori in Prolog

Apriori in Prolog is coded by K-Prolog, and each pred-
icate is compiled by using C. This work is extended to the
system getRNIA [18] in Python. We also extended Apriori
in Prolog to NIS-Apriori in Prolog for handling not only
DISs ψ but also Non-deterministic Information Systems
(NISs) [15].

Now, we enumerate some advantages and disadvan-
tages of Apriori in Prolog.

(Advantage AP (Apriori in Prolog) 1) In the execution,
Apriori in Prolog generates a set of primitive predicates
of a descriptor below:

eq(index1, index2,descriptor,OBJ(descriptor)). (8)

Furthermore, it is possible to remove descriptors satisfy-
ing |OBJ(descriptor)| / |OB|<α by using Proposition 1.
By using Propositions 2 and 3, it is possible to have IMP1,
IMP2, . . . and to calculate support(τ) and accuracy(τ).
Namely, it is enough for us to consider the set of primi-
tive predicates of a descriptor for rule generation.

(Advantage AP2) Prolog has the good performance for
the list processing, thus Prolog will be suitable for han-
dling the equivalence classes. For small size data sets,
Apriori in Prolog will be effective.

(Disadvantage AP1) The description of the original data
must follow the syntax of Prolog. It is not easy to prepare
this description.

(Disadvantage AP2) For large size data sets, the length
of the list expressing OBJ(descriptor)may become large.
In the Mammographic data set [19] in UCI machine learn-
ing repository, we have below: (In [11], we opened the
execution logs by Apriori in Prolog.)

?- eq(5,3,P,Q),length(Q,T).

P=[density,3],

Q=[2,3,5,6,7,8,10,11,12,15,16,17,18,23,24,25,27,

: : : :

951,952,953,954,955,956,957,958,959,960],

T=797

The list Q consists of 797 objects for a total 960 objects.

Vol.22 No.3, 2018 Journal of Advanced Computational Intelligence 397
and Intelligent Informatics

Sakai, H., Shen, K.-Y., and Nakata, M.

Fig. 1. Some parts of the rdf table for Table 1.

Whereas there is no restriction on the length of each list,
we sometimes had stack overflow during execution. Actu-
ally, we could handle lists which consist of less than 1000
objects, but we had the execution errors for lists consist-
ing of more than 2000 objects. We increased the local
stack and the global stack for execution in such case. Fur-
thermore, Apriori in Prolog handled such plural lists at
the same time. Owing to this constraint for the execution
environment, Disadvantage AP2 seems to be a very im-
portant problem, and we determine that Apriori in Prolog
may not be suitable for large size data set.

4. Apriori-Based Rule Generator in SQL and
its Property

This section considers Apriori in SQL and its imple-
mentation. Some execution logs are in the web page [11].

4.1. The Functionality of SQL and a Data Format
SQL was originally developed for information re-

trieval, and SQL easily manipulates table data. Whereas
rule generation is different from information retrieval, the
functionality of SQL is useful for rule generation. Some
frameworks of rule generation depending on SQL are pro-
posed [20–22].

In data sets, we usually have the csv format. This is
very familiar, however the number of all attributes and
the name of each attribute are different. Thus, if the rule
generation program is depending upon each data set, we
need to have one program for one data set. In order to
escape from this situation, we need another unified format
handling various types of data sets uniformly.

4.2. RDF Format for Apriori in SQL
This subsection considers the RDF (or EAV) format

[21, 22] as the unified format handling various types of
data sets, and we consider some procedures in SQL.

Each program is implemented by using the procedures
in SQL. Therefore, it is easy to execute Apriori in SQL in
any PC. Fig. 1 shows the rdf table generated from Table 1.
This rdf table stores each tuple as a set of descriptors. Af-
ter this translation from table data set to rdf table, there

Fig. 2. Rule generation by Apriori in SQL.

are only three attributes ob ject, attrib, value. Each at-
tribute in a data set is stored as a value of attribute. All
procedures in SQL handle this translated rdf table for rule
generation. By using this rdf table, it is possible to handle
any data set.

Figure 2 is the actual execution log for rule generation
from Table 1. The procedure apriv2(′price′,5,0.2,0.7)
means that the decision attribute is ‘price,’ 5 objects,
support(τ) ≥ 0.2 and accuracy(τ) ≥ 0.7. This is the
same condition in Section 3. In Fig. 2, the table
rule1 stores rules in IMP1 and the table rest1 stores
implication in Rest in Algorithm 1. Fig. 3 shows ta-
bles rule1 and rest1. From the table rest1, Apriori in
SQL generates the table con2 consisting of one con-
junction [color,blue]∧ [shape,square], then two implica-
tions τ : [color,blue]∧ [shape,square]⇒ [Dec,high] and
η : [color,blue]∧ [shape,square]⇒ [Dec, low] are exam-
ined. Two implications mutually do not satisfy the con-
dition, thus we have the table rest2 consisting τ and η .
Since it is impossible to have any implication with three
descriptors in the condition part, IMP3 is an empty set,
and Apriori in SQL ends.

The procedure apriv2 below simulates the adjusted
Apriori algorithm. The following is the overview of the
series (for IMP1, IMP2, and IMP3) of the SQL procedures.
Especially, we describe the SQL code for rule generation
in Fig. 3. This part seems to be comprehensible, and the
most complicated part is to manage the redundant impli-
cations and to generate the condition part by Rest in Al-
gorithm 1 .

delimiter //

create procedure apriv2

begin

create table condi(); /* a table of

398 Journal of Advanced Computational Intelligence Vol.22 No.3, 2018
and Intelligent Informatics

Apriori in Prolog and Apriori in SQL

Dec, |OB|, α, β */

create table deci(); /* a table of Dec */

create table con1(); /* a table of CON */

create table rule1(); /* a table of the rules */

create table rest1(); /* a table of the rest */

create table con20(), con21(), con2();

/* a table of p1 ∧ p2 from rest1 */

create table con2_eq0(), con2_eq();

/* a table of eq information by search */

create table rule21(), rule2();

/* a table of rule2 */

create table rest2(); /* a table of rest */

create table con30(), con31(), con3();

/* a table of p1 ∧ p2 ∧ p3 from rest2 */

create table con3_eq0(), con3_eq();

/* a table of eq information by search */

create table rule31(), rule3();

/* a table of rule3 */

end //

4.3. Properties of Apriori in SQL
Now, we refer to the properties of Apriori in SQL. Apri-

ori in Prolog makes use of the equivalence classes, but
Apriori in SQL uses search for calculating support(τ)
and accuracy(τ). This is the most different point between
two generators, and we have the following with respect to
Apriori in SQL.

(Advantage AQ (Apriori in SQL) 1) The environment
of SQL is familiar in PC, and it is easy to execute the im-
plemented procedures. The system Xampp [23] with the
user interface is effective for execution. After the trans-
lation from a csv data set to a rdf table, it is possible to
handle any data set uniformly. This seems much better
than that of Apriori in Prolog.

(Advantage AQ2) Apriori in SQL employs a search in-
stead of the equivalence classes. Therefore, we can es-
cape from (Disadvantage AP2), and it will be possible to
handle large size data sets. In fact, we could easily have
rule generation for some data sets [11].

(Disadvantage AQ1) For a small size data sets, Apriori
in Prolog seems much faster than Apriori in SQL. In the
execution of Table 1 by Apriori in Prolog, step 1, step 2,
and step 3 took 0.0 seconds, respectively. However, Apri-
ori in SQL took about 2 seconds. In the Mammographic
data set [11], NIS-Apriori in Prolog took about 5 seconds
for step 1, step 2, and step 3. However NIS-Apriori in
SQL took about 200 seconds. Whereas it is necessary to
brush up the code of NIS-Apriori in SQL, NIS-Apriori in
Prolog seems better than NIS-Apriori in SQL with respect
to the Mammographic data set [11].

5. From Table Data Analysis to Table Data
Analysis with Uncertainty

This paper focuses on rule generators handling DIS ψ ,
however we have lots of tables with missing values like

the Mammographic data set, the Congressional Voting
data set, the Hepatitis data set, etc. We see such a table
as a Non-deterministic Information System (NIS).

In NIS Φ, we usually apply the discretization procedure
and handle a finite number of possible values. By replac-
ing each ? symbol with a possible value, we have one DIS,
which we name a derived DIS. Let DD(Φ) denote the set
of all derived DISs from NIS Φ. In rule generation, we
employ Definition 1 in DIS and extend it to a certain rule
and a possible rule in NIS below [9, 10]:

(A certain rule in NIS) An implication τ is a certain rule,
if τ is a rule in each derived DIS for given α and β .

(A possible rule in NIS) An implication τ is a possible
rule, if τ is a rule in at least one derived DIS for given α
and β .

If τ is a certain rule, we can conclude τ is also a rule
in the unknown actual DIS ψactual (We see there is one
derived DIS ψactual ∈ DD(Φ) which contains the actual
values). This property is also described in Lipski’s in-
complete information databases [5]. In DIS, the defined
set of certain rules and the defined set of possible rules are
equal, thus two definitions seem to be a natural extension
from rules in DIS. However in NIS, the number of DD(Φ)
increases exponentially, and there are more than 10100 de-
rived DISs for the Congressional Voting data set. It will
be hard to examine the certain rules and the possible rules
by checking each derived DIS sequentially. For this prob-
lem, we afford a solution by showing some properties on
rules [9, 10]. In [11], some examples are uploaded.

We are now proposing the new framework related to
NIS and missing values [10]. We focused on how we
obtain rules in DIS and NIS in the previous research.
Because we gave a solution for rule generation in DIS
and NIS, we think that it will be able to cope with next
new topics in Fig. 4. The 2© and 3© consider the esti-
mation of uncertain values by using the machine learn-
ing strategy, and the 4© aims the dilution of informa-
tion. We intentionally change deterministic information
to non-deterministic information with preserving some
constraints. This strategy seems to be similar to the pay-
per-view scrambled broadcasting. The 5© tries to apply
NIS to privacy preserving system. We agree with that
each respondent answers two choices for questionnaire
consisting of multiple choice question. Then, we have
NIS instead of DIS, and some personal answers are di-
luted for privacy preserving. In our RNIA, we can obtain
certain rules and possible rules for knowing the properties
of data sets. Namely, a privacy preserving questionnaire
system can be considered by using RNIA [24].

6. Apriori-Based Rule Generation and Rough
Set-Based Rule Generation

This section compares Apriori-based rule generation
with rough set-based rule generation. In rough sets, the
following property takes the important role.

Vol.22 No.3, 2018 Journal of Advanced Computational Intelligence 399
and Intelligent Informatics

Sakai, H., Shen, K.-Y., and Nakata, M.

Following is the SQL code for generating table rule1.
create table rule1 (att1 varchar(15),val1 varchar(15),deci varchar(15),

deci_value varchar(15),support decimal(15,3),accuracy decimal(15,3))
select att1,val1,deci,deci_value,count(*)/ob as support,

count(*)/(con1.support) as accuracy
from con1,deci,rdf t1,rdf t2
where att1 <> decision and t1.attrib=att1 and t1.value=val1 and

t2.attrib=decision and t2.value=deci_value and t1.object=t2.object
group by att1,val1,deci,deci_value
having support>=alpha and accuracy>=beta;
insert into rule1 (att1) values (’end_attrib’);

Following is the SQL code for generating table rule2. The procedure rule2 removes redundant rules from
the table rule21 (IMP2) and generates the table rule2.
create table rule2 (att1 varchar(15),val1 varchar(15),att2 varchar(15),

val2 varchar(15),deci varchar(15),deci_value varchar(15),
support decimal(15,3),accuracy decimal(15,3))

select att1,val1,att2,val2,deci,deci_value,support,accuracy
from rule21
where not exists (

select ∗
from rule1 t
where

(t.att1 <> ’end_attrib’ and rule21.att1=t.att1 and rule21.val1=t.val1
and rule21.deci=t.deci and rule21.deci_value=t.deci_value)

or
(t.att1 <> ’end_attrib’ and rule21.att2=t.att1 and rule21.val2=t.val1
and rule21.deci=t.deci and rule21.deci_value=t.deci_value)

)
group by att1,val1,att2,val2,deci,deci_value;
insert into rule2 (att1) values (’end_attrib’);

Fig. 3. Three rules in the table rule1 and four implications in the table rest1, and the SQL codes for tables rule1 and rule2.

Proposition 4. [2] In DIS and an implication τ :
∧A∈CON [A,valA] ⇒ [Dec,val], the following (1) and (2)
are equivalent:
(1) accuracy(τ) = 1,
(2) OBJ(∧A∈CON [A,valA])⊆ OBJ([Dec,val]).

At the beginning, (2) in Proposition 4 are employed for
detecting the implication τ satisfying accuracy(τ) = 1.
Because the condition accuracy(τ) = 1 is too strict, the
research to handle accuracy(τ)≥β has been investigated.
Owing to this historical background, we may have the
next interpretation for rough set-based rule generation.

400 Journal of Advanced Computational Intelligence Vol.22 No.3, 2018
and Intelligent Informatics

Apriori in Prolog and Apriori in SQL

Fig. 4. An overview of new topics [10].

(1) For one descriptor [Dec,val], we fix a target set X =
OBJ([Dec,val]) and two threshold values α and β .

(2) After finding a set LOW (= OBJ(∧A∈AT T L[A,valA])
for AT TL ⊆ AT) satisfying LOW ⊆ X , as a side ef-
fect, an implication τ :∧A∈AT T L[A,valA]⇒ [Dec,val] with
accuracy(τ) = 1 is obtained by Proposition 4. We recog-
nize τ is a rule, if support(τ)≥ α .

(3) After finding a set UPP(=OBJ(∧A∈AT TU [A,valA]) for
ATTU ⊆ AT) satisfying X ⊆UPP and accuracy(τ)≥ β ,
an implication τ : ∧A∈AT TU [A,valA] ⇒ [Dec,val] is ob-
tained as a rule, if support(τ)≥ α .

In rough sets, the most important issue is how we find two
sets LOW and UPP. The problem of rule generation is
converted to the problem of finding two appropriate sets
LOW and UPP. In rough set-based rule generation, the
first priority criterion is the accuracy(τ) value and the sec-
ond priority criterion is the support(τ) value. However in
Apriori-based rule generation, the first priority criterion is
the support(τ) value and the second priority criterion is
the accuracy(τ) value.

Remark 3. In rough set-based rule generation, it may
be easy to find one LOW and one UPP by using equiv-
alence classes. However, to find all LOW and all UPP
may not be easy. Skowron showed that the problem to
find all LOW is NP-hard [3]. Because each rule is con-
nected with one LOW or UPP, we may miss some rules
if we do not find some LOW or UPP. The completeness
in Theorem 1 may not be assured. In order to solve this
problem, Skowron introduced the discernibility function
method [3]. Whereas the use of the equivalence classes
is effective, some specific methods are necessary for pre-
serving the completeness of rule generation.

The original Apriori algorithm does not consider de-
cision attribute Dec. There is no concept of decision at-
tribute. In order to handle table data sets, we adjusted the
Apriori algorithm and introduced decision attribute Dec in
Algorithm 1. Apriori-based rule generation does not con-
sider a target set X defined by the descriptor [Dec,val].
This is also the difference between Apriori-based rule

generation and rough set-based rule generation. Apriori-
based rule generation generates all implications τ satis-
fying support(τ)≥ α and accuracy(τ)≥ β for decision
attribute Dec, and rough set-based rule generation does all
implications τ satisfying the same condition for the spec-
ified descriptor [Dec,val].

7. Concluding Remarks

This paper clarified the properties of Apriori in Pro-
log and Apriori in SQL, and described the difference be-
tween Apriori-based rule generation and rough set-based
rule generation. Two generators have their properties, and
two types of rule generation also have their properties. For
handling several types of tables, it is necessary to consider
which generator and which rule generation are suitable for
existing data sets. We conclude the following:

(1) For large data sets, generally rough set-based rule gen-
eration will reduce the execution time, because the deci-
sion part of rules is predefined.

(2) Apriori-based rule generation seems to include the
functionality of rough set-based rule generation. Namely,
rules defined by a set of descriptors {[Dec,val] | val ∈
VALDec} are generated in one rule generation. Rough set-
based rule generation repeats rule generation for each de-
scriptor [Dec,val].

(3) Apriori in Prolog may have constraint on PC environ-
ment for execution, but the use of the equivalence classes
is effective. Thus, Apriori in Prolog will be better for
small size data sets (the object size is approximately less
than 1000). On the other hand, the description of data set
may not be easy.

(4) Apriori in SQL will be applicable to large size data
sets, and PC environment for execution is stable, for ex-
ample Xampp system supports PC environment. Whereas
it is necessary to prepare one procedure to translate a csv
data set to rdf data set, we can uniformly handle any csv
data set after this translation.

In this paper, we handled Table 1 for describing the
frameworks, and considered the properties of Apriori in
Prolog and Apriori in SQL through the actual execution of
data sets, like the Mammographic data set, the Lenses data
set, the Car evaluation data set, the Credit approval data
set, the Congressional voting data set, the Hepatitis data
set, etc. [11]. It is necessary to reconsider the effective use
of the several proposed frameworks toward the intelligent
analysis of table data sets.

Acknowledgements
The authors are grateful to the anonymous reviewers and Profes-
sor Junzo Watada (Waseda University and Universiti Teknologi
PETRONAS, Malaysia) for their useful comments. This paper
is an extended version of a paper presented at FIM2017. This
work is supported by the Grant-in-Aid for Scientific Research (C)
(No. 26330277), Japan Society for the Promotion of Science.

Vol.22 No.3, 2018 Journal of Advanced Computational Intelligence 401
and Intelligent Informatics

Sakai, H., Shen, K.-Y., and Nakata, M.

References:
[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules in large databases,” Proc. VLDB’94, pp. 487-499, 1994.
[2] Z. Pawlak, “Rough Sets: Theoretical Aspects of Reasoning About

Data,” 1991.
[3] A. Skowron and C. Rauszer, “The discernibility matrices and

functions in information systems,” Intelligent Decision Support -
Handbook of Advances and Applications of the Rough Set Theory,
pp. 331-362, 1992.

[4] E. Orłowska and Z. Pawlak, “Representation of nondeterministic in-
formation,” Theoretical Computer Science, Vol.29, No.1-2, pp. 27-
39, 1984.

[5] W. Lipski, “On semantic issues connected with incomplete infor-
mation databases,” ACM Trans. on Database Systems,” Vol.4, No.3,
pp. 262-296, 1979.

[6] J. W. Grzymała-Busse and P. Werbrouck, “On the best search
method in the LEM1 and LEM2 algorithms,” Incomplete Informa-
tion, Rough Set Analysis, Studies in Fuzziness and Soft Computing,
Vol.13, pp. 75-91, 1998.

[7] K. Y. Shen and G. H. Tzeng, “Contextual improvement planning by
fuzzy-rough machine learning: A novel bipolar approach for busi-
ness analytics,” Int. J. of Fuzzy Systems, Vol.18, No.6, pp. 940-955,
2016.

[8] M. Nakata and H. Sakai, “Twofold rough approximations under in-
complete information,” Int. J. of General Systems, Vol.42, No.6,
pp. 546-571, 2013.

[9] H. Sakai, M. Wu, and M. Nakata, “Apriori-based rule generation in
incomplete information databases and non-deterministic informa-
tion systems,” Fundamenta Informaticae, Vol.130, No.3, pp. 343-
376, 2014.

[10] H. Sakai, M. Nakata, and Y. Yao, “Pawlak’s many valued informa-
tion system, non-deterministic information system, and a proposal
of new topics on information incompleteness toward the actual ap-
plication,” Studies in Computational Intelligence, Vol.708, pp. 187-
204, 2017.

[11] H. Sakai, “Execution logs by RNIA software tools,” http://www.
mns.kyutech.ac.jp/~sakai/RNIA [Accessed December 12, 2017]

[12] K. Y. Shen, H. Sakai, and G. H. Tzeng, “Stable rules evaluation for
rough-set-based bipolar model : A preliminary study for credit loan
evaluation,” Proc. Int. Conf. on Rough Sets, LNCS 10313, pp. 317-
328, 2017.

[13] J. Bazan and M. Szczuka, “The rough set exploration system,”
Trans. on Rough Sets, Vol.3, pp. 37-56, 2005.

[14] L. S. Riza et al., “Implementing algorithms of rough set theory and
fuzzy rough set theory in the R package RoughSets,” Information
Sciences, Vol.287, No.10, pp. 68-89, 2014.

[15] H. Sakai, M. Nakata, and D. Ślęzak, “A NIS-Apriori based rule
generator in Prolog and its functionality for table data,” Proc. RSKT
2011, LNAI, Vol.6954, pp. 226-231, 2011.

[16] H. Sakai, C. Liu, X. Zhu, and M. Nakata, “On NIS-Apriori based
data mining in SQL,” Proc. Int. Conf. on Rough Sets, LNCS
Vol.9920, pp. 514-524, 2016.

[17] A. Ceglar and J. F. Roddick, “Association mining,” ACM Comput-
ing Survey, Vol.38, No.2, 2006.

[18] M. Wu, M. Nakata, and H. Sakai, “An overview of the getRNIA
system for non-deterministic data,” Procedia Computer Science,
Vol.22, pp. 615-62, 2013.

[19] A. Frank and A. Asuncion, “UCI Machine Learning Repository,”
http://mlearn.ics.uci.edu/MLRepository.html [Accessed December
12, 2017]

[20] M. Kowalski and S. Stawicki, “SQL-based heuristics for selected
KDD tasks over large data sets,” Proc. FedCSIS 2012, pp. 303-310,
2012.

[21] D. Ślęzak and H. Sakai, “Automatic extraction of decision rules
from non-deterministic data systems: Theoretical foundations and
SQL-based implementation,” Database Theory and Application,
CCIS Vol.64, pp. 151-162, 2009.

[22] W. Swieboda and S. Nguyen, “Rough set methods for large and
spare data in EAV format,” Proc. IEEE RIVF 2012, pp. 1-6, 2012.

[23] phpMyAdmin Web Page, http://www.phpmyadmin.net/ [Accessed
December 12, 2017]

[24] H. Sakai, C. Liu, M. Nakata, and S. Tsumoto, “A proposal of a
privacy-preserving questionnaire by non-deterministic information
and its analysis,” Proc. IEEE Big Data Conf., pp. 1956-1965, 2016.

Name:
Hiroshi Sakai

Affiliation:
Graduate School of Engineering, Kyushu Insti-
tute of Technology

Address:
Tobata, Kitakyushu 804-8550, Japan
Brief Biographical History:
1982 B.S. degree in Applied Mathematics and Computer Science at
Kyushu University
1984 M.S. degree in Applied Mathematics and Computer Science at
Kyushu University
1988 D.S. degree in Applied Mathematics and Computer Science at
Kyushu University
2003- Professor of Graduate School of Engineering at Kyushu Institute of
Technology
Main Works:
• H. Sakai, H. Okuma, M. Wu, and M. Nakata, “Rough non-deterministic
information analysis for uncertain information,” The Handbook on
Reasoning-Based Intelligent Systems, pp. 81-118, 2013.
• H. Sakai, M. Wu, and M. Nakata, “Apriori-based rule generation in
incomplete information databases and non-deterministic information
systems,” Fundamenta Informaticae, Vol.130, No.3, pp. 343-376, 2014.
Membership in Academic Societies:
• Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT)
• International Rough Set Society (IRSS), Senior member
• The Mathematical Society of Japan (MSJ)

Name:
Kao-Yi Shen

Affiliation:
Department of Banking and Finance, Chinese
Culture University (SCE)

Address:
Da’an District, Taipei City, Taiwan
Brief Biographical History:
1998 Received Bachelor and Master degrees in Industrial Engineering
from Tunghai University
2002 Received Ph.D. degree in Business Administration from the
Chengchi University
2003- Worked as Senior Analyst in the venture capital industry, Marketing
Manager and Head of Project Management in a Taiwan-based international
IT company
2015- Associate Professor of Department of Banking and Finance,
Chinese Culture University (SCE)
Main Works:
• K. Y. Shen, S. K. Hu, and G. H. Tzeng, “Financial modeling and
improvement planning for the life insurance industry by using a rough
knowledge based hybrid MCDM model,” Information Sciences, Vol.375,
pp. 296-313, 2017.
• G. H. Tzeng and K. Y. Shen“New concepts and trends of hybrid multiple
criteria decision making,” CRC Press, 2017.
Membership in Academic Societies:
• Taiwan Fuzzy System Associations (TFSA)
• International Rough Set Society (IRSS)
• International MCDM Society

402 Journal of Advanced Computational Intelligence Vol.22 No.3, 2018
and Intelligent Informatics

Apriori in Prolog and Apriori in SQL

Name:
Michinori Nakata

Affiliation:
Faculty of Management and Information Sci-
ence, Josai International University

Address:
1 Gumyo, Togane, Chiba 283-0003, Japan
Brief Biographical History:
1985-1990 Assistant Professor, Chiba-Keizai College
1991-1998 Associate Professor, Chiba-Keizai College
1999-2000 Professor, Chiba-Keizai College
2001- Professor, Josai International University
Main Works:
• M. Nakata and H. Sakai, “Applying rough sets to information tables
containing possibilistic values,” Trans. Computational Science, Vol.2,
pp. 180-204, 2008.
• M. Nakata and H. Sakai, “Twofold rough approximations under
incomplete information,” Int. J. of General Systems, Vol.42, No.6,
pp. 546-571, 2013.
Membership in Academic Societies:
• Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT)
• American Association of Artificial Intelligence (AAAI)
• Association for Computing Machinery (ACM)
• The Institute of Electrical and Electronics Engineers (IEEE)

Vol.22 No.3, 2018 Journal of Advanced Computational Intelligence 403
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

