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Availability of wind speed information is of great im-
portance for maximization of wind energy extraction
in wind energy conversion systems. The wind speed
is commonly obtained from a direct measurement em-
ploying a number of anemometers installed surround-
ing the wind turbine. In this paper a sensorless fuzzy
wind speed estimator is proposed. The estimator is
easy to build without any training or optimization. It
works based on the fuzzy logic principles heuristically
inferred from the typical wind turbine power curve.
The wind speed estimation using the proposed estima-
tor was simulated during the operation of a squirrel-
cage induction generator-based wind energy conver-
sion system. The performance of the proposed esti-
mator was verified by the well estimated wind speed
obtained under the wind speed variation.

Keywords: sensorless wind speed estimation, fuzzy logic
principles, wind power, wind energy conversion system,
wind turbines

1. Introduction

One of the most attractive solutions to energy shortage
problems is a variable-speed Wind Energy Conversion
System (WECS). Operating the variable speed WECS at
optimum turbine rotor speed enables maximum extraction
of wind energy at all wind speed irrespective of the type
of generator used [1-6]. Optimum rotor speed is propor-
tional to wind speed. The problem is that the wind speed
information is not readily available. The wind speed and
direction are also unpredictable from time to time and
from location to location, adding more difficulty in ope-
rating the wind turbine at optimum speed.

An anemometer is commonly employed to measure
wind speed. Such a direct measurement of the wind speed
has the drawback that a number of anemometers are of-
ten required and need to be installed properly surrounding
the wind turbine to obtain adequate wind speed informa-
tion [2]. In addition, it is difficult to measure the wind
speed exactly at the center of the wind turbine rotor and
the measurement is not reliable when turbulence, shado-
wing, and aerodynamics interference occur [7-9]. On
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the contrary, indirect measurement methods of the wind
speed are of attractive perspective technically and eco-
nomically for WECS designs, particularly, of small and
medium size.

Several methods for the wind speed estimation in
WECS have been proposed. In [2, 3,7, 10-12] the neural
network based wind speed estimation methods are pro-
posed in the MPPT control scheme. The control goal is
to drive the turbine rotor as close as possible to the speed
reference which is proportional to the wind speed esti-
mate. Assuming accurate wind speed information, the
MPPT control scheme is applied to maximize the wind
energy extraction. Other methods [13—15] employ a fuzzy
model to map the measured generator power and the tur-
bine rotor speed into the reference maximum power. The
mapping implicitly estimates the wind speed since the
reference maximum power can be directly represented in
term of the wind speed. Those methods [2,3,7,10-15]
need to train the neural network/fuzzy estimators. De-
spite obtaining good neural network/fuzzy estimator, the
training process is usually costly and time-consuming, re-
quiring good or ideal training data, while the trained es-
timators might be only applicable to certain conditions
within the training data context used.

Indeed the fuzzy logic approach can be a very powerful
tool for dealing with nonlinear input-output mapping pro-
vided that expert knowledge in terms of fuzzy rules if-then
is available. It allows us to build fuzzy mapping with less
or even no training. This advantage does not belong to any
other mapping technique. In addition, given well defined
fuzzy rules the fuzzy mapping would be more generally
applicable in that it is not limited to the certain ranges of
training data. In the previous research [13—15] the fuzzy
mapping was designed without introducing any fuzzy ex-
pert rule. It was simply considered as a black box without
any unique benefit over other mapping techniques.

In this paper a sensorless method for estimating wind
speed using a fuzzy wind speed estimator (FWSE) is pre-
sented. FWSE works based on fuzzy rules simply inferred
from a typical power curve of the wind turbine. The
power curve represents the behavior of the wind turbine
in terms of extracted power, rotor speed, and wind speed.
It can be considered to be the most appropriate source
of knowledge for inferring effective fuzzy rules that re-
late the wind speed with the rotor speed and the extracted

Vol.22 No.1, 2018

and Intelligent Informatics

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: Thisis an Open Access article distributed under the terms of
BY ND the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).


http://creativecommons.org/licenses/by-nd/4.0/

Gear

SCLG Box

-

Grid Side |v Machine Side ;94
@_ Converter E Converter
1T 1T

Grid Side Machine Side
Control Control

pgrid

Fig. 1. Variable-speed SCIG-based WECS.

power. Since the typical power curve remains the same
for most wind turbines, the inferred fuzzy rules would be
generally applicable to most wind turbines.

The main contribution of the proposed approach is the
ease of building FWSE without any training or optimiza-
tion, yet capable of at least giving comparable perfor-
mance with other wind speed estimation methods. In ad-
dition, the wind speed estimation based on the fuzzy rules
simply inferred from the wind turbine power curve has
never been attempted by any other research, except by
Naba [16]. The work in this paper extends the preliminary
work reported in [16] with more elaboration on the perfor-
mance of the proposed wind speed estimation method.

2. Wind Energy Conversion System

The WECS model used in this paper is illustrated in
Fig. 1. Its Simulink model is freely available in [17] and
allows us to modify as necessary. It is of a horizontal-axis
and variable-speed type and equipped with a squirrel-cage
induction generator (SCIG). The SCIG-based WECS is
considered as adequate for the discussion in this paper
since the typical power curve of WECS equipped with
other type of generator remains the same.

The wind turbine extracts wind energy from the swept
area of the blades. Under the machine side control and the
grid side control, the electrical energy resulting from the
generator is converted by the machine side converter and
the grid side converter into the voltage appropriate for the
power grid system. The wind turbine extracts wind power
according to [18]:

P=05mpCpy(A,B)RH . . . . . . . .. (D

where p is the air density, R is the turbine radius, v is the
wind speed, C,,(A, B) is the power coefficient of the range
of 25-45%, A is the tip speed ratio (TSR), and f is the
pitch angle. TSR is defined by

R
A= 2
v
where @, is the turbine rotor speed.
The dynamic model of the wind turbine is given by
do, 1
o :j(T,—Y:g—Fa)r) N )|

where J is the system inertia, F is the viscous friction
coefficient, 7; is the torque resulting by the turbine, and T,
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Fig. 2. Power curve.

is the load torque due to the generator torque. The turbine
rotor speed @ is transmitted to the generator through the
gearbox with a certain multiplier, resulting in the larger
generator speed @,.

In case of a fixed pitch angle, the extracted wind power
varies non-linearly with the rotor speed and the wind
speed as illustrated in Fig. 2. The maximum power points
on the power curve for different wind speeds are shown
by a maximum power line. They take place at the opti-
mum rotor speed ®,,, corresponding to both the maxi-
mum power coefficient Cpmax and the optimal TSR A,
which are of constant values for each wind turbine. The
maximum extracted power can be derived from Eq. (1):

L G O )
where
0.57pCpmaxR’
Kop =75 "
opt
A
wop[ = opt V.

R

Thus, in order to extract maximum power, the turbine
must always rotate at @, = @,,;. This can be achieved
with the TSR control method. Given wind speed infor-
mation, the TSR control method regulates rotor speed at
optimum speed in order to maintain TSR at an optimum
value.

3. Proposed Fuzzy Wind Speed Estimator

Input-output mapping problems can be solved in many
ways such as using fuzzy systems, linear systems, expert
systems, neural networks, differential equations, or inter-
polated multidimensional look-up tables. Among those
ways, the fuzzy system is often the best. It is well known
for its convenient use for developing approximate func-
tions in terms of if-then rules. The main advantage of
using the fuzzy system that other methods do not have is
the ease of incorporating the expert knowledge, which is
not necessarily precise. This applies to the work in this
paper as well.
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Fig. 3. Fuzzy wind speed estimator model.
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Fig. 4. Points on the power curve where if-then rules are
inferred.

The wind speed estimator proposed in this paper is built
using a fuzzy system as shown in Fig. 3, which is so-
called fuzzy wind speed estimator (FWSE). The main idea
behind FWSE is to use the fuzzy rules if-then which are
inferred from a typical power curve without any training
or optimization.

The power curve of the wind turbine has a typical form
as shown in Fig. 2, characterized with three variables: ex-
tracted wind power, turbine rotor speed, and wind speed.
When the power curve is known, we may be able to deter-
mine the wind speed, given information of the extracted
power and the turbine rotor speed. In reality, the true
power curve is unknown. In addition, all the power curve
variables are impractical to measure directly. For conve-
nience in this paper they are replaced by the power and
the rotor speed of the generator, except the wind speed,
as shown in Fig. 4. Each point on the power curve corre-
sponds to a state consisting of the three variables, each of
which is a state variable.

Considering that the typical form of the power curve
is relatively the same for most of wind turbines, seve-
ral general fuzzy rules for wind speed estimation can be
heuristically inferred from the power curve as shown in
Fig. 4. The antecedent variables are both the rotor speed
and the extracted power. The consequent variable is the
wind speed. The way of inferring the fuzzy rules is ex-
plained below.

The certain points on the power curve shown by the
down arrows in Fig. 4 are supposed to be the centers of
unique clusters. Each unique cluster represents a unique
relationship between the state variables in the cluster.
Each unique relationship can be stated linguistically using
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a single fuzzy rule.

Before inferring the effective fuzzy rules based on the
locations of the chosen clusters shown in Fig. 4, some as-
sumptions are required. The states are assumed to take
place in the partial-load regime of WECS in which the
extracted power at a given wind speed must depend on
the rotor speed. The turbine rotor is assumed not rotating
at low speed when subject to high wind speed, which is
the case in the WECS control tracking maximum power
points under wind speed variation. This means that the
states on the left side of the maximum power line are as-
sumed unlikely to take place. On the contrary, the states
are desired to mostly take place near to or on the right
side of the maximum power line. These assumptions are
required to reduce the number of the fuzzy rules required
for the wind speed estimation. If the clusters on the left
side of the maximum power line were to be chosen as
well for defining the fuzzy rules, there would be a redun-
dant number of the fuzzy rules. This is due to somewhat
symmetrical form of the power curve, having the different
states on the left and the right side of the maximum power
line but suggesting the same wind speed.

The fuzzy rules for FWSE are built with fixed numbers
of membership functions for both input and output parts.
The ranges of both parts are normalized within [0, 1].

Figure 5 shows the membership functions of the gene-
rator rotor speed defined using three Gaussian member-
ship functions, each of which is labeled with low, medium,
high, respectively with the center at 0, 0.5, and 1.

Figure 6 shows the membership functions of the
generator power defined using five Gaussian member-
ship functions, each of which is labeled with zero, low,
medium, high, very high respectively with the center at 0,
0.254, 0.5, 0.773, and 1. The standard deviation for all
the membership functions is set to 0.1609.

By using the Takagi-Sugeno type [19], the membership
functions of the output part of FWSE are simply repre-
sented with the constants of 0, 0.25, 0.5, 0.75, and 1, re-
spectively labeled with very low, low, average, high, and
very high.

Let P, denote the measured generator power, @, the
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Fig. 6. Membership functions of generator power.

generator rotor speed, and v the wind speed estimate. The
fuzzy rules to be used in FWSE, which are inferred from
the chosen points on the power curve as shown in Fig. 4,
can be stated as follows:

if @, is high and P, is zero then ¥ is very low

if Wy is high and P, is low then ¥ is low

if W, is high and P, is medium then ¥ is average

if @, is high and P, is high then ¥ is high

if @y is high and P, is very high then V is very high
if @y is medium and P, is zero then ¥ is very low

if @, is medium and P, is low then ¥ is low

if @, is medium and Py is medium then ¥ is average

e e Al i

if @y is low and P, is zero then ¥ is very low.

Normalized input and output parts of the fuzzy rules
make the rules generally applicable to any wind turbine
with the same typical power curve. Although different
specifications of wind turbines might lead to differences
in the operating ranges of the input and output variables of
FWSE, the fuzzy structure inside FWSE, either in terms
of its fuzzy rules or its membership functions, does not
necessarily change when given different specification of
wind turbine.

4. Case Study

In this section the WECS model used, the wind speed
generator, and the simulation of the wind speed estimation
are discussed. The effectiveness of the proposed FWSE in
estimating the wind speed during the WECS operation is
elaborated.

4.1. WECS Model

The wind speed estimation was simulated during the
operation of the Simulink SCIG-based WECS model as
shown in Fig. 7, which is a modified version of the
original WECS model obtained from [17] (i.e., the file
mpptl.mdl inside the case study 2). The WECS model
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behaves according to the power curve shown in Fig. 8.
The WECS implementation comprises the wind turbine,
the induction machine (i.e., SCIG), and the generator-side
inverter. The interaction between the electrical grid and
WECS is assumed fixed. The electrical grid is taken as
ideal because the grid interface is not of interest in the
simulation.

The WECS model in Fig. 7 is limited to operate in
the partial-load regime (i.e., under the rated wind speed)
and works with the following parameters: the air density
p = 1.25 kg/m?, the turbine radius R = 2.5 m, the optimal
tip speed ratio A,,; = 7, the maximum power coefficient
Cpmax = 0.47, and the multiplier ratio of the gearbox 6.25.
With the rated power of 6 kW, the generator rotor speed
may vary between O until 160 rad/s and the wind speed is
less than 12 m/s.

The modified parts of the WECS model in Fig. 7 are in-
side the block MPPT and a new block FWSE. Inside the
block MPPT we add an implementation of the TSR con-
trol, as shown in Fig. 9, where the generator rotor speed
reference is set proportional to the wind speed. Using
the optimum tip speed ratio 4,,, and the turbine radius R
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given above, the optimum generator rotor speed reference
is

W =6.2500 =kopv . . . . . . ... (5)
where
A
Kopt = <6.25%”> =17.5.

In this paper A, is assumed unknown, and therefore, the
optimum generator rotor speed reference @, as well. Al-
ternatively, we can use the practical method of estimating
kop: proposed in [5]. Once the estimated k,, is obtained,
although inaccurate, we may set the generator rotor speed
reference by @, = kv, where the constant k is any num-
ber around the estimated k,,. In this paper, the estimated
kopt 1s assumed available already, but deviates from the
true kop;. It will be shown later that the small deviations
of k from k,,; = 17.5 do not lead to significant errors of
the wind speed estimation.

The detailed new block FWSE is shown in Fig. 10
where the operating ranges of the input and output vari-
ables are set according to the specification of WECS given
above. In the block FWSE the generator rotor speed is
limited to be within the range of [0, 160] rad/s, the gene-
rator power to be within the range of [0,6000] W, and the
wind speed to be within [5, 12] m/s.

The block FWSE in Fig. 10 implements a fuzzy infer-
ence system (FIS) of a Takagi-Sugeno type. FIS is built
using the fuzzy rules if-then as defined in Section 3. The
input and output variables of FIS are normalized within
the range [0, 1]. The generated power has a negative sign
in the WECS model. Its value is reversed before applied
to FIS.

There have been many methods proposed for solving
the wind speed estimation problem in WECS [1-3,7, 12—
15]. In this paper we are not primarily interested in sol-
ving the problem of the wind speed estimation in WECS
using FWSE. Instead, we apply a very easy and simple
setting for FWSE as if the form of the power curve was
symmetrical, while other methods offer more complex de-
signs with more difficult setting for the wind speed esti-
mator.
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4.2. Wind Speed Generator

The wind speed profile used in the simulation is gene-
rated by the wind speed generator shown in Fig. 11. The
wind speed average is set to 7 m/s. The wind speed pro-
file should mimic the real one as its generation is based on
a non-stationary random process superposing two com-
ponents: the low-frequency component (i.e., describing
long-term and low-frequency variations) and the turbu-
lence component, corresponding to short-term and high-
frequency variations. Both frequency components meet
the Van der Hoven’s wind speed spectral model [18] that
represents the real wind speed spectral model.

4.3. Simulation and Results

The wind speed estimation was simulated in six dif-
ferent cases of the control method of WECS and the modi-
fied FWSE. In the first case, WECS was controlled by the
classical MPPT method. In the second case, WECS was
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Fig. 13. Wind speed estimate on WECS with MPPT control.

controlled by the TSR method using three different rotor
speed references, i.e., W, = kv with k = 10, k = 18, and
k = 20. In the third case, WECS controlled by the TSR
method but the wind speed estimate ¥, instead the origi-
nal wind speed v, was used to compute the generator rotor
speed reference by @, = kV. The forth case was similar to
the third case, except that the wind speed was estimated
using FWSE with modified fuzzy rules. The fifth case was
also similar to third case, except that the wind speed was
estimated using FWSE built with no initial fuzzy rules,
but FWSE was optimized by the adaptive neuro fuzzy
inference system (ANFIS) method. In the last case the
wind speed was estimated using the proposed FWSE op-
timized with the standard gradient descent method. In all
the cases, WECS was operated for 200 s, subject to the
wind speed profile shown in Fig. 12 generated by the wind
speed generator in Fig. 11.

The results of the wind speed estimation on WECS con-
trolled with the MPPT method and the TSR method using
k =10, 18, and 20 are respectively shown in Figs. 13—
16. Each control method started working after WECS has
reached a “normal” operating point, i.e., about 10 s. For
this reason, all those simulation results of the wind speed
estimation are shown after 10 s.
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The wind speed estimates were poor when WECS was
controlled using the MPPT method and the TSR method
using k = 10. Whereas, much better wind speed esti-
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mates were obtained when WECS was controlled with the
TSR method using £ = 18 (see Fig. 15) and k = 20 (see
Fig. 16). The wind speed estimates shown in Figs. 15
and 16 are very close to the “true” wind speed. Some er-
rors occurred at around the time 100 s at which the wind
speed was very near to the lower limit of the output range
of FWSE.

Those simulation results can be well understood by
looking through the state trajectories on the power curve
during the WECS operation for each case. The state tra-
jectory for the case of WECS controlled with the MPPT
method is shown in Fig. 17 and that for the case of WECS
controlled with the TSR method is shown in Fig. 18.
There were about 27 thousands states for the simulation
duration of 200 s. The state trajectories shown in both
figures were created for every 25 states. As can be seen
in both figures, the state trajectories of WECS controlled
the MPPT method and the TSR method using k = 10 were
on left side of the maximum power line. Given such tra-
jectories, the wind speed estimates were poor. Whereas,
WECS controlled with the TSR method using k£ = 18 and
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k = 20 resulted in the state trajectories on the right side
of the maximum power line and enabled FWSE to much
better estimate the wind speed.

The simulation results imply that the locations of the
states on the power curve greatly affected the accuracy
of the estimation results of the wind speed. They were
due to the fuzzy rules in use not representing the entire
behavior of the power curve. As illustrated in Fig. 4, the
proposed fuzzy rules were inferred from the clusters on
the right side of the maximum power line. They could
well estimate the wind speed when given the states on the
right side of or near to the maximum power line. Hence,
the maximum power line can be considered as playing a
role of a boundary line separating between the states of
the right area at which FWSE can well estimate the wind
speed and those of the left area at which FWSE will result
in poor estimation of the wind speed.

Given the specification of WECS as aforementioned,
the maximum power line can be achieved by setting k =
kopr = 17.5 in the TSR control. The use of any constant
k less than 17.5 will result in the states on the left side
of the maximum power line, and hence, FWSE will give
poor wind speed estimation; otherwise, the states on the
right side of the maximum power line will take place, and
therefore, lead to better estimation of the wind speed by
FWSE.

Unlike the TSR method, the MPPT method uses a ran-
dom mechanism to achieve optimum states. It perturbs
turbine speed, observes a change in power, and then, regu-
lates the turbine speed accordingly to achieve the peak
power. It takes many trials-and-errors under wind speed
variation and noisy measurement data, resulting in the
states randomly distributed on the left or the right side
of the maximum power line. Hence, the MPPT method
tends to lead to poor performance of FWSE. This draw-
back may be handled by always regulating the turbine
speed high enough before perturbing it and observing a
change in power. This approach may be less practical but
increase the chances of the states to be on the right side of
the maximum power line.

All the above simulations has not demonstrated the case
where the TSR control uses the wind speed estimate, in-
stead of the “true” wind speed, to compute the generator
speed reference. Figs. 19 and 20 show the simulation re-
sults of the wind speed estimation for the case where the
TSR control used the wind speed estimates provided by
FWSE to compute the generator rotor speed references.
Both figures correspond to the cases of respectively k = 18
and k = 20. The state trajectories corresponding to both
cases are shown in Fig. 21. Most of the states were on
the right side of the maximum power line. Some states
were on the left side of but near to the maximum power
line. As expected, given such states, FWSE could well
estimate the wind speed.

In addition, the obtained wind speed estimates shown in
Figs. 19 and 20 were smoother than those in Figs. 15 and
16. They were different due to the difference in the way of
determining the generator rotor speed references. When
the generator rotor speed reference is determined using

Vol.22 No.1, 2018

and Intelligent Informatics



T T
wind speed
wind speed estimate| |

wind speed (m/s)

20 40 60 80 100 120 140 160 180 200
time(s)

Fig. 19. Wind speed estimates on WECS with TSR control

(k = 18) using wind speed estimate.

wind speed
wind speed estimate| |

wind speed (m/s)

20 40 60 80 100 120 140 160 180 200
time(s)

Fig. 20. Wind speed estimates on WECS with TSR control
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the wind speed estimate in the TSR control, the wind
speed estimation takes places in a closed loop involving
the TSR controller, WECS, and FWSE. Given an initial
state of WECS, FWSE estimates the wind speed. The
wind speed estimate is then used by the TSR controller
to determine the speed reference at which the generator
rotor must rotate. The TSR control applies the low pass
filtering process on the generator rotor speed reference be-
fore really using it as the final rotor speed reference (see
Fig. 9). WECS then generates the power and a new state
takes place. Hence, each wind speed estimate actually
depends indirectly on the previous wind speed estimate.
Due to the low pass filtering process taking place contin-
uously in the closed loop, smoother wind speed estimates
were obtained as shown in Figs. 19 and 20.

The above results have demonstrated the main strength
of the fuzzy logic principles to solve the wind speed es-
timation problem in WECS. Generally speaking, the pro-
posed fuzzy rules used in FWSE are of significance but
of course lack of precision. They were simply inferred
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from the imprecise knowledge picked up from the power
curve without any training or optimization. The centers
and the shapes of the membership functions of the fuzzy
rules were imprecisely chosen by ignoring the fact that
the form of the power curve is asymmetrical. The cen-
ters of the membership functions were assigned with just
equally-spaced constants, regardless of their appropriate-
ness. The most suitable shapes of the membership func-
tions to choose were considered as unknown. Therefore,
we can not expect that FWSE would result in highly accu-
rate estimation of the wind speed. Despite applying such
a very easy, simple, and imprecise setting, FWSE could
achieve good performance with the estimation errors less
than 0.5 m/s, comparable with other approaches in [10,
11] giving the estimation errors of up to about 0.5 m/s.

In order to validate the proposed FWSE as a fuzzy
model, FWSE using different numbers of the fuzzy rules
and modified parameters of the membership functions
was simulated. In the following discussion, we call
FWSE/MRI1 for FWSE using 4 fuzzy rules, FWSE/MR2
for FWSE using complete fuzzy rules, and FWSE/MP
for FWSE using modified parameters of the membership
functions.

In FWSE/MRI, only the rule numbers 5, 7, 8, and 9
in the proposed fuzzy rules were used. Those fuzzy rules
correspond to the clusters along the maximum power line
of the power curve shown in Fig. 4.

In FWSE/MR2, beside using nine proposed fuzzy rules,
the following fuzzy rules were also used:

1. if @, is medium and P, is high then ¥ is high

2. if @, is medium and P, is very high then ¥ is very
high

if @, is low and P, is low then V is low

if @y is low and P, is medium then ¥ is average

if @y is low and Py is high then ¥ is high

if @y is low and P, is very high then ¥ is very high.

oW kW

With those additional fuzzy rules, FWSE/MR2 included
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Fig. 22. FWSE/MR1’s performance for k = 10.
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Fig. 23. FWSE/MR1’s performance for k = 18.

all possible fuzzy rules defined from all the combinations
of the membership functions of both input variables.

In FWSE/MP the centers of the Gaussian membership
functions of the generator power were changed to 0, 0.45,
0.65, 0.85, and 1.0 and those of the generator rotor speed
to 0, 0.65, and 1.0. The standard deviations of all the
Gaussian membership functions were unchanged. The
constants of the membership functions of the output part
of FWSE were modified to be 0.0, 0.35, 0.65, 0.85, and
1.0. With all those modifications, the centers of the mem-
bership functions of the input and the output parts of
FWSE were no longer assigned with just equally-spaced
constants. They were made more dense as they get closer
to the maximum value (i.e., 1.0). Such a heuristic set-
ting was chosen to compromise with the typical form of
the power curve where the generator power exponentially
increases with both the wind speed and the rotor speed.

The comparison of the performance of FWSE and
FWSE/MRI is shown in Figs. 22-24 and that of FWSE
and FWSE/MR?2 in Figs. 25-27, respectively for k = 10,
18, and 20.

For k = 10 the state trajectories were not along the
maximum power line of the power curve, and as ex-
pected, they lead to worse performance of FWSE/MRI.

84 Journal of Advanced Computational Intelligence

T
wind speed
wind estimate w/ FWSE/MR1]| |
wind estimate w/ FWSE

wind speed (m/s)
o

25 50 75 100 125 150 175 200
time(s)

Fig. 24. FWSE/MR1’s performance for k = 20.

For k = 18 and k = 20 the state trajectories were near
to the maximum power line of the power curve, which
should enable FWSE/MRI1 to achieve the performance
close to the FWSE’s performance. However, the per-
formance of FWSE/MR1 was always worse than that of
FWSE as shown in Figs. 22-24. On the other hand, by
using all possible fuzzy rules FWSE/MR2 should better
estimate the wind speed, given any state trajectory on the
power curve. However, the performance of FWSE/MR2
was not better than that of FWSE for all the three values
of k as shown in Figs. 25-27. Thus, those results validate
that FWSE was the most effective model compared with
FWSE/MR1 and FWSE/MR2.

Figures 28 and 29 show the performance of FWSE and
FWSE/MP where WECS was controlled with the TSR
method using the wind speed estimate and k = 20. Set-
ting the lower limit of the wind speed estimate to 4.5 m/s
resulted in the performance of FWSE/MP worse than that
of FWSE as shown in Fig. 28. However, the pattern of the
wind speed estimates resulting by FWSE/MP was almost
the same as that by FWSE, except that the wind speed es-
timate was always lower than the actual wind speed. Af-
ter increasing the lower limit of the wind speed estimate
to 5.1 m/s, better wind speed estimates were obtained by
FWSE/MP as shown in Fig. 29. Particularly at about the
time 100 s, FWSE/MP succeeded to better estimate the
wind speed with smaller errors than FWSE.

Of course, the good performance of FWSE/MP is only
for a specific case. Given the different specification of
the wind turbine, FWSE/MP will require different setting.
However, any modified version of FWSE can always use
FWSE as a good initial model to be optimized later to
obtain a more appropriate setting as demonstrated in the
following results.

In all the cases of the comparison above, the FWSE’s
performance was compared only with the counterexam-
ples that were not optimized with proper methods. In the
following cases, FWSE was compared with an ANFIS
based-FWSE (ANFIS-FWSE) and a Gradient-Descent
FWSE (GD-FWSE).

Given FWSE as the initial model, the Matlab’s ANFIS
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Fig. 25. FWSE/MR2’s performance for k = 10.
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Fig. 26. FWSE/MR?2’s performance for k = 18.
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Fig. 27. FWSE/MR?2’s performance for k = 20.

method is expected to produce the best ANFIS-FWSE.
Unfortunately, the Matlab’s ANFIS method only works
when given the maximum number of all possible fuzzy
rules. The maximum number of all possible fuzzy rules
that can be used in FWSE is 15. Whereas, the number of
the proposed fuzzy rules used in FWSE is 9. Therefore,
FWSE using the proposed fuzzy rules can not be trained
using the Matlab’s ANFIS method.
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Fig. 28. FWSE/MP’s performance with lower limit of wind
speed estimate of 4.5 m/s and k = 20.
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Fig. 29. FWSE/MP’s performance with lower limit of wind
speed estimate of 5.1 m/s and k = 20.

In this paper ANFIS-FWSE was built from scratch. Its
input variables, i.e., the generator rotor speed and the
generator power, were respectively defined using 3 and
5 equally-spaced Gaussian membership functions. Its out-
put parts were simply 15 constants set to zero initially.
The fuzzy rules used in ANFIS-FWSE were defined from
all possible combinations of both input variables. Both
input and output parameters of ANFIS-FWSE were ad-
justed by the Matlab’s ANFIS method in 100 epochs.

The data used for training ANFIS-FWSE were sam-
pled from the typical power curve where the generator ro-
tor speed, the wind speed, and the generator power were
respectively limited within the ranges of [0,160] rad/s,
[0,12] m/s, and [0,6] kW. Both the generator rotor speed
and the wind speed were divided into 60 points and then
all their possible combinations were used to compute the
corresponding generator power. The power curve used
was generated according to the non-dimensional curve C,
versus A in [17].

GD-FWSE is a trained version of the proposed FWSE.
The training was applied after rewriting FWSE in the fol-
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lowing compact form [19]:
p=T0" . .. ... (6)

where @ = [6,0, - -- 6] is a parameter vector whose ele-
ments correspond to the constants of the membership
functions of the output part and I" is a row vector resulting
from the implication process in FWSE. The parameters of
I were not changed during the training. Each element
of ® was adjusted by the following standard gradient-
descent update rule:

de a0

= 7

dt 26 @
where « is a learning rate and Q is the root mean square
error (RMSE) defined as

R 8
Q_N;i,.....”......()

where E; =v; —V; and N is the data length. GD-FWSE
was not trained using the entire data on the power curve,
instead only the limited data on the right side of the maxi-
mum power line on the power curve.

Some proposed fuzzy rules shared the same output
membership functions, i.e., very low in the rule numbers
1, 6, and 9; low in the rule numbers 2 and 7; and average
in the rule numbers 3 and 8. Hence, the output parameter
vector became

© = [6; 6, 65 04 65 6,6, 65 0]

and the adjustable parameters reduced to only five param-
eters, i.e., 0y, 61, 63, 04, and 65. However, during the trai-
ning process, all elements of ® were adjusted individually
using the update rule (7). The latest updates for the first,
6th, and 9th elements of ® were assigned with an average
value of individual updates of the first, 6th, and 9th ele-
ments. The latest updates for the second and 7th elements
of ® were assigned with an average value of individual
updates of the second and 7th elements. The latest up-
dates for the third and 8th elements of ® were assigned
with an average value of individual updates of the third
and 8th elements.

Figure 30 shows the comparison of the wind speed es-
timate by ANFIS-FWSE, FWSE, and GD-FWSE. Both
output and input parameters were adjusted in the training
of ANFIS-FWSE. In addition, the output parameters were
set to zero initially. This made the training of ANFIS-
FWSE take much harder effort to achieve near optimal pa-
rameters. Using the root mean square error (RMSE) bet-
ween the wind speed and its estimate as the performance
measure, the performance of FWSE was better than that
of ANFIS-FWSE, respectively with RMSE of 0.1158 and
0.2198. The FWSE’s performance was satisfactory de-
spite effortless design process. The most important but
trivial effort to achieve the good performance of FWSE
was to find an appropriate lower limit for the wind speed
input variable.

Whereas, after training with the update rule (7), GD-
FWSE resulted in the best performance with RMSE of
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Fig. 30. Wind speed estimation using ANFIS-FWSE and
GD-FWSE and k = 20.

0.1071. Unlike FWSE, GD-FWSE worked well with full
ranges of its variables, i.e., no adjustment of the limits of
its input and output variables was required. In addition,
its training with only the standard update rule took less
effort to achieve near optimal parameters, justifying the
effectiveness of the proposed FWSE as a good initial es-
timator.

5. Conclusion

A power curve based fuzzy wind speed estimator for
wind speed estimation in wind energy conversion systems
has been presented. It works based on the effective fuzzy
rules heuristically inferred from the typical power curve.
Nine clusters on the power curve are chosen to represent
the behavior of the relationships between the wind speed,
the rotor speed, and the extracted power, corresponding to
nine fuzzy rules. The performance of the estimator with
a very simple, easy, and imprecise setting was simulated
for estimating the wind speed during the operation of the
SCIG-based wind energy conversion system. The simu-
lation results showed that the fuzzy wind speed estimator
could well estimate the changing wind speed.
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