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To handle a large-scale object, a two-stage clustering
method has been previously proposed. The method
generates a large number of clusters during the first
stage and merges clusters during the second stage. In
this paper, a novel two-stage clustering method is pro-
posed by introducing cluster validity measures as the
merging criterion during the second stage. The signif-
icant cluster validity measures used to evaluate clus-
ter partitions and determine the suitable number of
clusters act as the criteria for merging clusters. The
performance of the proposed method based on six typ-
ical indices is compared with eight artificial datasets.
These experiments show that a trace of the fuzzy co-
variance matrix WWW tr and its kernelization KKKWWW tr are
quite effective when applying the proposed method,
and obtain better results than the other indices.

Keywords: two-stage clustering, cluster validity mea-
sures, kernel method, c-means clustering, agglomerative
hierarchical clustering

1. Introduction

Data clustering methods such as k-means [1] divide a
set of objects into groups called clusters. Objects classi-
fied in the same cluster are considered similar, whereas
those in different clusters are considered dissimilar. Hard
c-means (HCM), variants of fuzzy c-means (FCM) [2, 3],
and agglomerative hierarchical clustering (AHC) [4] are
representative clustering methods. Data clustering meth-
ods have received significant attention in recent years for
handling large-scale objects and extracting values from
them.

In the field of data mining, a recent research topic is
the handling of large-scale data obtained from real-world
problems [5, 6]. A two-stage clustering method has also
been proposed to tackle these problems [7–9]. In the first
stage of the two-stage clustering method, a fast algorithm
such as k-means generates a number of clusters. Then,

in the second stage, clusters obtained in the first stage
are clustered using an AHC procedure or other cluster-
ing methods. Using two-stage clustering, time-consuming
clustering methods such as AHC, kernel clustering, and
spectral clustering can be applied to large-scale data.

The strong point of two-stage clustering is the strat-
egy applied in the second stage. In previous studies, sig-
nificant clustering methods have been used in the sec-
ond stage [7–9]. We introduced cluster validity mea-
sures [10–13] in the second stage as a novel approach to
two-stage clustering and proposed a framework of two-
stage clustering based on cluster validity measures [14].
Cluster validity measures have also been actively stud-
ied for the purpose of evaluating cluster partitions and
determining the suitable number of clusters [10–13, 15].
For this reason, we have considered these cluster valid-
ity measures as possible criterioa to merge clusters in the
second stage [14]. In previous studies, numerical experi-
ments indicated the effectiveness of two-stage clustering
based on a trace of the fuzzy covariance matrix (Wtr) [11],
Xie-Beni’s index (XB), and partition coefficients [13].
However, experiments also showed that conventional in-
dices including Wtr and XB are not suitable merging cri-
teria for significant datasets consisting of different cluster
shapes or sizes. We introduced Fukuyama-Sugeno’s index
(FS) [16] and several kernelized measures [15] to handle
various types of datasets that consist of clusters of sev-
eral shapes or sizes. We also compared these indices to
others used in the previous study through several numeri-
cal experiments to show the effectiveness of the two-stage
clustering based on cluster validity measures.

The reminder of this paper is organized as follows: In
Section 2, we introduce the notation, c-means clustering,
agglomerative hierarchical clustering, and cluster validity
measures. In Section 3, we describe a method of two-
stage clustering based on cluster validity measures. In
Section 4, we conduct experiments to show the effective-
ness of the proposed method. In Section 5, we provide
some concluding remarks regarding this research.
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2. Preliminaries

A set of objects to be clustered is given and denoted by
X = {x1, . . . ,xn} , in which xk (k = 1, . . . ,n) is an object.
In most cases, each object xk is a vector in p-dimensional
Euclidean space ℜp, that is, an object xk ∈ ℜp. A cluster
is denoted by Gi, and a collection of clusters is given by
G = {G1, . . . ,Gc}. A cluster center of Gi is denoted by
vi ∈ ℜp, and a set of vi is given by V = {v1, . . . ,vc}. The
membership degree of xk belonging to Gi and a partition
matrix is denoted as uki, and U = (uki)1≤k≤n, 1≤i≤c.

2.1. ccc-Means Clustering

k-means is a well-known clustering method, and is also
called hard c-means (HCM) [1], in contrast with FCM [2,
3]. These algorithms divide a set of objects into clusters
by optimizing an objective function under the constraint
on the membership degree.

The objective function of HCM, denoted as Jh, is as
follows:

Jh(U,V) =
n

∑
k=1

c

∑
i=1

ukidki,

where dki is the dissimilarity between an object xk and
cluster center vi. The squared L2-norm dki = ‖xk − vi‖2 is
a typical dissimilarity in HCM and FCM.

The constraint on membership degree uki is as follows:

Uh =

{
(uki) : uki ∈ {0,1} ,

c

∑
i=1

uki = 1, ∀k

}
.

The optimal solutions for uki and vi of HCM are as fol-
lows:

uki =

{
1

(
i = argminl ‖xk − vl‖2

)
0 ( otherwise ) , . . (1)

vi =

n

∑
k=1

ukixk

n

∑
k=1

uki

. . . . . . . . . . . . . . (2)

FCM is also based on optimizing an objective function
under the constraint for the membership degree.

In the following two objective functions, Js is represen-
tative of FCM.

Js(U,V) =
n

∑
k=1

c

∑
i=1

(uki)
mdki.

Here, m > 1 is the fuzzification parameter.
In addition to Js [2], entropy-based fuzzy c-means clus-

tering is also representative of FCM [3].
The constraint on membership degree uki for FCM is as

follows:

U f =

{
(uki) : uki ∈ [0,1] ,

c

∑
i=1

uki = 1, ∀k

}
.

The optimal solutions for uki and vi derived from Js are

Algorithm 1 HCM and FCM

STEP 1 Set initial cluster centers and parameters.

STEP 2 Calculate uki ∈U using Eq. A.

STEP 3 Calculate vi ∈V using Eq. B.

STEP 4 If the convergence criterion is satisfied, stop.
Otherwise go back to STEP 2.

Table 1. Optimal solutions of HCM and FCM.

Algorithm Eq. A Eq. B
HCM (1) (2)
FCM (3) (4)

as follows:

uki =

(
1

dki

) 1
m−1

c

∑
l=1

(
1

dkl

) 1
m−1

, . . . . . . . . . . (3)

vi =

n

∑
k=1

(uki)
m xk

n

∑
k=1

(uki)
m

. . . . . . . . . . . . (4)

The algorithm of HCM and FCM is summarized as Al-
gorithm 1.

The number of repetitions, the convergence of each
variable, or the convergence of an objective function are
used as the convergence criterion in STEP 4. The optimal
solutions Eqs. A and B used in each algorithm are shown
in Table 1.

2.2. Agglomerative Hierarchical Clustering
Along with c-means clustering, agglomerative hierar-

chical clustering (AHC) is also a representative clustering
algorithm as well as c-means clustering [4]. The AHC
algorithm merges clusters sequentially and outputs a den-
drogram. Crisp clusters obtained by AHC are disjointed
and their union is a set of objects as follows:

Gi ∩G j = /0 (i �= j),
c⋃

i=1

Gi = X .

A dissimilarity d(G,G′) (G,G′ ∈ G ) is defined as the
criterion that measures the nearness of two clusters. We
describe a general procedure of AHC as Algorithm 2.

There are several methods in the AHC procedure for
updating the dissimilarity, including single linkage, com-
plete linkage, average linkage, centroid method, and
Ward’s method. The fundamental characteristic of these
methods is omitted here; see [4] for details of these meth-
ods.

Vol.22 No.1, 2018 Journal of Advanced Computational Intelligence 55
and Intelligent Informatics



Hamasuna, Y., Ozaki, R., and Endo, Y.

Algorithm 2 AHC

AHC 1 Assume that the initial clusters are given by

G = {G1,G2, . . . ,Gn}

Set C := n. (C is the number of clusters and n is the
initial number of clusters)

Calculate d(G,G′) for all pairs G,G′ ∈ G .

AHC2 Search the pair of minimum dissimilarities:

(Gp,Gq) = arg min
G,G′∈G

d(G,G′).

Merge: Gr := Gp ∪Gq.

Add Gr to G and delete Gp and Gq from G .

C :=C−1.

If C = 1 then stop and output the dendrogram.

AHC 3 Update d(Gr,G′′) for all other G′′ ∈ G .

Go to AHC 2.

2.3. Cluster Validity Measures

Cluster validity measures are used to evaluate cluster-
ing partitions and determine the number of clusters [11–
13, 15, 16]. To date, many cluster validity measures and
their extensions have been proposed and studied [13, 15].
Two types of cluster validity measures are considered
herein, namely, validity indices involving only the mem-
bership degree, and validity indices involving geometric
features.

2.3.1. Partition Coefficients

First, we introduce the following three indices involv-
ing only the membership degree, that is, partition coeffi-
cient PC, partition entropy PE, and modification of parti-
tion coefficient MPC [13].

PC =
1
n

n

∑
k=1

c

∑
i=1

(uki)
2 ,

PE = −1
n

n

∑
k=1

c

∑
i=1

uki loguki,

MPC = 1− c
c−1

(1−PC) .

If the value of PC or MPC is large, the cluster partition
is considered to be good, whereas if the value of PE is
small, the result is also considered to be good.

2.3.2. Fuzzy Covariance Matrix Based Indices

Gath-Geva’s index [11] is based on fuzzy covariance
matrix Fi. Two types of indices are considered, that is, the
sum of the determinants of Fi and the sum of the traces of

Fi, which are as follows:

Wdet =
c

∑
i=1

√
detFi,

Wtr =
c

∑
i=1

trFi.

The fuzzy covariance matrix Fi is defined as follows:

Fi =

n

∑
k=1

(uki)
m (xk − vi)(xk − vi)

T

n

∑
k=1

(uki)
m

. . . . . . (5)

Here, m is a fuzzified parameter used in FCM [2]. For
HCM, fuzzified parameter m = 1 in Fi. If the value of
Wdet or Wtr is small, the clustering partition is considered
to be good.

2.3.3. Xie-Beni’s Index
Xie-Beni’s index (XB) [12] is constructed by consider-

ing the objective function and the minimum dissimilarity
between cluster centers, and can be described as follows:

XB =

n

∑
k=1

c

∑
i=1

(uki)
m ‖xk − vi‖2

n min
1≤i, j,≤c, i �= j

‖vi − v j‖2 . . . . . . . (6)

Here, m is also a fuzzified parameter. For HCM, m = 1 in
the numerator as well as for Fi. If the value of XB is small,
the clustering result is considered to be good.

2.3.4. Fukuyama-Sugeno’s Index
Fukuyama-Sugeno’s index (FS) is constructed by con-

sidering the objective function and the dissimilarity of
each cluster centers and the center of the dataset and can
be described as follows:

FS =
n

∑
k=1

c

∑
i=1

(uki)
m [‖xk − vi‖2 −‖vi − ṽ‖2] . . (7)

where ṽ is the center of the dataset.

ṽ =
1
n

n

∑
k=1

xk.

If the value of FS is small, the clustering result is con-
sidered to be good.

2.3.5. Kernelized Indices
Clustering methods with a kernel function generate a

cluster partition with a non-linear boundary [17]. The
kernelized cluster validity measures are also studied to
evaluate cluster partitions with a non-linear boundary and
the nearness of each object in a high-dimensional feature
space [15].

First, we define symbols to introduce kernel functions.
Here, φ : ℜp → ℜs(p � s) indicates mapping from the
input space ℜp to high dimensional feature space ℜs. An
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object in the feature space is denoted as φ(xk) ∈ ℜs. Ker-
nel function K : ℜp ×ℜp → ℜ satisfies the following re-
lation:

K(x,y) = 〈φ(x),φ(y)〉.
Note that φ is not explicit. The inner product of an object
in a high-dimensional feature space is calculated easily by
using kernel function K, and is known as a kernel trick [3,
17, 18].

The traces of the kernelized fuzzy covariance matrix
(KWtr) and kernelized Xie-Beni’s index (KXB) are intro-
duced herein. In addition, KWtr is constructed by intro-
ducing a kernel function into Eq. (5) as follows:

KWtr =
c

∑
i=1

trKFi, . . . . . . . . . . . . (8)

trKFi =
1
Ui

n

∑
k=1

(uki)
m ‖φ(xk)−Wi‖2,

KFi =

n

∑
k=1

(uki)
m (φ(xk)− vi)(φ(xk)− vi)

T

Ui
,

Ui =
n

∑
k=1

(uki)
m .

Moreover, KXB is constructed by introducing a kernel
function into Eq. (6) as follows:

KXB =

n

∑
k=1

c

∑
i=1

(uki)
m ‖φ(xk)−Wi‖2

n min
1≤i, j,≤c, i �= j

‖Wi −Wj‖2 . . . . . (9)

In Eqs. (8) and (9), Wi is the cluster center in ℜs de-
rived from kernelized fuzzy c-means and is described as
follows:

Wi =

n

∑
k=1

(uki)
m φ(xk)

n

∑
k=1

(uki)
m

. . . . . . . . . . (10)

To calculate the dissimilarity in the high-dimensional
feature space, substitute Eq. (10) into ‖φ(xk)−Wi‖2 and
‖Wi −Wj‖2, which are calculated through the following
formula:

dki = ‖φ(xk)−Wi‖2

= 〈φ(xk),φ(xk)〉−2〈φ(xk),Wi〉+ 〈Wi,Wi〉

= K(xk,xk)− 2
Ui

n

∑
s=1

usiK(xk,xs)

+
1

(Ui)
2

n

∑
s=1

n

∑
t=1

usiutiK(xs,xt),

‖Wi −Wj‖2 = 〈Wi,Wi〉−2〈Wi,Wj〉+ 〈Wj,Wj〉

=
1

(Ui)
2

n

∑
s=1

n

∑
t=1

(usiuti)
m K(xs,xt)

− 2
UiUj

n

∑
s=1

n

∑
t=1

(usiut j)
m K(xs,xt)

+
1

(Uj)
2

n

∑
s=1

n

∑
t=1

(us jut j)
m K(xs,xt).

3. Two-Stage Clustering Based on Cluster Va-
lidity Measures

We proposed a two-stage clustering framework based
on cluster validity measures [14]. The method is also
constructed using a generating stage and merging stage
as well as conventional two-stage clustering [7–9]. In the
first stage, HCM generates a large number of small clus-
ters, which are called sub-clusters. In the second stage,
clusters obtained in the first stage are merged sequentially
through the AHC procedure. The difference between the
proposed and conventional methods is that the cluster va-
lidity measures are used as the dissimilarity in the AHC
procedure. The algorithm merges the best cluster pair
showing the maximum or minimum value of the clus-
ter validity measures by merging two clusters. The clus-
ter validity measure is used as the criterion to merge or
not merge two clusters. The advantage of the proposed
method is that the optimal cluster partition is obtained
using suitable cluster validity measures as the merging
criterion in the second stage. Assume that CV(G,G′)
is the value of the cluster validity measure when merg-
ing two clusters G and G′. Several cluster validity mea-
sures [10–13] were applied to the merging criterion in the
previous experiments [14]. The proposed method consid-
ers the minimum value of the cluster validity measures
and finds pairs as follows:

(Gp,Gq) = arg min
G,G′∈G

CV(G,G′). . . . . . (11)

If we use PC and MPC, the pair that maximizes
CV(G,G′) is considered.

The algorithm of the two-stage clustering based on the
cluster validity measures, abbreviated as HCM–AHC, is
summarized as Algorithm 3.

In the previous study, we applied cluster validity mea-
sures with fuzzy partition as the merging criterion in the
second stage. The fuzzy partition is calculated through
Eq. (3) based on the centers of the clusters in G before
calculating the cluster validity measures in STEP 2-1.
After merging the two clusters in STEP 2-2, the clus-
ter center of Gr is updated using Eq. (2). In our algo-
rithm, the membership degree for calculating the cluster
validity measures is calculated by Eq. (3), and the clus-
ter centers are calculated through Eq. (2). In our previous
study, we compared the crisp and fuzzy partitions using
artificial and benchmark datasets [14]. The experimental
results showed that cluster validity measures based on a
fuzzy partition are a suitable merging criterion in the sec-
ond stage. In this sense, we consider a fuzzy partition to
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Algorithm 3 HCM–AHC

STEP 1 Generate clusters using HCM.

STEP 1-1 Set c := c0 and initial cluster centers from
X .

STEP 1-2 Calculate uki ∈U using Eq. (1).

STEP 1-3 Calculate vi ∈V using Eq. (2).

STEP 1-4 If the convergence criterion is satisfied go
to STEP 2. Otherwise, go back to STEP 1-2.

STEP 2 Merge clusters through AHC procedure
based on cluster validity measures.

STEP 2-1 Assume that the initial clusters are given
by STEP 1

G =
{

G1,G2, . . . ,Gc0

}
Set C := c0 (C is the number of clusters in the
AHC procedure, and c0 is the initial number of
clusters).
Calculate CV (G,G′) for all pairs G,G′ ∈ G .

STEP 2-2 Search the pair of optimal cluster validity
measures using Eq. (11):
Merge: Gr := Gp ∪Gq.
Add: Gr to G and delete Gp and Gq from G .
C := C − 1. If C = 1, then stop and output the
dendrogram.

STEP 2-3 Update CV (G,G′) for all pairs G,G′ ∈ G .
Go to STEP 2-2.

calculate the cluster validity measures with our two-stage
clustering algorithm.

4. Experiments

We conducted numerical experiments with eight arti-
ficial datasets to verify the effectiveness of the proposed
method. Next, we first describe the calculation conditions
of the numerical experiments. Second, we describe the
clustering results of the two-stage clustering based on the
cluster validity measures. Third, we summarize the ex-
perimental results and features of the proposed method.

4.1. Experimental Setup
We used eight artificial datasets for the experiments.

A description of these datasets is provided in Table 2.
Figs. 1–8, show illustrative examples of artificial datasets
1–8 classified into adequate clusters. To show the effec-
tiveness of the proposed method, we evaluate the value of
the adjusted rand index (ARI) [19]. The ARI is a measure
of the similarity between two cluster partitions and takes
a value between −1 and 1. When the value of ARI is 1,
the two cluster partitions are exactly the same.

We execute 100 HCM trials with different initial values

Table 2. Description of eight data sets.

Data n p c
Artificial data 1 300 2 6
Artificial data 2 500 2 4
Artificial data 3 1000 2 3
Artificial data 4 300 2 3
Artificial data 5 500 2 2
Artificial data 6 312 2 2
Artificial data 7 150 2 2
Artificial data 8 150 2 2

Fig. 1. Artificial dataset 1
(n = 300, p = 2, c = 6).

Fig. 2. Artificial dataset 2
(n = 500, p = 2, c = 4).

Fig. 3. Artificial dataset 3
(n = 1000, p = 2, c = 3).

Fig. 4. Artificial dataset 4
(n = 300, p = 2, c = 3).

Fig. 5. Artificial dataset 5
(n = 500, p = 2, c = 2).

Fig. 6. Artificial dataset 6
(n = 312, p = 2, c = 2).

Fig. 7. Artificial dataset 7
(n = 150, p = 2, c = 2).

Fig. 8. Artificial dataset 8
(n = 150, p = 2, c = 2).
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Table 3. ARI values by the proposed and conventional methods.

Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8
HCM-AHC(Wtr) 0.960 1.000 0.994 0.978 1.000 0.112 −0.024 1.000
HCM-AHC(XB) 0.789 0.880 0.622 1.000 1.000 0.029 −0.037 1.000
HCM-AHC(FS) 0.737 0.259 0.136 1.000 0.326 0.846 −0.054 0.099
HCM-AHC(PC) 0.984 1.000 0.989 1.000 1.000 0.846 −0.024 1.000
HCM-AHC(PE) 0.960 1.000 0.994 0.872 1.000 0.846 −0.024 1.000
HCM-AHC(MPC) 0.984 1.000 0.989 1.000 1.000 0.846 −0.024 1.000

during the first stage to minimize the objective function.
First, we set the number of clusters generated in the first
stage to 10 (c0 = 10) for all datasets. The clusters with
the minimum value of the objective function obtained in
the first stage are merged in the second stage. We evaluate
the value of ARI when the number of clusters determined
through the proposed method is equal to the optimal num-
ber of clusters. In these experiments, we set m = 2.0. To
calculate KWtr and KXB, we use the following Gaussian
kernel as the kernel function:

K(x,y) = exp
(−β‖x− y‖2) . . . . . . . (12)

Here, β is a kernel parameter for the Gaussian kernel. In
these experiments, we set β =0.1, 1.0, and 10.0, respec-
tively.

4.2. Experimental Results

We show the experimental results to demonstrate the
effectiveness of two-stage clustering based on the clus-
ter validity measures. For each dataset, we evaluate the
ARI for clustering accuracy. Table 3 shows a summary
of the results. In Table 3, except for HCM-AHC(FS), ar-
tificial datasets 7, and 8, the results are from our previous
study [14].

The second through sixth rows show the results by the
proposed method with each index. Table 3 shows that
several of the indices obtain better results except for arti-
ficial dataset 7, which consists of a non-linear boundary.
HCM-AHC(Wtr) and HCM-AHC(XB) do not obtain bet-
ter results for artificial dataset 6. None of the two-stage
clustering methods based on each measure obtain better
results for artificial dataset 7, whereas, with the excep-
tion of HCM-AHC(FS), the proposed method can obtain
better results for artificial dataset 8, which consists of a
non-linear cluster boundary.

To compare the results by HCM-AHC(Wtr) and HCM-
AHC(XB), we then conducted experiments using HCM-
AHC(KWtr) and HCM-AHC(KXB) for artificial data 6–
8. Tables 4–6 show the results by HCM-AHC(KWtr) and
HCM-AHC(KXB) for artificial datasets 6, 7, and 8. The
bold face in Tables 4–6 shows the best results of each
comparison.

A summary of the comparison is as follows:

• The kernelized indices with β = 0.1 obtain similar
results for artificial dataset 6.

Table 4. ARI value by kernel indices for artificial dataset 6.

β = 0.1 β = 1.0 β = 10.0
HCM-AHC(KWtr) 0.846 0.187 0.806
HCM-AHC(KXB) 0.846 0.289 −0.103

Table 5. ARI value by kernel indices for artificial dataset 7.

β = 0.1 β = 1.0 β = 10.0
HCM-AHC(KWtr) −0.046 −0.037 1.000
HCM-AHC(KXB) −0.048 −0.048 −0.023

Table 6. ARI value by kernel indices for artificial dataset 8.

β = 0.1 β = 1.0 β = 10.0
HCM-AHC(KWtr) 0.016 0.105 0.008
HCM-AHC(KXB) 0.251 0.406 0.749

• HCM-AHC(KWtr) with β = 10.0 shows the best re-
sults for artificial dataset 7.

• The kernelized indices do not obtain better results for
artificial dataset 8 because they have a possibility to
merge clusters that are distant from each other. Con-
ventional indices such as Wtr, and XB, and partition
coefficients are considered suitable merging criteria
for non-linearity, such as with artificial dataset 8.

4.3. Discussions
First, we show the overview of indices. Tables 3–6

show that several of the cluster validity measures are suit-
able for a merging criterion in the second stage.

• HCM-AHC(Wtr) obtains better results except for ar-
tificial datasets 6 and 7. If we set the number of clus-
ters generated in the first stage to 20 (c0 = 20), we
can obtain the best result when ARI = 1.0 for artifi-
cial dataset 6. For artificial dataset 7, Table 5 shows
that KWtr obtains better results than the other indices.

• HCM-AHC(XB) obtains relatively poor results com-
pared with the other indices for artificial datasets 1,
2, 3, and 6. The XB index (shown in Eq. (6)) con-
sists of the average of the sum of squares within the
clusters and the minimum dissimilarity of two cluster
centers. Therefore, there is a possibility for clusters
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that are distant from each other to be merged when
the denominator of Eq. (6) significantly affects XB.
The examples and a detailed discussion are described
in our previous study [14].

• HCM-AHC(FS) obtains more negative results than
the other indices. The value of FS is strongly af-
fected by the second term in Eq. (7). This means
that the FS is not suitable for the criterion in the sec-
ond stage, which merges adjacent clusters. HCM-
AHC(FS) with c0 = 20 also obtains negative results
for artificial datasets 2, 3, and 5. These results indi-
cate that FS is not suitable for the merging criterion
in the second stage.

• It can be seen that the indices PC, PE, and MPC,
which are based on the membership degree, obtain
better results even for artificial datasets 6 and 8,
which consist of different cluster shapes.

• Tables 4–6 show that KWtr is more suitable for the
merging criterion than KXB. It is considered that
KWtr is as suitable for merging adjacent clusters as
Wtr.

These experiments show that Wtr, PC, PE, and MPC are
suitable for the merging criterion for two-stage clustering
based on the cluster validity measures. In particular, it is
considered that Wtr and its kernelization KWtr are the best
indices for the proposed method. The strong point of the
proposed method is the handling of complex structures by
considering the cluster validity measures as the merging
criterion. To improve the effectiveness of the proposed
method, the introduction of fast algorithms for speeding-
up techniques in each stage are important for handling
massive complex datasets.

5. Conclusions

In this paper, we proposed a two-stage clustering
method based on cluster validity measures. The proposed
method is different from previous studies [7–9] in that
it handles cluster validity measures as the merging cri-
terion in the second stage. Moreover, we demonstrated
the effectiveness and characteristics of each cluster va-
lidity measure through numerical experiments on eight
datasets. These experiments show that Wtr and its kernel-
ization KWtr are quite effective for two-stage clustering
based on cluster validity measures.

In future works, to accelerate each stage, we will apply
other clustering methods in the first stage and novel clus-
ter validity measures in the second stage. We will also
propose and apply variants and other cluster validity mea-
sures to improve the proposed method and handle massive
and complex datasets.
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