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In this study, a new method to realize majority rule is
presented by using noninvasive brain activities. With
the majority rule based on an electroencephalogram
(EEG), a technique to determine the attention of mul-
tiple users is proposed. In general, a single-shot EEG
ensures short-time response, but it is inevitably dete-
riorated by artifacts. To enhance the accuracy of the
majority rule, the collaborative signals of P300 evoked
potentials are focused. The collaborative P300 signal
is prepared by averaging individual single-shot P300
signals among subjects. In experiments, the EEG sig-
nals of twelve volunteers were collected by using au-
ditory stimuli. The subjects paid attention to target
stimuli and no attention to standard stimuli. The col-
laborative P300 signal was used to evaluate the perfor-
mance of the majority rule. The proposed algorithm
enables us to estimate the degree of attention of the
group. The classification is based on supervised ma-
chine learning, and the accuracy approximately 80%.
The applications of this novel technique in multime-
dia content evaluations as well as neuromarketing and
computer-supported co-operative work are discussed.

Keywords: collaborative EEG, P300, majority rule, audi-
tory stimulus, attention, normalization, multimedia evalu-
ation

1. Introduction

Recent developments in the brain-machine interface
(BMI) [1] have been remarkable, owing to new under-
standings of brain functions as well as the disseminations
of low-cost computers and devices. In particular, BMI
systems based on event-related potentials (ERPs) [2] have
been extensively studied.

P300 signals, one of the promising ERPs, are elicited
when paying attention to external stimuli. The amplitude
of P300 signals depends on the depends on the degree of
attention or interest [3]. The P300 signals result from an
endogenous potential change that occurs approximately
300 ms after the onset of the external stimulus [4, 5]. A
virtual keyboard is one of the promising BMI applica-
tions [6–8]. This system is realized by detecting the P300
signals elicited when the user pays attention to the char-
acter they wish to input.

Today, ERP applications have a new direction. Usu-
ally, multimedia content evaluation has been realized with
subjective indicators such as questionnaires. On the other
hand, multimedia content can be objectively evaluated by
biological signals of brain waves [9, 10]. J. Suzuki, H.
Nittono, and T. Hori studied an ERP-based method of
multimedia content evaluation [11]. Their work demon-
strated the evaluation of the degree of attention to mul-
timedia content by using the ERP induced by auditory
stimuli. The ERP signals were recorded under the dual
tasks. The subject paid attention to simple auditory stim-
uli when watching a soundless video clip. It was found
that the P300 amplitudes systematically varied depending
on the degree of novelty of the video content.

Previous studies were based on the averaging of the
ERP signals within a subject. The within-subject averag-
ing procedure (Averaging method) contributes to the re-
duction of the noise component. The signal-to-noise ratio
of the ERP increases as the number of values that are av-
eraged increases. However, in the case of the averaging
within a subject, it is necessary to present the same stimu-
lation repeatedly for numerous times. Therefore, it is not
possible to evaluate a specific scene in multimedia con-
tents. If we wish to evaluate a specific scene, single-shot
analysis is inevitably required. It has been noticed that
ERP signals are difficult to be classified or decoded, espe-
cially with single-shot analysis, since they are bio-signals
elicited inside the human brain.

To achieve the single-shot analysis, we do not focus on
the average ERP within a subject; rather, we focus on the
average ERP among different subject. By applying the av-
erage among subjects, the evaluation of single-shot mul-
timedia content is ensured. The average ERP among dif-
ferent subjects is called collaborative ERP, which is con-
structed from the single-shot ERPs of individual subjects.
It has been remarked that collaborative EPR analysis leads
to improved classification performances in the detection
of ERP [12–15]. In these studies, the performance of ERP
classification was significantly enhanced, though the si-
multaneous measurements of multi-user ERP were neces-
sary. When we use the P300 signals of multiple subjects,
the signals are gathered and analyzed. Then, we call the
signals collaborative P300. There are two types of collab-
orative P300 signals. One is perfect collaborative P300
(perfect collaboration), and the other is non-perfect col-
laborative P300 (non-perfect collaboration). In previous
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research, only perfect collaborative ERP has been stud-
ied [12–15]. Y. Wang and T. Jung studied the collabora-
tive ERP at the posterior parietal cortex (PPC) [12]. They
suggested that the ERP classification performance is en-
hanced substantially from 66% to 80% when using col-
laborative ERP. Y. Wang, Y. Wang, T. Jung, X. Gao, and
S. Gao studied the collaborative ERP at N2 [13]. They
suggested that the ERP classification performance is en-
hanced substantially from 75.8% to 99.1%. P. Yung, Y.
Wang, W. Wu, H. Xu, X. Gao, and S. Gao studied the vi-
sual evoked potentials (VEPs) of multiple subjects [14].
They concluded that the collaborative ERP classification
performance is higher than the average individual accu-
racy by 11% and higher than the best individual accu-
racy by 6%. J. Fan and H. Touyama studied the P300
signals from multiple subjects [15]; consequently, the F-
measure of P300 discrimination accuracy was improved
from 63.6% to 88.6%. In these works, the ERP classifica-
tion performances were improved with the collaborative
EEG signals. On the other hand, the situation of per-
fect collaboration in which all subjects pay attention or
all subjects do not pay attention is not realized in general.
In other words, the P300 signals of some subjects in the
group are clearly elicited, while those of other subjects are
not elicited. Then, the amplitude of the collaborative P300
signals is reduced, and a new method of signals process-
ing should be proposed to determine how many subjects
elicit the P300 signals. In particular, it would be useful to
realize the majority rule based on EEG signals for future
application with collaborative EEG signals.

Therefore, we propose a novel method to realize ma-
jority rule based on EEG signals in the non-perfect col-
laborative condition. With the proposed method, we can
judge whether more than half of subjects pay attention or
not. The proposed method enables the applications with
collaborative EEG signals to reflect the collective opinion
of the subjects in the group, even when the subjects have
different opinions.

The purpose of this study is to develop a method of
single-shot multimedia content evaluation based on col-
laborative P300 signals. We focus mainly on the case of
non-perfect collaboration, and the technique to achieve
the majority rule is proposed in the context of multime-
dia content evaluation. With the proposed method, the
evaluation of single-shot (short-time) content is possible
with high accuracy owing to the collaborative signal anal-
yses. To achieve this purpose, we measure the collabora-
tive P300 signals evoked by auditory stimulation with an
oddball task [16, 17].

In the next section, we explain the methodology of our
experiments. In section 3, we report the signal process-
ing methods, such as pre-processing, collaborative anal-
ysis, and classification. EEG data normalization is also
explained. In section 4, the performance results of col-
laborative P300 waveforms and the majority rule are dis-
cussed. In section 5, the result are discussed.

Fig. 1. Collaborative EEG measurement with six subjects.
The subjects heard auditory stimuli and silently counted the
number of the occurrences of target stimuli.

2. Experiment

2.1. Subject and Experimental System
In this study, twelve healthy adult subjects (males,

mean age 21.41, S.D. 0.64 years) participated in the EEG
experiment. Each of six subjects wore a compact EEG
cap and was comfortably seated on a standard chair 3.0 m
away from a 150-in screen. Two speakers were installed
at left front and right front of the subjects, and auditory
stimulation was presented (Fig. 1). In order to suppress
the eye movements of the subjects, we used a white fix-
ation cross on a black background projected on a 150-in
screen by a DLP projector. During the EEG measurement,
the subjects were instructed to gaze at the fixation cross.

We conducted the collaborative EEG measurements
twice. First, the EEG signals of six subjects (first group)
were simultaneously measured. Subsequently, the other
six subjects (second group) participated in similar experi-
ments. Therefore, in total, the EEG signals of 12 subjects
could be recorded. This experiment was approved by the
ethics committee of Toyama Prefectural University, and
each subject gave written informed consent.

2.2. EEG and EOG Recordings
EEG and electro-oculogram (EOG) signals were

recorded using two bio-signal amplifiers, which were
stacked and linked. The device recorded the EEG signals
with a sampling rate of 512 Hz. We applied a bandpass
filter between 0.1 and 100 Hz both for EEG as well as
EOG measurement. A notch filter of 60 Hz was applied
to reduce the noise from environmental sources such as
the power supply.

For each subject, two EEG electrodes were placed at
Cz and Pz based on the extended international 10–20 sys-
tem [18]. The recording reference and ground electrode
were the left earlobe and AFz, respectively. For moni-
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Fig. 2. Protocol of the EEG recording. Target and standard
auditory stimuli were randomly presented. The sound se-
quence for the second group was different from that for the
first group.

toring eye blinks, we recorded the vertical EOG. Then,
the EOG electrodes were placed above and below the left
eye. All electrodes were active sensors and attached by
conductive gel; thus, we expected to obtain high-quality
EEG signals.

2.3. Auditory Stimuli
In this study, we used auditory stimuli to elicit collab-

orative P300 signals. The stimuli were simple tones sam-
pled at 44.1 kHz and quantized with 8 bits. Four types
of auditory stimulations were created in advance. Their
frequencies were 500, 1500, 2500, and 3500 Hz. The du-
ration of al stimuli was 0.2 s. The experimental protocol
of our EEG recordings is shown in Fig. 2. Before the
measurement, we confirmed that there were no problems
in the EEG measurement system and EEG signals. After
the confirmation, each auditory stimulation was randomly
and serially presented, which was followed by a rest time
of 1.8 s. After four auditory stimuli were presented, we
provided an interval of 3.8 s. During the session, each
auditory stimulation was presented 10 times. There were
10 sessions of EEG recordings in total. Each session con-
sisted of 3 min.

The auditory stimulus with a frequency of 500 Hz was
the target stimulus. The other auditory stimuli were stan-
dard stimuli. According to our preliminary study, a clear
P300 signal was obtained even with several standard stim-
uli. The subjects heard these auditory stimuli and silently
counted the number of occurrences of target stimuli. Fur-
thermore, they were instructed to ignore the stimuli with
higher frequencies, which were standard stimuli. There-
fore, the P300 signals were expected to appear only during
target stimuli presentation, which was desired and rare.

Every time a measurement session ended, the subjects
reported the number of occurrences of target stimuli. We
confirmed that, in all sessions, the twelve subjects cor-
rectly reported the number of occurrences of target stim-
uli. In total, there were 100 target and 300 standard stim-
uli for each subject.

3. Analysis
3.1. Pre-Processing

To confirm the occurrence of P300 waveforms, we ap-
plied EEG signal pre-processing steps, which comprised

bandpass filtering, artifacts removal, baseline procedure,
and down sampling. The bandpass filter was used to ex-
tract the frequency components of P300 signals between
0.1 and 10 Hz. The filter removed lower- and higher-
frequency artifacts. The P300 signals were expected to
appear in that frequency band.

After the bandpass filtering, the artifacts originating
from eye blinks were removed by using independent
component analysis (ICA). We used the FastICA algo-
rithm [19] to achieve artifact removal. With the FastICA
algorithm, the EEG and EOG data are rotated by an un-
mixing matrix W to obtain the independent components.
We calculated the cross correlation between each inde-
pendent component and EOG. When the correlation was
greater than a preset threshold (the threshold value was
0.6 in this study), the independent component was set to
zero. Finally, we used the inverse matrix W−1 to recover
the EEG data from the independent components in which
the eye-blink artifacts were removed.

In the baseline processing, EEG signals for 0.25 s be-
fore the stimulus onsets were averaged, and the aver-
aged value was subtracted from the EEG waveforms. To
compress the number of feature dimensions of the EEG
data, down sampling was performed to be 32 dimensions
per EEG channel. Consequently, 1 s of EEG signals is
expressed by 32 dimensional vectors, one dimension of
which corresponds to 3.125 ms. Finally, the number of
dimensions of the feature vector was 64 with two elec-
trodes (Cz and Pz).

3.2. Normalization
In general, the P300 amplitude has individual differ-

ences. In this study, the majority decision was realized
based on the P300 amplitude. If a subject elicits a mall
P300 amplitude, there is a possibility that the EEG data
may not be sufficiently reflected in the result of majority
decision. In order to reduce such individual differences,
the normalization of each subject’s EEG data was re-
quired. We focused on four types of normalization meth-
ods, which were compared with each other.

A No normalization.

B Each EEG data point was normalized by the maxi-
mum value of the grand mean P300 amplitude found
in the target datasets (max normalization).

C The maximum and minimum value of the EEG am-
plitudes were considered. The difference between
the maximum and minimum value was calculated in
the target condition as well as the standard condition.
We calculated the average of these two differences.
Each EEG data point was normalized by the aver-
aged difference (mean normalization).

D Same as C) except for the calculation method. We
calculated the geometric mean by using two differ-
ences. The normalization was performed by the ge-
ometric mean value (geometric normalization).
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Fig. 3. Concept of the collaborative EEG analysis.
Temporal-domain EEG data were averaged together. Twelve
subjects contributed to the collaborative P300 signal, in
which the noise components were reduced.

In these normalization methods, we considered 1.25 s
of temporal EEG data.

3.3. Collaborative EEG Datasets
Majority rule is achieved by averaging single-shot EEG

signals among subjects. Each single-shot EEG signal was
recorded in either the target or standard condition. The 12
single-shot EEG signals were averaged together for col-
laborative EEG analysis (Fig. 3).

In the EEG datasets of the 12 subjects, the ratio of
the number of target/standard data could be varied when
preparing the collaborative EEG data (Fig. 4). For exam-
ple, we prepared the datasets in which five subjects paid
attention to a certain stimulus and the remaining seven
subjects ignored to the same stimulus. In that case, the ra-
tio was 5/12. If none of the subjects paid attention to the
stimulus, the ratio was 0/12. In total, there were 13 pat-
terns of the ratio (0/12, 1/12, . . . 12/12), and we labeled
them as 0, 1, 2, . . . ,11, 12, respectively.

After the EEG recording experiment, we obtained 100
target and 300 standard data for each subject per channel.
There were numerous combinations to select the single-
shot EEG data to prepare the collaborative EEG. In this
study, the target or standard data were randomly selected.

3.4. Classifications
The classification was achieved based on the supervised

machine learning technique by using the prepared datasets

Fig. 4. An example for the preparation of the collaborative
EEG datasets. A square represents one single-shot EEG sig-
nal. The ratio of the number of target/standard data varied
in the collaborative analysis. The number of target data was
the label in machine learning.

mentioned above. We demonstrated a simple majority de-
cision, with which the system could estimate the degree
of attention of the majority (or minority).

In the supervised machine learning, the supervised data
are required. In this study, the supervised data had the la-
bels of the ratio of the target/standard data, as shown in
Fig. 4. After setting the labels, we applied temporal prin-
cipal component analysis (temporal PCA) for each EEG
channel. The PCA could reduce the number of dimen-
sions of the temporal feature vectors. The noise compo-
nents were reduced as well.

The classification rate was derived by using the leave-
one-out cross validation technique. We repeatedly created
the collaborative EEG data and the corresponding label
and performed the classification. This procedure was re-
peated 20 times. Finally, the average F-measure was cal-
culated.

There could be a draw condition in which six subjects
paid attention and the other six did not. In this study, we
did not consider the draw condition, but we studied two
cases (Case 1 and Case 2). In Case 1, the label for the
dataset in which less than seven subjects paid attention
were set to ‘minority’ and the residual dataset was set to
‘majority’ In Case 2, the label for the dataset in which less
than six subjects paid attention were set to ‘minority’ and
the residual dataset was set to ‘majority.’

3.5. Varying the Number of Subjects
In order to examine the influence of the number of sub-

jects on the result of the majority rule performance, we
varied the number of subjects. First, we selected two sub-
jects to consider a group of two people with the ampli-

Vol.21 No.7, 2017 Journal of Advanced Computational Intelligence 1315
and Intelligent Informatics



Fujita, K. and Touyama, H.

Table 1. Normalized amplitude of P300 for each subject. This amplitude of P300 is the difference between the maximum value of
the target and the maximum value of the standard.

subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 mean S.D
P300 Amplitude [µV] 0.60 0.59 0.73 0.41 0.57 0.01 0.57 0.17 0.72 0.76 0.64 0.42 0.51 0.21
P300 Latency [ms] 406 437 375 250 375 375 218 375 375 375 375 375 349 69.0

Fig. 5. Average EEG waveforms at Pz are shown in the left and right column, respectively. There were individual differences in
P300 peak amplitudes and waveforms.

tude of P300 signal larger than those of the others. Fur-
thermore, we selected the next two subjects in a similar
manner. Thus, the number of subjects were varied as 2, 4,
. . . , 10, 12. The performance value of majority decision is
expected to increase as the number of subjects increases.
Here, we considered the sort of the P300 amplitudes of 12
subjects according to normalization method D (geometric
normalization). Table 1 lists the normalized amplitude of
P300 for each subject. The average EEG waveforms at Pz
for each subject are shown in Fig. 5.

4. Result

In Fig. 5, it is possible to confirm a large or a clear pos-
itive peak between approximately 350 and 450 ms from
the stimulation onset, except for one subject (S6). In
Fig. 6, the average EEG waveforms were normalized by
method D (geometric normalization). Here, we varied the
ratio of the P300 occurrences in twelve subjects. The thir-
teen waveforms are shown with their label, which was the
number of subjects who showed a P300 signal. For exam-

ple, ‘five’ denotes a ratio of 5/12, as mentioned before. As
shown in Fig. 6, we can confirm a tendency that the av-
eraged P300 amplitudes increased as the number of sub-
jects who paid attention to the stimuli increases. Figs. 7
and 8 show the result of averaging. The EEG averaging
was repeated 20 times. Fig. 7 shows the relation between
the P300 latency and the ratio of target and standard data.
Fig. 8 shows the relation between the P300 amplitude and
the ratio of target and standard data. The regression line
of P300 amplitude was y = 0.046x+0.243.

Table 2 lists the classification results with four normal-
ization methods. In PCA, we investigated the feature di-
mensions between 1 and 30. With these feature dimen-
sions, we derived the F-measure values, and the highest-
performance value was selected as the final result. As in-
dicated in Table 2, the highest classification result was
obtained with no normalization. Then, the accuracy of
majority rule was approximately 78.0% by using auditory
P300 signals with the 12 subjects. The relation between
the performance of majority rule and the number of sub-
jects is shown in Fig. 9. We considered the number of
subjects as 2, 4, . . . , 10, 12. Here, Table 1 was used
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Table 2. Performance result of majority rule with the averaging method of four types of normalization and voting method of no
normalization with 12 subjects.
Case 1. Classification between the dataset in which less than seven subject paid attention and the residual dataset.
Case 2. Classification between the dataset in which less than six subject paid attention and the residual dataset.

Case1 Case2
minority majority minority majority

Averaging (No normalization) 81.22± 1.02 75.98± 1.28 78.43± 0.84 78.47± 0.92
Averaging (max normalization) 78.07± 1.96 72.80± 2.65 74.51± 2.32 74.97± 2.64
Averaging (mean normalization) 80.76± 0.75 75.63± 0.99 80.77± 0.74 75.57± 1.00
Averaging (geometric normalization) 78.02± 0.86 78.15± 0.89 78.10± 0.82 78.19± 0.87
Voting (No normalization) 76.36± 0.30 43.13± 1.74 72.71± 0.78 59.53± 1.89

Fig. 6. Average EEG waveforms at Pz normalized with
method D by varying the ratio of the P300 occurrences (tar-
get data) in twelve subjects. Graph legend: The ratio of tar-
get data.

for subject sorting. The order of subjects was determined
from the amplitude sorting. The performance values in
majority rule were systematically varied if we varied the
number of people in the group.

It has been confirmed that the latency of P300 differs
depending on age and sex [20, 21]. There is a possibil-
ity that the amplitude of collaborative P300 would be de-
creased if the averaging process is performed when the
latencies of P300 do not coincide with each other. In this
study, we investigated subjects with similar ages (21.41
± 0.64 years old). In fact, with these twelve subjects,
the latency of average P300 signals was 349.0 ± 69.0 ms.
Thise latency value was found to be rather small com-
pared with the difference between the average P300 la-
tency of younger people and that of older people [20, 21].
The latency of P300 increased with age by 1.8 ms/year.
Younger people tend to have small latency compared with
older people. In this study, the high performance in the
majority rule could have been caused by the similar ages
between of subjects.
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5. Discussion

With max normalization, the classification accuracy
tended to be lower than that with other methods. The
other three methods had almost the same accuracies, es-
pecially with a large number of subjects. These results
indicate that the methods of normalization might not be
essential for high classification accuracy. However, the
P300 amplitude has individual differences. With the indi-
vidual differences in P300 amplitudes, a disparity in the
relative value of a vote will occur in the group. Therefore,
it is important to normalize EEG data. In future work,
we will further investigate the normalization method by
increasing the number of subjects.

In our analysis, the number of subjects was varied with
the method mentioned in section 3.5. The performance
of majority rule increased as the number of subjects in-
creased. However, the accuracy was not perfect. The sat-
uration of the accuracies in Fig. 9 result from the method
we used in the section 3.5. We increased the number of
subjects by two subjects who have relatively high P300
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amplitudes. It is very important to consider a greater num-
ber of subjects, such as more than 100, though they might
include subjects showing a relatively low P300 signal-to-
noise ratio. Such analysis on P300 big data will be a sub-
ject for future works.

In this study, we focused on the method of averaging
among subjects to obtain collaborate P300 signals. There
is another candidate to gather collaborative P300 signals.
Without averaging, the single-shot P300 signals of indi-
vidual subjects were separately classified, and each clas-
sification result was aggregated. This is called the voting
method. A previous study reported that, in the detection
of perfectly collaborative ERP, the classification accuracy
with the voting method is higher than that with the aver-
aging method [12]. Table 3 lists the classification results
of collaborative P300 signals in the case of perfect collab-
oration (all members of the group have the same attentive
state). This result was consistent with the reference [12].
To summarize, the voting method is better than the av-
eraging method in the case of perfect collaboration. On
the other hand, Table 2 lists the result of majority rule
(non-perfect collaboration) with 12 subjects by applying
the voting method. As indicated in Table 2, the classifi-
cation accuracy with the voting method was less than that
with the method of averaging among subjects.

There might be limitations in applying collaborative
P300 signals. One limitation is the ages of subjects, which
has been mentioned before. Another limitation is the lo-
cations of subjects. We used a common speaker, rather
than headphones, as the sound source. The locations of
the subjects were distributed, which could cause a time
difference in the onset of auditory stimuli. This, in turn,
could lead to jitter in the P300 latencies between subjects
and reduce the majority-rule performance. We briefly es-
timated the jitter in our experimental settings. By using
the typical value of sound velocity (approximately 340
m/s), the jitter is at most approximately 5 ms, consider-
ing the locations of sitting subjects. From this estimation,

Table 3. F-measure in P300 classification by the voting and
averaging method in perfect collaboration with no normal-
ization.

Method (No normalization)
Averaging Voting

Target 77.29 78.94
Standard 92.07 93.44
Averaging 84.68 86.19

we conclude that the effect of the speaker device on the
jitter in the collaborative P300 latency is not so severe.
However, the effect might be significant if we consider
subjects who are distributed with long distances greater
than approximately 10 m. In such a case, the locations
of subjects should be measured using GPS or some track-
ing devices. To solve the problems limiting application, it
is necessary to perform the collaborative P300 averaging
by aligning the latencies among subjects. The latencies
of P300 can be aligned by using the adapting filter [22]
proposed by Woody.

There are numerous combinations for the preparation
of collaborative P300 datasets. In fact, the number of
combinations was as large as 16200. In this study, we
considered only 20 repetitions of random selection of the
collaborative P300 datasets. The standard deviation of the
majority-rule performance was found to be sufficiently
small (less than 0.3%), except for the case of the max
normalization method. This result might suggest that our
evaluation of majority-rule performance with 20 repeti-
tions is good.

As mentioned in the introduction, collaborative P300
signals can used in a variety of applications. One of our
final goals is to realize a method of multimedia content
evaluation. Attention can be one of the measures of de-
gree of interest in the content. Y. Shigemitsu et al. sug-
gested that the within-subject average of single-shot P300
waveforms reflected the interest in a video clip. Our study
extended this concept to a multi-user situation. Further-
more, the degree of interest in a certain group (not in a
single person) can be measured in terms of the degree of
attention to the multimedia content.

A dual task was applied in a previous study [11]. An
auditory stimulation was used as a probe to investigate the
attention of the subject. However, the dual task may limit
the experimental settings and future applications. There-
fore, a single task should be studied extensively. This
means the stimulation should be extracted from the con-
tent of the video clip itself. Furthermore, an online system
can present a new strategy for evaluating a variety of con-
tent developed by enterprises for advertisement.

Marketing is another promising application of collab-
orative EEG signals. Based on the technique of P300
speller [4, 5], the attention of the user can be revealed
from the serial visual presentation of photo images [23].
Rapid presentation was also studied in the work of corti-
cally coupled computer vision [24]. The content of photo
images might be advertisements for commercial products.
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The attention to the products can be estimated from the
collaborative P300 signals.

Collaborative P300 signals might be applied to the es-
timation of the degree of attention in educational institu-
tions. The stimulation may be the spoken words or hand
gestures of a lecturer. In this case, the audience can be
large number of people, and the collaborative P300 sig-
nals may be useful to estimate the attention of the audi-
ence.

In general, P300 is detected when the subject pay at-
tention. We consider application in remote conferencing,
which a computer-supported co-operative work (CSCW).
CSCW is an academic field that studies the situation in
which people co-operate through computer support. It re-
alizes co-operative work systems such as remote confer-
ence systems and remote presentation systems [25]. With
remote conference systems, conference attendees can par-
ticipate in a conference without gathering at one place.
We can reduce travel time and cost by utilizing CSCW.
However, the participants in the conference could not be
able to grasp the degree of attention in the entire meet-
ing, and thus, the remote conference’s efficiency may de-
crease. Therefore, we can evaluate the degree of atten-
tion of participants from majority rule using collaborative
P300. For a reduced degree of attention, we expect to im-
prove the efficiency of a remote conference by presenting
feedback to the conference participants. In this manner,
we consider that the technology of analyzing collabora-
tive brain signals can be applied to CSCW activities ex-
tracting the attentive states of multiple users.

In summary, when collaborative EEG signals are used,
there are situations in which the thinking of all members
does not agree. Therefore, if the thinking of a group
does not have a consensus, we need to grasp the averaged
thought of the group. This work contributes to realizing
the majority rule with only brain-signal analyses.

6. Conclusions

In this study, a new method to realize majority rule was
presented by using noninvasive brain activities. With the
majority rule based on the electroencephalogram (EEG),
a technique to determine the attention of multiple users
was proposed. In general, the single-shot EEG ensures
short-time response, but it is inevitably deteriorated by
artifacts. To enhance the accuracy of the majority rule,
we focused on the collaborative signals of P300 evoked
potentials. The collaborative P300 signals were prepared
by averaging individual single-shot P300 signals among
subjects. In the experiments, the EEG signals of twelve
volunteers were collected by using auditory stimuli. The
subjects paid attention to the target stimuli and no atten-
tion to the standard stimuli. The collaborative P300 sig-
nals were used to evaluate the performance of majority
rule. The proposed algorithm enables us to estimate the
degree of attention of the group. The classification was
based on supervised machine learning, and the accuracy
could be approximately 80%. The applications of this

novel technique in multimedia content evaluations as well
as neuromarketing and CSCW were discussed. Our study
suggests that decision making is possible based on major-
ity rule by collaborative EEG. Furthermore, the proposed
technique might be applicable to improve the efficiency of
co-operation in CSCW by objectively measuring the state
of a group.
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