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This paper considers conjectural variations equilib-
rium (CVE) in the one item market with a mixed
duopoly of competitors. The duopoly is called semi-
mixed because one (semi-public) company’s objective
is to maximize a convex combination of her net profit
and domestic social surplus (DSS). The two agents
make conjectures about fluctuations of the equilib-
rium price occurring after their supplies having been
varied. Based on the concepts of the exterior and in-
terior equilibrium, as well as the existence theorem for
the interior equilibrium (a.k.a. the consistent CVE,
or the exterior equilibrium with consistent conjectures)
demonstrated in the authors’ previous papers, we an-
alyze the behavior of the interior equilibrium as a
function of the semi-public firm’s level of socialization.
When this parameter reflected by the convex combina-
tion coefficient tends to 1, thus transforming the semi-
public company into a completely public one, and the
considered model into the classical mixed duopoly, two
trends are apparent. First, for the private company,
the equilibrium with consistent conjectures (CCVE)
becomes more attractive (lucrative) than the Cournot-
Nash equilibrium. Second, there exists a (unique in the
case of an affine demand function) value of the convex
combination coefficient such that the private agent’s
profit is the same in both of the above-mentioned equi-
librium types, thus making no subsidy to the producer
or to the consumers necessary. Numerical experiments
with various mixed duopoly models confirm the ro-
bustness of the proposed algorithm for finding the op-
timal value of the above-mentioned combination coef-
ficient (a.k.a. the semi-public company’s socialization
level).

Keywords: game theory, mixed duopoly, conjectural
variations equilibrium (CVE), consistent conjectures, op-
timal socialization level

1. Introduction

During the last 15 years, researchers in the field of
mathematical economics have extensively and intensively
studied mixed oligopolies models. In contrast to the clas-
sical oligopoly, a mixed oligopoly, apart from standard
producers who seek to maximize their net profit, usu-
ally includes (at least one) public company trying to op-
timize another objective function involving indicators of
the firm’s social responsibility. Many such models in-
clude an agent who maximizes the domestic social sur-
plus (cf., [1–5]). An income-per-worker function replaces
the standard net profit objective function in some other
publications (cf., [6–9]). Other researchers [10, 11] have
studied a third kind of mixed duopoly, in which an exclu-
sive participant aims to maximize a convex combination
of his/her net profit and domestic social surplus. This pa-
per addresses such a company as semi-public.

In many of the aforementioned works, the authors in-
vestigated mixed oligopolies by making use of the classi-
cal Cournot-Nash, Hotelling, or Stackelberg models. The
notion of conjectural variations equilibrium (CVE) first
introduced by Bowley [12] and Frisch [13] opens another
way of the agents’ reaction to the market challenge, which
attracts ever-growing interest on part of the related re-
searchers. In CVE, competitors behave as follows – each
agent (producer) selects her/his most favorable strategy
having supposed that every opponent’s action is a conjec-
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tural variation function of her/his own strategical varia-
tion. For example, as Laitner (p. 643 of [14]) states, “Al-
though the firms make their output decisions simultane-
ously, plan changes are always possible before production
begins.” In other words, in contrast to the Cournot-Nash
approach, here, every company assumes that its choice of
the own output volume will affect her competitors’ reac-
tion. The consequently arising prediction (or, conjectural
variation) function is the central point of conjectural vari-
ation decision making, or the conjectural variations equi-
librium (CVE).

As is mentioned in [15] and [16], the notion of CVE
has been the topic of abundant theoretical discussions
(cf., [17]). Notwithstanding this, economists have ex-
tensively used various forms of CVE to predict the out-
come of non-cooperative behavior in many areas of eco-
nomics. The literature on conjectural variations has fo-
cused mainly on two-player games (cf., [15]) because a
serious conceptual difficulty arises if the number of agents
is greater than two (cf., [15] and [18]).

In order to overcome conceptual hurdles arising in
many-player games, a new tool was developed in [19];
namely, instead of imposing very restrictive additional as-
sumptions (like the identity of players in the oligopoly),
it was supposed that every player makes conjectures only
about the variations of the market clearing (equilibrium)
price as a consequence of (infinitesimal) variations of the
same player’s output volume. Knowing the opponents’
conjectures (the influence coefficients), each firm applies
a verification procedure in order to determine whether its
influence coefficient is consistent with those of the re-
maining agents.

In papers [18] and [20], the authors extended the ideas
of [19] to the mixed duopoly and oligopoly cases, respec-
tively. They defined exterior equilibrium as a CVE state
with the conjectures fixed in an extrinsic manner. This
sort of CVE was proved to exist uniquely, which helped
introduce the notion of interior equilibrium as the exte-
rior equilibrium with consistent conjectures (influence co-
efficients). All these instruments – the consistency cri-
teria, consistency verification procedures, and existence
theorems for the interior equilibrium were developed and
demonstrated in [18] and [20].

In the next series of papers, namely, [21, 22], the afore-
said constructions were extended to the case of a semi-
mixed duopoly, where similar to [10] and [11], the (semi-
) public company strives to maximize a convex combi-
nation of the net profit and domestic social surplus. The
results of numerical experiments with a test model of a
market of electricity resembling that of [23], both with
and without a semi-public producer in the set of agents,
showed that the consumer gains more if the semi-public
agent follows the CVE strategy as compared to the Nash-
Cournot equilibrium. Furthermore, in [22], the authors
declared a guess that there must exist such a value of
the combination parameter (also interpreted as the public
firm’s socialization level) that brings up the “equivalence”
(in a certain sense) of the consistent conjectural variations
equilibrium (CCVE) and the classical Cournot-Nash one.

This equivalence permits a socially responsible munici-
pality to diminish (cancel) subsidies paid either to the pri-
vate company (in order to compensate its losses when fol-
lowing the consistent conjectures), or to the consumers (to
reimburse them the higher retail price of the good if both
the competing semi-public firm and the private company
both are stuck to the Cournot-Nash conjectures).

In this paper, we present mathematically rigorous
proofs of the above-mentioned guess. In other words, we
establish the existence of the value of the combination co-
efficient (also known as the semi-public enterprise’s so-
cialization level) such that the private agent’s profit is the
same in the CCVE and Cournot-Nash equilibrium states,
which makes the subsidies from the authorities either to
the producer or to the consumers unnecessary.

The rest of the paper is organized as follows. Sec-
tion 2 formulates the mixed duopoly model and the two
kinds of equilibrium we consider (exterior and interior).
In addition, we present the main theorems showing the
existence and uniqueness of the exterior equilibrium for
any set of feasible conjectures (influence coefficients), as
well as the formulas for the derivative of the equilibrium
price, p, with respect to the active demand variable, D.
Moreover, Subsection 2.2 deals with the consistency cri-
terion and the definition of the interior equilibrium (which
can be treated as a consistent CVE state, or CCVE); the
CCVE existence theorems from [21] and [22] are also dis-
cussed. In Section 3, we consider an important particular
case when the demand function is linear (more exactly,
affine). This stronger assumption allows one not only to
prove the existence and uniqueness of the interior (con-
sistent) CVE, but also to investigate the changing of the
optimal function values of both producers as the function
of the convex combination coefficient (the semi-public
firm’s socialization level) in Subsections 3.1 through 3.3.
Some elements of the comparative statics concerning the
three most popular equilibrium sorts (CCVE, Cournot-
Nash, and the perfect competition) are also provided in
Subsection 3.4. Subsection 3.5 introduces the optimal-
ity criterion for the convex combination coefficient (the
semi-public firm’s socialization level) and establishes the
existence of its optimal value in the interval [0,1]. Sec-
tion 4 presents the results of the numerical experiments
with several examples of the semi-mixed duopoly, illus-
trating the importance of finding the optimal socialization
parameter value. Conclusions and future research plans
are discussed in Section 5, while the Acknowledgments
and Reference list finish the main body of the paper. All
the proofs of principal theorems (being long and compli-
cated) are exported to the Appendices.

2. Model Specification

We will examine a semi-mixed duopoly with two
agents numbered as follows: i = 0 is a semi-public com-
pany and i = 1 is a private firm. The companies supply
a homogeneous produce under the expenditure estimated
by the cost functions fi(qi), i = 0,1, where qi ≥ 0 is the
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output volume by agent i. The market clearing supply is
specified by a demand (inverse price) function G = G(p),
the argument p of which is the price suggested by the sup-
pliers. A (fixed) amount of the active demand, D, is non-
negative and is independent of the price. The equilibrium
between the demand and supply for a given price p is re-
flected in the following (balance) equality:

q0 +q1 = G(p)+D. . . . . . . . . . . (1)

Furthermore, the private supplier, i = 1, selects his out-
put, q1 ≥ 0, in order to maximize his (net) profit function,

π1(p,q1) = p ·q1− f1(q1), . . . . . . . . (2)

whereas the semi-public company, i = 0, decides the vol-
ume of its output, q0 ≥ 0, with the aim of maximizing the
convex combination of domestic social surplus and the
(net) profit function,

S(p,q0,q1) = β

⎛⎝ q0+q1∫
0

p(x)dx− p ·q1− f0(q0)

⎞⎠
+(1−β )(p ·q0− f0(q0)), . . . . (3)

where 0 < β ≤ 1. Here, domestic social surplus involving
the integral in Eq. (3) is usually interpreted as the money
gained by the (domestic) consumer when he/she acquires
the good at the lower price (established in the market)
than that expected by him/her before the semi-public com-
pany entered the market (see the more detailed interpre-
tation by the well-known Japanese mathematicians and
economists [3–5]).

In order to describe our model in rigorous mathemati-
cal terms, we suppose that the model boasts the following
properties.
A1. The demand (inverse price) function G = G(p) ≥ 0
has finite values for all p ≥ 0, and is continuously differ-
entiable with G′(p) ≤ 0.

A2. For each i = 0,1, the cost function fi(qi) is
quadratic with zero overhead costs, i.e.,

fi(qi) =
1
2

aiq2
i +biqi, . . . . . . . . . . (4)

where

ai > 0, bi > 0, i = 0,1.

Moreover, it is assumed that

b0 ≤ b1. . . . . . . . . . . . . . . . (5)

According to our concept of conjectural variations
equilibrium (CVE), we assume that both agents (semi-
public and private) conjecture about variations in the
clearing market price, p, as a function of the perturbations
in their output quantities. In the terms of the first deriva-
tives, the latter assumption might be described by a con-
jectured dependency of (infinitesimal) affine variations of
the price, p, upon (infinitely small) perturbations of the
supply quantities, qi. Within this framework, the first or-
der optimum condition depicting equilibrium reduces to

the form: for the semi-public company (i = 0)

∂ S
∂ q0

= p− [β q1− (1−β )q0]
∂ p
∂ q0

− f ′0(q0){
= 0, if q0 > 0;
≤ 0, if q0 = 0.

. . . . . . . . (6)

A similar first order optimality condition for the private
agent (i = 1) yields:

∂ π1

∂ q1
= p+q1

∂ p
∂ q1

− f ′1(q1)

{
= 0, if q1 > 0;
≤ 0, if q1 = 0.

(7)

On that account, in order to predict the (instantaneous)
behavior of supplier i, one need make use of the first order
derivative ∂ p/∂ qi ≡−νi rather than the (exact) functional
dependency of p on qi. Even more, the latter dependency
is extremely hard to estimate in a many-person game with
several decision makers. Here, the negative sign is ap-
plied in order to have nonnegative values of νi. Surely,
the conjectured (first-order) dependency of p on qi should
guarantee the concavity of the i-th producer’s conjectured
profit as a function of her supply, which implies the max-
imum of the agent’s revenue. Under the assumption that
the cost functions, fi, are quadratic and strictly convex,
the concavity of the product, p ·qi, by qi would be enough.
For example, it suffices supposing the coefficient, νi (re-
ferred to as the i-th company’s influence coefficient), to
be nonnegative and constant. In this case, the conjectured
(instantaneous first order) dependency of the private com-
pany’s profit variations upon the production output η1 has
the form [p−ν1 (η1 −q1)]η1 − f1(η1), while the (local)
maximum condition at η1 = q1 is expressed by the rela-
tion:{

p = ν1q1 +a1q1 +b1, if q1 > 0;
p ≤ b1, if q1 = 0.

. . . . (8)

Likewise, the semi-public company presumes a local de-
pendency of domestic social surplus on her supply level
η0 in the form

β

⎛⎝ η0+q1∫
0

p(x)dx− [p−ν0 (η0 −q0)]q1 − f0(η0)

⎞⎠
+(1−β ){[p−ν0(η0 −q0)]η0 − f0(η0)} . . . (9)

The latter permits formulating the maximum condition at
η0 = q0 as follows:{

p = −ν0 [β q1 − (1−β )q0]+a0q0 +b0, q0 > 0;
p ≤−β ν0q1 +b0, q0 = 0.

(10)

If the suppliers’ conjectures concerning market clear-
ing price were assigned externally – like it was done in
the previous models studied by the authors – one might as-
sume the values, νi, to be functions of qi and p. Notwith-
standing that, here, we exploit the framework of pa-
per [19], wherein the conjectures in the equilibrium are
calculated concurrently with the clearing price, p, and
the supply quantities, qi, by a particular validation rou-
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tine. In this circumstance, the influence coefficients are
the solutions of a nonlinear system of equations found for
the equilibrium only. In Subsection 2.2, such an equilib-
rium state is called referred to as interior being in fact
the extended vector comprising both the variables and pa-
rameters (p;q0,q1;ν0,ν1). However, in order to describe
the validation technique, one needs first define a more el-
ementary concept of equilibrium referred to as exterior
(cf., [19]) with the parameters, νi, assigned externally.
That notion is introduced and studied in Subsection 2.1.

2.1. Exterior Equilibrium
The concept of exterior equilibrium in our framework

can be introduced as follows.
Definition 1. A vector (p;q0,q1) is named exterior equi-
librium for the fixed coefficients, νi ≥ 0, i = 0,1, when-
ever the market is leveled; that is, equality (1) is true, and
the optimality conditions for both the private and semi-
public companies (8) and (10), respectively, hold.

In what follows, we will examine solely the instance
wherein the array of suppliers with positive output vol-
umes is irrevocable, that is, it does not react to the values
νi, i = 0,1, of the influence coefficients. In order to assure
this feature, an extra postulate is accepted.
A3. For p0 = b1, the ensuing inequality applies:

p0 −b0

a0
< G(p0). . . . . . . . . . . . (11)

Lemma 1. Assumptions A1, A2, and A3 entail that, for
all nonnegative values of νi, i = 0,1, supply values, qi, are
strictly positive at any exterior equilibrium (i.e., qi > 0,
i = 0,1) if, and only if p > p0.

Proof. Indeed, if p > p0 = b1 then the inequalities
p ≤ b1 and p ≤ −β ν0q1 + b0, from the optimality con-
ditions (8) and (10), respectively, never apply, which im-
plies that no (equilibrium) value qi, i = 0,1, can vanish.

Conversely, if all the equilibrium outputs are positive,
i.e., qi > 0, i = 0,1, then the optimality condition (8) di-
rectly entails p = ν1q1 +a1q1 +b1 > b1. Hence, p > p0 =
b1, and the proof is complete. The next assertions are es-
tablished in the Appendix.
Theorem 1. With postulates A1, A2, and A3, for
any D ≥ 0, ν1 ≥ 0, i = 0,1, there exists uniquely the
exterior equilibrium (p∗;q∗0,q

∗
1) depending continuously

on the parameters (D;ν0,ν1). The equilibrium price
p∗ = p∗(D;ν0,ν1), being a function of those constants,
is differentiable by D and νi, i = 0,1. Furthermore,
p∗(D;ν0,ν1) > p0, and

∂ p∗

∂ D
=

1
1

(1−β )ν0 +a0
+

ν0 +a0

(1−β )ν0 +a0

(
1

ν1 +a1

)
−G′(p∗)

.

. . . . . . . . . . . . . . . . . . . . (12)

Proof. See Appendix A.1.

2.2. Interior Equilibrium
Now, one can introduce the notion of interior equilib-

rium. First, we outline the routine of validation of the in-
fluence coefficients, νi, just as it was proposed in [19].
Presume that our agents reach the exterior equilibrium
(p;q0,q1) determined (uniquely) for some assigned νi,
i = 0,1, and D. Suppose that one of the suppliers – for ex-
ample, k, 0 ≤ k ≤ 1 – provisionally mutate her demeanor
as follows: he/she stops maximizing the conjectured profit
(or domestic social surplus, as it is in case k = 0) and
makes tiny oscillations near her output, qk. In formulas, it
equals considering the list of agents reduced to the array
I−k := {i : 0 ≤ i ≤ 1, i �= k} with the supply, qk, extracted
from the active demand.

Wavering the supply by company k is then tantamount
to the active demand vacillation in the mode δ Dk :=
δ (D−qk) =−δ qk. If one assumes these oscillations to be
negligible, it is logical to accept that by perceiving the re-
spective variations in the monopoly price dictated by the
other agent, company k might estimate the derivative of
the (equilibrium) price with respect to the active demand,
which coincides with its influence coefficient.

Employing Eq. (12) from Theorem 1 to compute the
derivative, it is necessary to take into account that sup-
plier k is, for the present, excluded from the equilibrium
model. Therefore, the term concerning i = k must be kept
out the denominator. Remembering that, one brings about
the next condition.
Consistency Criterion. In the exterior equi-
librium (p;q0,q1), the influence coefficients, νi,
i = 0,1, are referred to as consistent whenever the
equalities below are valid:

ν0 =
1

1
ν1 +a1

−G′(p)
, . . . . . . . . (13)

and

ν1 =
1

1
(1−β )ν0 +a0

−G′(p)
. . . . . . (14)

Remark 1. When the two suppliers play as profit-
increasing (private) firms, then Eqs. (13) and (14) shrink
to a (single) rule:

νi =
1

∑
j �=i

1
ν j +a j

−G′(p)
, i = 0,1.

Theorem 2. If assumptions A1, A2, and A3 hold, there
exist interior equilibria.
Proof. See Appendix A.3.

Next, express the demand function’s derivative with
τ = G′(p), and replace the consistency conditions (13)
and (14) with the formulas below:

ν0 =
1

1
ν1 +a1

− τ
. . . . . . . . . . . (15)

and
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ν1 =
1

1
(1−β )ν0 +a0

− τ
, . . . . . . . . (16)

where τ ∈ (−∞,0]. If τ → −∞ the solutions of sys-
tem (15) and (16) tend to the (unique) limit, νi = 0,
i = 0,1. For any bounded τ , one may prove the subse-
quent assertion.
Theorem 3. For all τ , there exists a unique solution, νi =
νi(τ), i = 0,1, of system (15) and (16), which continuously
depends on τ . In addition, νi(τ) → 0 whenever τ →−∞,
and νi(τ) strictly grows and tends to νi(0) as τ → 0, i =
0,1.
Proof. See Appendix A.2.

3. A Special Case: A Linear (Affine) Demand
Function

Assume that the demand function G(p) is linear
(affine); that is,

G(p) := −K p+T, . . . . . . . . . . . (17)

where, K > 0, T > 0.
Under this extra assumption, Theorem 2 entails the un-

dermentioned corollary.
Corollary 1. When conditions A1, A2, and A3 are valid,
then the demand function of type (17) for all β ∈ (0,1]
implies the existence of the (unique) interior equilibrium.
Proof. See Appendix A.4.

This section mainly targets at the study of the behavior
(as a function of the parameter β ) of the three most pop-
ular equilibrium kinds: 1) the consistent conjectural vari-
ations equilibrium (CCVE), 2) the Cournot-Nash equilib-
rium, and 3) the perfect competition equilibrium.

3.1. Consistent Conjectural Variations Equilibrium
Recollect that the conjectural variation equilibrium

(CVE) is called consistent if the influence coefficients at
the interior CVE meet the consistency principle repre-
sented by systems (13) and (14).

It is worthy to mention that Corollary 1, for all β ∈
(0,1], provides for the existence of the (unique) interior
equilibrium (p∗(β ),q∗0(β ),q∗1(β ),ν∗

0 (β ),ν∗
1 (β )). More-

over, the next result is valid:
Theorem 4. For the linear (affine) demand function G(p)
from Eq. (17), the price p∗(β ), the outputs q∗i (β ), i = 0,1,
and the influence coefficients ν∗

i (β ), i = 0,1, character-
izing the (unique) interior equilibrium, together with the
total market supply G∗(β ) = q∗0(β )+q∗1(β ), are continu-
ously differentiable by β ∈ (0,1]. Furthermore, q∗0(β ) and
G∗(β ) are strictly growing, whereas p∗(β ),ν∗

0 (β ),ν∗
1 (β ),

and q∗1(β ) strictly decrease.
Proof. See Appendix B.1.

3.2. Cournot-Nash Equilibrium
Below, we will examine the comportment of the (ex-

terior) Cournot-Nash equilibrium as a function of the pa-
rameter β .

The well-known Cournot-Nash conjecture, – that is, ωi =
∂ G/∂ qi = 1, i = 0,1, – in the proposed framework
is equivalent to the next conjecture: νi = −∂ p/∂ qi =
−1/G′(p) = 1/K, i = 0,1. For all β ∈ (0,1], Theorem 1
implies that there exists (uniquely) the exterior Cournot-
Nash equilibrium denoted by (pc(β ),qc

0(β ),qc
1(β )). For

matching the Cournot-Nash equilibrium to the consistent
CVE, the undermentioned theorem is indispensable.
Theorem 5. For the linear (affine) demand function G(p)
described in Eq. (17), the price pc(β ) and the supply val-
ues qc

i (β ), i = 0,1, from the Cournot-Nash equilibrium,
are continuously differentiable with respect to β ∈ (0,1].
Furthermore, pc(β ) and qc

1(β ) strictly decrease, whereas
qc

0(β ) strictly grows along with β .
Proof. See Appendix B.2.
Remark 2. It is quite evident that the Cournot-Nash equi-
librium in our framework need not mandatory meet the
consistency rule; that is, it is most often not interior (i.e.,
inconsistent) equilibrium.

3.3. Perfect Competition Equilibrium
Eventually, the comportment of the (exterior) perfect

competition equilibrium as a function of the parameter β
will be evaluated.

The perfect competition conjecture – that is, ωi = 0,
i = 0,1, – in our framework is described with the sub-
sequent conjecture: νi = −∂ p/∂ qi = 0, i = 0,1. For
every β ∈ (0,1], Theorem 1 guarantees that there ex-
ists uniquely the exterior equilibrium implementing the
perfect competition. The latter will be represented by
(pt(β ),qt

0(β ),qt
1(β )). Once more, in order to conduct

a comparative study of all three types of equilibrium in
our linear (affine) framework we will establish the under-
mentioned clear-cut formulas for the perfect equilibrium
supplies and price.
Theorem 6. If the demand function G(p) is depicted as
in Eq. (17), the price pt(β ) and the output volumes qt

i(β ),
i = 0,1, related to the perfect competition equilibrium,
are invariant for all β ∈ (0,1] and are described by the
clear-cut expressions:

pt =
a0b1 +a1b0 +a0a1(T +D)

a0 +a1 +a0a1K
; . . . . . (18)

qt
0 =

a1 (G(b0)+D)+(b1 −b0)
a0 +a1 +a0a1K

; . . . . . (19)

qt
1 =

a0 (G(b1)+D)− (b1 −b0)
a0 +a1 +a0a1K

. . . . . . (20)

Proof. See Appendix B.3.
Remark 3. Like in the Cournot-Nash case, one can eas-
ily see that the perfect competition equilibrium within our
framework does not mandatory meet the consistency con-
ditions; that is, it is non-interior (i.e., inconsistent) equi-
librium.
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3.4. Comparison of Consistent CVE with Cournot-
Nash and Perfect Competition Equilibria

In this subsection, taking an advantage of the simple
(affine) demand function, we will deduce some compara-
tive statics results. These are always interesting for eval-
uating the strong and weak points of different concepts of
more or less similar nature.
Theorem 7. For the linear (affine) function, G(p), de-
scribed in Eq. (17), the price functions in the consistent
CVE, p∗(β ), the Cournot-Nash equilibrium, pc(β ), and
the perfect competition equilibrium, pt , satisfy the follow-
ing inequalities:

pt < lim
β→0

p∗(β ), . . . . . . . . . . . . (21)

and

p∗(β ) < pc(β ) for all β ∈ (0,1]. . . . . . . (22)

Proof. See Appendix C.1.
Remark 4. First, since ν0 = ν1 = 0, the perfect compe-
tition equilibrium price, pt , is the same (constant) for all
β ∈ [0,1]. Second, inequality (21), in general, does not
hold when β → 1. The latter is a very curious result be-
cause the perfect competition equilibrium price pt is usu-
ally the lowest in the market. Moreover, in some cases,
it may happen that pt > pc(β ) for the values of β near 1
(e.g., see Table 4).

3.5. Optimality Criterion for βββ
In order to find an optimal (in some sense) value of

the degree of “socialization,” β , of the semi-public com-
pany, we study the demeanor of the private agent’s profit
function in two equilibrium states: the consistent CVE
(CCVE) and Cournot-Nash equilibrium.
The function π1(p,q1) given by Eq. (2) is continuously
differentiable with respect to p and q1, while p∗(β ),
q∗1(β ), pc(β ), qc

1(β ) are continuously differentiable with
respect to β . Therefore, for the equilibrium states CCVE
and Cournot-Nash, we have that the private agent’s net
profit values,

π∗
1 (β ) = p∗(β )q∗1(β )− 1

2
a1q∗1(β )2 −b1q∗1(β ), (23)

in the interior equilibrium (CCVE), as well as the similar
values

πc
1(β ) = pc(β )qc

1(β )− 1
2

a1qc
1(β )2 −b1qc

1(β ), (24)

in the Cournot-Nash exterior equilibrium, are continu-
ously differentiable by β ∈ (0,1].
Theorem 8. The functions π∗

1 (β ) and πc
1(β ) are strictly

decreasing with respect to β ∈ (0,1]. Moreover, the fol-
lowing inequalities hold:

π∗
1 (1) > πc

1(1), . . . . . . . . . . . . (25)

and

lim
β→0

π∗
1 (β ) < lim

β→0
πc

1(β ). . . . . . . . . . (26)

Proof. See Appendix C.2.

Table 1. Experiments’ input data.

Agent i bi ai

0 2.0 0.02
1 1.75 0.0175
2 3.25 0.00834

Directly from the proof of the last theorem we conclude
that there exists the value β such that π∗

1 (β ) = πc
1(β ). We

now assume that the semi-public firm is socially responsi-
ble, and making use of the subsidy policy, it economically
motivates the private firm to change its Cournot-Nash
strategy to the consistent CVE comportment, or pays sub-
sidies to the consumers to compensate the highest price in
the Cournot-Nash equilibrium. The choice of this param-
eter β allows the semi-public company not to pay subsi-
dies either to the private company or to the consumers.
With this idea in mind, we introduce the following defini-
tion:
Definition 3. The value of the parameter β ∈ (0,1) such
that π∗

1 (β) = πc
1(β) is called the optimal socialization

level.
From Theorem 8, it follows immediately that, for the

duopoly model considered in this paper, we can always
find the optimal socialization’s level for the semi-public
company. In other words, the following result has been
established above:
Theorem 9. Under assumptions A1, A2, and A3, there
exists the value of β ∈ (0,1) such that π∗

1 (β) = πc
1(β).

In other words, the optimal socialization level definitely
exists.

4. Numerical Results

In this section, we rely on the data of the numerical
experiments exposed in the work of Liu et al. [23]. Here,
we describe the experiments in more detail.

The inverse demand function is given by

p(G,D) = 50−0.02(G+D) = 50−0.02(q0 +q1). (27)

Then solving Eq. (27) for G + D yields the demand
function

G(p)+D = −50p+2500. . . . . . . . . (28)

The agent’s cost functions are quadratic and are de-
scribed by Eq. (4), where the values ai and bi are given
in Table 1.

We calculate and compare three types of equilibrium:
the consistent conjectural variations equilibrium (CCVE),
the Cournot-Nash equilibrium, and the perfect competi-
tion equilibrium. The influence coefficients for the CCVE
are determined by Eqs. (13) and (14). For the Cournot-
Nash equilibrium, the influence coefficients are given by
the equality νc

i =− ∂ p
∂ qi

=− 1
G′(p) = 0.02 for all i, while for

the perfect competition equilibrium, they have the value
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Table 2. Results of Experiment 1.

ωi = −G′(p)νi
C-N CCVE PC

β = 0.25 ω0 1.0 0.499 0.0
ω2 1.0 0.579 0.0
p 22.609 19.486879 13.595
q0 686.425 710.319 579.771
q2 683.109 815.337 1240.458
G 1369.534 1525.656 1820.229
π0 14124.01 13194.80 11644.43
π2 11278.65 10466.42 6416.53

β = 0.50 ω0 1.0 0.493 0.0
ω2 1.0 0.555 0.0
p 20.859 18.324 13.595
q0 835.733 808.191 579.771
q2 621.335 775.585 1240.458
G 1457.068 1583.776 1820.229
π0 19391.53 19203.30 19927.51
π2 9331.00 9183.15 6416.53

β = 0.75 ω0 1.0 0.486 0.0
ω2 1.0 0.529 0.0
p 18.869 17.108 13.595
q0 1005.431 911.732 579.771
q2 551.125 732.863 1240.458
G 1556.556 1644.595 1820.229
π0 25023.08 25747.19 28210.60
π2 7341.37 7916.43 6416.53

β = 1.0 ω0 1.0 0.478 0.0
ω2 1.0 0.500 0.0
p 16.588 15.846 13.595
q0 1200.000 1020.860 579.771
q2 470.625 686.823 1240.458
G 1670.625 1707.683 1820.229
π0 31014.88 32875.44 36493.68
π2 5353.35 6684.36 6416.53

νt
i = − ∂ p

∂ qi
= 0 for any i.

Based on the data of Table 1, we proceed to perform the
numerical experiments for the following three instances:
Experiment 1: Firm i = 0 is semi-public and firm i = 2
is private.
Experiment 2: Firm i = 0 is semi-public and firm i = 1
is private.
Experiment 3: Firm i = 2 is semi-public and firm i = 1
is private.

In each instance, we handle the following notation for
each of the three kinds of equilibrium:
C-N: Cournot-Nash Equilibrium.
CCVE: Consistent Conjectural Variations Equilibrium.
PC: Perfect Competition Equilibrium.

4.1. Experiment 1
For this instance, firm i = 0 is semi-public and firm

i = 2 is private, so that the semi-public firm is stronger
than the private firm; that is, the inequality b0 ≤ b1 holds
(assumption A2). The numerical results of this experi-
ment are shown in Table 2.

From the results of Table 2, we see that the behavior

of variables is as described in the theorems of the pre-
vious sections. The numerical results show that, for so-
cialization levels 0 < β ≤ 0.50, the private company’s
profit is higher in the Cournot-Nash equilibrium than in
the CCVE, but for 0.75 ≤ β ≤ 1, its profit is higher in
the CCVE equilibrium than in the Cournot-Nash. Then,
the optimal socialization level lies within the interval
0.50 < βoptimal < 0.75. Furthermore, as a result of the
numerical experiment, the approximate optimal value
βoptimal = 0.55262 is found, for which the private firm’s
net profit is almost the same both in the Cournot-Nash
(C-N) and the Consistent Conjectural Variations Equilib-
rium (CCVE). The corresponding CCVE (interior equi-
librium) is presented as follows: (p∗,q∗0,q

∗
1,ν∗

0 ,ν∗
1 ) =

(18.073,829.53,766.82,0.009830,0.010991). It means
that, if the semi-public agent i = 0 accepts its objective
function as a mixture of 55% of domestic social surplus
and 45% of its (would-be) net profit, then the private
(foreign) competitor is indifferent to the choice of the
Cournot-Nash or CCVE model to generate its supply be-
cause its net profit is the same in both cases. This can be
considered as a win-win outcome for the local authorities
since they needn’t either subsidize the consumers (in or-
der to reimburse the higher price of the commodity in the
Cournot-Nash equilibrium) or pay a compensation to the
private (foreign) firm for having accepted the CCVE equi-
librium model (which uses to decrease the private com-
pany’s net profit as compared to that in the Cournot-Nash
equilibrium).

In the previous sections, we made use of assumption
A2. In the following two experiments, we will consider
the case when this assumption is not met to see how our
model behaves.

4.2. Experiment 2
In this instance, firm i = 0 is semi-public and firm i = 1

is private, so that the semi-public firm is weaker than the
private firm. The numerical results of this experiment are
shown in Table 3.

The results shown in Table 3 demonstrate that the vari-
ables still behave as described in the theorems of the pre-
vious sections, even though assumption A2 is not met.

In this second experiment, we have that
βoptimal = 0.62905 and its corresponding interior
equilibrium is as follows: (p∗,q∗0,q

∗
1,ν∗

0 ,ν∗
1 ) =

(19.458,905.37,621.72,0.01175,0.01098).

4.3. Experiment 3
For this instance, firm i = 2 is semi-public and firm

i = 1 is private, so that the semi-public firm now is even
weaker than the private firm in comparison to the previous
experiment. Again, we observe that the variables behave
according to our model. The numerical results of this ex-
periment are presented in Table 4.

For the third instance, we have that βoptimal =
0.80324 and its corresponding interior equi-
librium is as follows: (p∗,q∗0,q

∗
1,ν∗

0 ,ν∗
1 ) =

(13.329,1358.7,474.81,0.010988,0.006886).
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Table 3. Results of Experiment 2.

ωi = −G′(p)νi
C-N CCVE PC

β = 0.25 ω0 1.0 0.594 0.0
ω1 1.0 0.591 0.0
p 23.939 21.564 17.182
q0 711.354 746.033 759.091
q1 591.703 675.747 881.818
G 1303.057 1421.781 1640.909
π0 14790.94 14083.68 12493.65
π1 10065.73 9393.97 6804.03

β = 0.50 ω0 1.0 0.590 0.0
ω1 1.0 0.564 0.0
p 22.112 20.203 17.182
q0 851.402 848.829 759.091
q1 542.991 641.044 881.818
G 1394.393 1489.873 1640.909
π0 19596.32 19344.35 19225.11
π1 8476.32 8233.19 6804.03

β = 0.75 ω0 1.0 0.585 0.0
ω1 1.0 0.534 0.0
p 20.010 18.734 17.182
q0 1012.563 960.608 759.091
q1 486.935 602.694 881.818
G 1499.50 1563.30 1640.91
π0 24847.17 25176.45 25956.56
π1 6816.78 7057.78 6804.03

β = 1.0 ω0 1.0 0.579 0.0
ω1 1.0 0.500 0.0
p 17.565 17.155 17.182
q0 1200.000 1082.067 759.091
q1 421.739 560.182 881.818
G 1621.739 1642.249 1640.909
π0 30578.64 31659.88 32688.02
π1 5113.59 5883.83 6804.03

From the results of the numerical experiments, we can
see that the weaker semi-public company (as compared to
the private company), the closer to 1 its optimal socializa-
tion level.

5. Conclusions and Future Research

In this paper, we presented mathematically rigorous
proofs of the conjectures (cf., [22]) concerning the be-
havior of the semi-public and private agents of a mixed
duopoly of a homogeneous good. The main difference of
this work from the classical duopoly models is in the pres-
ence of one producer who maximizes not its net profit,
but the convex combination of the latter with domestic
social surplus. Moreover, we not only studied the clas-
sical Cournot-Nash and perfect competition equilibriums
in the model, but also the consistent conjectural variations
equilibrium (CCVE) introduced and examined previously
by numerous authors.

The paper demonstrated the existence (and in the case
of linear, or affine, demand function, the uniqueness) of

Table 4. Results of Experiment 3.

ωi = −G′(p)νi
C-N CCVE PC

β = 0.25 ω2 1.0 0.571 0.0
ω1 1.0 0.458 0.0
p 21.529 18.100 13.168
q2 896.136 981.770 1189.174
q1 527.431 613.227 652.441
G 1423.567 1594.997 1841.615
π2 18097.76 16920.03 14375.80
π1 7997.77 6735.88 3724.69

β = 0.50 ω2 1.0 0.563 0.0
ω1 1.0 0.411 0.0
p 18.866 16.056 13.168
q2 1100.309 1141.023 1189.174
q1 456.414 556.192 652.441
G 1556.723 1697.216 1841.615
π2 24250.32 23585.23 22854.66
π1 5989.02 5249.90 3724.69

β = 0.75 ω2 1.0 0.552 0.0
ω1 1.0 0.357 0.0
p 15.653 13.827 13.168
q0 1346.620 1318.492 1189.174
q2 370.741 490.173 652.441
G 1717.361 1808.665 1841.615
π2 31259.98 31230.60 31333.53
π1 3951.66 3817.31 3724.69

β = 1.0 ω2 1.0 0.539 0.0
ω1 1.0 0.294 0.0
p 11.701 11.425 13.168
q2 1649.612 1515.019 1189.174
q1 265.352 413.722 652.441
G 1914.964 1928.741 1841.615
π2 39263.80 40014.65 39812.39
π1 2024.34 2505.13 3724.69

the CCVE and provided elements of comparative static
analysis by evaluating the relationships between the equi-
librium price and equilibrium production outputs of both
the semi-public and private agents in the aforementioned
equilibrium types.

Finally, the role of the convex combination parameter
β ∈ [0,1] involved in the definition of the objective func-
tion of the semi-public (socially responsible) producer
was discussed and investigated. Since this parameter can
be considered as reflecting the semi-public company’s so-
cialization level, we introduced a criterion to estimate its
optimal value – namely, we proposed to admit the value
of this parameter as desirable (optimal) if, for this param-
eter value, the net profits of the private producer under the
consistent CVE and the Cournot-Nash equilibrium con-
ditions coincide. It can be reasonable when taking into
account that, with such a profit equality, the social re-
sponsible authorities need not pay any subsidies either to
the private producer (to compensate its financial losses if
switching from the Cournot-Nash strategy to the consis-
tent conjectures prevailing in CCVE), or to the consumers
(in the case when the equilibrium price under Cournot-
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Nash equilibrium turns out to be much higher than it
would be in the consistent conjectural variations equilib-
rium, CCVE). Under the additional assumption about the
linear (affine) nature of the model’s demand function, the
existence of such an optimal parameter value β̄ ∈ (0,1) is
demonstrated.

However, the linearity of the demand function is a se-
rious restriction. Hence, one of the future research aims
is to relax this condition and extend the obtained results
to the mixed duopoly with the demand function being not
necessarily affine. The next step of our research plan is
investigate the role of the socialization level parameter
in order to find its optimal value in the mixed oligopoly,
wherein more than one private agents compete.

Acknowledgements
The authors’ research activity was financially supported by the
SEP-CONACyT grant CB-2013-01-221676 (Mexico), the SEP-
CONACyT grant FC-2016-01-1938, and by the R&D Depart-
ment of Industrial Engineering and Numerical Methods at the
Tecnológico de Monterrey (ITESM), Campus Monterrey, Mex-
ico. The authors would also like to express their profound grat-
itude to the anonymous referees whose remarks and suggestions
have helped a lot in making the paper clearer and improving the
results.

References:
[1] R. C. Cornes and M. Sepahvand, “Cournot vs Stackelberg equilibria

with a public enterprise and international competition,” Discussion
Paper No. 03/12, University of Nottingham, School of Economics,
United Kingdom, 2003.

[2] C. Fershtman, “The interdependence between ownership status and
market structure: The case of privatization,” Economica, Vol.57,
pp. 319-328, 1990.

[3] T. Matsumura, “Stackelberg mixed duopoly with a foreign competi-
tor,” Bulletin of Economics Research, Vol.55, pp. 275-287, 2003.

[4] N. Matsushima and T. Matsumura, “Mixed oligopoly and spatial
agglomeration,” Canadian J. of Economics, Vol.36, pp. 62-87, 2003.

[5] T. Matsumura and O. Kanda, “Mixed oligopoly at free entry mar-
kets,” J. of Economics, Vol.84, pp. 27-48, 2005.

[6] N. J. Ireland and P. J. Law, “The Economics of Labour-Managed
Enterprises,” Croom Helm, London, 1982.

[7] J. P. Bonin and L. Putterman, “Economics of Cooperation and the
Labor-Managed Economy,” Harwood Academic Publisher, Chur,
Switzerland, 1987.

[8] F. H. Stephan (Ed.), “The Performance of Labour-Managed Firms,”
Macmillan Press, London, 1982.

[9] L. Putterman, “Labour-managed firms,” In S. N. Durlauf and L. E.
Blume (Eds.), The New Palgrave Dictionary of Economics, Vol.4,
pp. 791-795, Palgrave Macmillan, Basingstoke, Hampshire, 2008.

[10] B. Saha and R. Sensarma, “State ownership, credit risk and bank
competition: A mixed oligopoly approach,” Working Paper, Uni-
versity of Hertfordshire Business School, Hatfield, England, 2009.
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“Solutions of parametric complementarity problems monotone with
respect to parameters,” J. of Global Optimization, Vol.64, No.4,
pp. 703-719, 2016.
• V. V. Kalashnikov, F. J. Benita, F. López-Ramos, and A.
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Appendix A.

A.1. Proof of Theorem 1
Theorem 1. With postulates A1, A2, and A3, for
any D ≥ 0, ν1 ≥ 0, i = 0,1, there exists uniquely the
exterior equilibrium (p∗;q∗0,q

∗
1) depending continuously

on the parameters (D;ν0,ν1). The equilibrium price
p∗ = p∗(D;ν0,ν1), being a function of those constants,
is differentiable by D and νi, i = 0,1. Furthermore,
p∗(D;ν0,ν1) > p0, and

∂ p∗

∂ D
=

1
1

(1−β )ν0+a0
+ ν0+a0

(1−β )ν0+a0

(
1

ν1+a1

)
−G′(p∗)

.
. (29)

Proof. Let ν0,ν1 ≥ 0 are fixed. By using the optimal-
ity conditions (8) and (10), we can find the output vol-
ume functions qi = qi(p;ν0,ν1), i = 0,1, defined on the
interval [p0,+∞). These functions are differentiable with
respect to p and νi, i = 0,1, and they are given by:

q0 = p−b0
(1−β )ν0+a0

+ βν0
(1−β )ν0+a0

(
p−b1

ν1+a1

)
, . . . (30)

q1 = p−b1
ν1+a1

. . . . . . . . . . . . . . . (31)

Now we introduce the following function:

Q(p;ν0,ν1) = q0(p;ν0,ν1)+q1(p;ν0,ν1)

= p−b0
(1−β )ν0+a0

+ βν0
(1−β )ν0+a0

(
p−b1

ν1+a1

)
+ p−b1

ν1+a1

= p
[

1
(1−β )ν0+a0

+ ν0+a0
(1−β )ν0+a0

(
1

ν1+a1

)]
−
[

b0
(1−β )ν0+a0

+ ν0+a0
(1−β )ν0+a0

(
b1

ν1+a1

)]
.

. (32)

As we can see from Eq. (32), the function Q is linear in
p with positive slope. Therefore, Q(p;ν0,ν1) strictly in-
creases with respect to p, and tends to +∞ when p →+∞.
By assumption A3, one has that for all νi ≥ 0, i = 0,1,

Q(p0;ν0,ν1) = q0(p0;ν0,ν1)+q1(p0;ν0,ν1)

= p0−b0
(1−β )ν0+a0

≤ p0−b0
a0

< G(p0) ≤ G(p0)+D.
(33)

Hence, Q(p;ν0,ν1) strictly increases with respect to p,
the function G(p) is non-increasing by p, and D is con-
stant, so by inequality (33), there exists a unique value
p∗ > p0 such that

Q(p∗;ν0,ν1) = G(p∗)+D. . . . . . . . . (34)

For this value p∗, using Eqs. (30) and (31), we com-
pute uniquely the equilibrium output volumes q∗i =
qi(p∗;ν0,ν1), i = 0,1. So we have established the
existence and uniqueness of the exterior equilibrium
(p∗,q∗0,q

∗
1) for any D ≥ 0 and νi ≥ 0, i = 0,1.

Now we are going to show that the equilibrium price p∗
of the exterior equilibrium is differentiable with respect
to the parameters (D,ν0,ν1). From Eq. (34) we get the
following relationships:

Q(p∗;ν0,ν1)−G(p∗)−D = 0, . . . . . . (35)

and we introduce the following function:

Γ(p∗;D,ν0,ν1) = Q(p∗;ν0,ν1)−G(p∗)−D

= p∗
[

1
(1−β )ν0+a0

+ ν0+a0
(1−β )ν0+a0

(
1

ν1+a1

)]
−
[

b0
(1−β )ν0+a0

+ ν0+a0
(1−β )ν0+a0

(
b1

ν1+a1

)]
−G(p∗)−D.

. (36)

Thus, we can rewrite Eq. (35) as a functional equation

Γ(p∗;D,ν0,ν1) = 0 . . . . . . . . . . . (37)

and compute its partial derivative with respect to p∗:

∂ Γ
∂ p∗

=
1

(1−β )ν0 +a0

+
ν0 +a0

(1−β )ν0 +a0

(
1

ν1 +a1

)
−G′(p∗)

≥ 1
(1−β )ν0 +a0

> 0.

(38)

From Eq. (38) we can see that the partial derivative of Γ
with respect to p∗ is positive. Because of that, Implicit
Function Theorem implies that the equilibrium price p∗
can be considered as a function p∗ = p∗(D,ν0,ν1), which
is differentiable with respect to D and νi, i = 0,1. More-
over, the partial derivative of the price p∗ with respect to
D can be found from the equation

∂ Γ
∂ p∗

∂ p∗

∂ D
+

∂ Γ
∂ D

= 0. . . . . . . . . . . (39)

The latter leads to

∂ p∗

∂ D
= −

∂ Γ
∂ D
∂ Γ
∂ p∗

=
1

1
(1−β )ν0+a0

+ ν0+a0
(1−β )ν0+a0

(
1

ν1+a1

)
−G′(p∗)

.

(40)

Finally, since the function p∗ depends uon (D,ν0,ν1) and
is differentiable with respect to D and νi, i = 0,1, the func-
tions q∗i , i = 0,1, also depend on (D,ν0,ν1) and are dif-
ferentiable with respect to D and νi, i = 0,1. Therefore,
the equilibrium (p∗,q∗0,q

∗
1) continuously depends on the

parameters (D,ν0,ν1). The proof of the theorem is com-
plete.

A.2. Proof of Theorem 3

Theorem 3. For all τ there exists a unique solution
νi = νi(τ), i = 0,1, of the system (15) and (16), which
continuously depends on τ . In addition, νi(τ) → 0 when-
ever τ →−∞, and νi(τ) strictly grows and tends to νi(0)
as τ → 0, i = 0,1.

Proof. The variables νi, i = 0,1, given by Eqs. (15) and
(16) are considered on their domains: (νi ≥ 0,ai > 0,
i = 0,1, β ∈ (0,1] and τ ∈ (−∞,0]).

Substituting Eq. (16) in Eq. (15) we get the following
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equation:

ν0 = 1
1⎛⎝ 1

1
(1−β )ν0+a0

−τ

⎞⎠+a1

−τ

= (1−β )(1−a1τ)ν0+(a0+a1−a0a1τ)
(1−β )(−2τ+a1τ2)ν0+(1−2a0τ−a1τ+a0a1τ2) .

. (41)

Then, we can multiply Eq. (41) by
[(1−β )(−2τ+a1τ2)ν0+(1−2a0τ−a1τ+a0a1τ2)] to obtain

[(1−β )(−2τ+a1τ2)ν0+(1−2a0τ−a1τ+a0a1τ2)]ν0

=(1−β )(1−a1τ)ν0+(a0+a1−a0a1τ).
. . (42)

Move all the terms of Eq. (42) to the left-hand side and
get

[(1−β )(−2τ+a1τ2)ν0+(1−2a0τ−a1τ+a0a1τ2)]ν0

−(1−β )(1−a1τ)ν0−(a0+a1−a0a1τ)=0.
. . (43)

By extracting a common factors in Eq. (43) we obtain the
following quadratic equation for ν0:

(1−β )(−2τ+a1τ2)ν2
0 +(β−2a0τ−βa1τ+a0a1τ2)ν0

−(a0+a1−a0a1τ)=0.
. . (44)

Now, in order to simplify the notation, we rewrite Eq. (44)
as follows:

Aν2
0 +Bν0 −C = 0, . . . . . . . . . . . (45)

where

A = A(τ) = (1−β )
(−2τ +a1τ2)≥ 0, . . . (46)

B = B(τ) = β −2a0τ −β a1τ +a0a1τ2 > 0, . (47)

C = C(τ) = a0 +a1 −a0a1τ > 0. . . . . . (48)

If τ = 0 or β = 1, then, A = 0 and Eq. (45) is linear, so we
can find the unique solution for ν0 given by:

ν0(τ)=

{ a0+a1
β if τ = 0

a0+a1−a0a1τ
1−2a0τ−a1τ+a0a1τ2 if β = 1

. . . . (49)

If β ∈ (0,1) and τ < 0, then, A �= 0 and we can find both
roots of Eq. (45), which are:

ν0(τ) =
−B+

√
B2 +4AC

2A
, . . . . . . . . (50)

ν0(τ) =
−B−√

B2 +4AC
2A

. . . . . . . . . (51)

However, since ν0 ≥ 0, the root (51) is impossible; that is,
Eq. (50) is the unique solution of Eq. (45).

Moreover, Eqs. (49) and (50) can be combined in a single
equation for all β ∈ (0,1] and τ ∈ (−∞,0] as follows:

ν0(τ) =ν0 =
2C

B+
√

B2 +4AC
, . . . . . (52)

where

B+
√

B2 +4AC > 0, . . . . . . . . . . (53)

and so Eq. (52) is the unique solution for ν0.

We can see that the solution (52) for any parameter β ∈
(0,1] satisfies the condition ν0 → 0 as τ → −∞. Hence,
there exits a positive value ν0(β ) such that ν0(τ)≤ ν0(β )
for all τ ≤ 0.

From Eqs. (16) and (52), we can see that ν1 also has a
unique solution, which is given by

ν1(τ) = ν1 =
1

1
(1−β )ν0(τ)+a0

− τ
. . . . . . . (54)

For any parameter β ∈ (0,1], the conditions ν1 → 0 as
τ →−∞ and ν1(τ) ≤ a0 +(1−β )ν0(β ) for all τ ≤ 0, are
satisfied.

Now, it is apparent that the functions (46)–(48) are con-
tinuously differentiable with respect to τ , τ ∈ (−∞,0] and

A′ = (1−β )(−2+2a1τ) ≤ 0, . . . . . . (55)

B′ = −2a0−β a1 +2a0a1τ < 0, . . . . . . (56)

C′ = −a0a1 < 0. . . . . . . . . . . . . (57)

Thus, from Eq. (52), we have that ν0(τ) is continuously
differentiable and

ν ′
0 =

2C′
(

B+
√

B2+4AC
)
−2C

(
B′+ 2BB′+4A′C+4AC′

2
√

B2+4AC

)
(

B+
√

B2+4AC
)2

=
2(C′B−CB′)

(
B+

√
B2+4AC

)
+4(AC′−A′C)C(

B+
√

B2+4AC
)2√

B2+4AC
.

(58)

Now, we estimate the values of Eq. (58) in order to reveal
the behavior of ν0(τ) as the function of τ .

From Eqs. (46)–(48), it is evident that the denominator of
Eq. (58) is positive:(

B+
√

B2 +4AC
)2√

B2 +4AC > 0. . . . . (59)

Thus, plugging Eqs. (46)–(48) and (55)–(57) in Eq. (58),
we can find that

C′B−CB′=(−a0a1)(β−2a0τ−βa1τ+a0a1τ2)
−(a0+a1−a0a1τ)(−2a0−βa1+2a0a1τ)

=βa2
1+a2

0a2
1τ2+(a0+a1)(2a0−2a0a1τ)>0,

. . (60)

and
AC′−A′C=(1−β )(−2τ+a1τ2)(−a0a1)

−(1−β )(−2+2a1τ)(a0+a1−a0a1τ)

=(1−β )a0a2
1τ2+(1−β )(2−2a1τ)(a0+a1)≥0.

. . (61)

Therefore, given the values of Eqs. (46)–(48), (53), and
(59)–(61), we can conclude that

ν ′
0 =

2(C′B−CB′)
(

B+
√

B2+4AC
)
+4(AC′−A′C)C(

B+
√

B2+4AC
)2√

B2+4AC

≥ 2(C′B−CB′)
(

B+
√

B2+4AC
)

(
B+

√
B2+4AC

)2√
B2+4AC

> 0.

. . (62)

Therefore, ν0(τ) is strictly increasing with respect to
τ,τ ∈ (−∞,0]. Since the function ν0 = ν0(τ) is contin-
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uous, it tends to ν0(0) as τ goes to 0.

Now, from Eq. (54) we have

ν1 =
1

1
(1−β )ν0+a0

− τ
. . . . . . . . . . . (63)

Since ν0(τ) is continuously differentiable with respect to
τ , the same is true for ν1(τ), and

ν ′
1=− 1(

1
(1−β )ν0+a0

−τ
)2

(
− 1

[(1−β )ν0+a0]
2 (1−β )ν ′

0−1
)

=ν2
1

(
(1−β )ν ′

0
[(1−β )ν0+a0]2

+1
)

,

(64)

where ν ′
0 > 0. On account of that,

ν ′
1 = ν2

1

(
(1−β )ν ′

0

[(1−β )ν0 +a0]2
+1

)
≥ ν2

1 > 0. . (65)

Therefore, ν1(τ) strictly increases with respect to τ,τ ∈
(−∞,0]. Since the function ν1 = ν1(τ) is continuous, it
tends to ν1(0) as τ goes to 0.The proof of the theorem is
complete.

A.3. Proof of Theorem 2
Theorem 2. If assumptions A1, A2, and A3 hold, there
exist interior equilibria.

Proof. We are going to show that there exist ν∗
i ≥ 0,q∗i ≥

0, i = 0,1, and p∗ > p0 such that the vector (p∗,q∗0,q
∗
1)

is the exterior equilibrium, and the influence coefficients
(ν∗

0 ,ν∗
1 ) are consistent, i.e., Eqs. (13) and (14) hold.

As it was proved in Theorem 3, ν0 and ν1 solve uniquely
Eqs. (15) and (16), and continuously depend on τ =
G′(p). Moreover, G′(p) continuously depends on p,
hence, the functions ν0 and ν1 are continuous with respect
to p.

Recall the function (32) introduced when proving Theo-
rem 1:

Q(p;ν0(p),ν1(p))

= p−b0
(1−β )ν0(p)+a0

+ p−b1
ν1(p)+a1

+ βν0(p)
(1−β )ν0(p)+a0

(
p−b1

ν1(p)+a1

)
= p
[

1
(1−β )ν0(p)+a0

+ ν0(p)+a0
(1−β )ν0(p)+a0

(
1

ν1(p)+a1

)]
−
[

b0
(1−β )ν0(p)+a0

+ ν0(p)+a0
(1−β )ν0(p)+a0

(
b1

ν1(p)+a1

)]
, (66)

which continuously depends on p and tends to +∞ as
p → +∞ since ν0(p) and ν1(p) are bounded. Thus, by
assumption A3, we have that

Q(p0) =
p0 −b0

(1−β )ν0(p0)+a0
≤ p0 −b0

a0

< G(p0) ≤ G(p0)+D. . . . . . (67)

Therefore, there exists the value p∗ > p0 such that

Q(p∗) = G(p∗)+D. . . . . . . . . . . (68)

For this value p∗, we compute the influence coefficients
ν∗

i = νi(G′(p∗)), i = 0,1, using Eqs. (52) and (54), as

well as the output volumes q∗i = qi(p∗;ν∗
0 ,ν∗

1 ), i = 0,1,
given by Eqs. (30) and (31). Thus, ν∗

0 and ν∗
1 satisfy

Eqs. (13) and (14), whereas the vector (p∗,q∗0,q
∗
1) is the

exterior equilibrium. As a consequence, the extended
vector (p∗,q∗0,q

∗
1,ν∗

0 ,ν∗
1 ) is the interior equilibrium. The

proof of the theorem is complete.

A.4. Proof of Corollary 1
Corollary 1. When conditions A1, A2, and A3 are valid,
then the demand function of type (17) and all β ∈ (0,1]
imply the existence of the (unique) interior equilibrium.

Proof. Consider an arbitrary β ∈ (0,1]. Since G′(p) =
−K, then, by Theorem 3, for τ = −K there exists a
unique solution (ν∗

0 ,ν∗
1 ) of Eqs. (15) and (16):

ν∗
0 =

α0

α1
, . . . . . . . . . . . . . . . (69)

where

α0 = 2 (a0 +a1 +a0a1K) . . . . . . . . (70)

and

α1 =
(
β +2a0K +β a1K +a0a1K2)

+

√
(β+2a0K+βa1K+a0a1K2)2

+4(1−β )(2K+a1K2)(a0+a1+a0a1K).
(71)

In addition,

ν∗
1 = 1

1
(1−β )ν∗

0 +a0
+K

= (1−β )ν∗
0 +a0

1+[(1−β )ν∗
0 +a0]K

. . . . (72)

Moreover, from Eq. (15), we can rewrite Eq. (69) as fol-
lows:

ν∗
0 =

1
1

ν∗
1 +a1

+K
. . . . . . . . . . . . . (73)

It is not difficult to see that the influence coefficients ν∗
0

and ν∗
1 don’t depend on p, therefore, by Theorem 1,

there exists the unique exterior equilibrium (p∗,q∗0,q
∗
1)

with the influence coefficients (ν∗
0 ,ν∗

1 ). Hence, the vector
(p∗,q∗0,q

∗
1,ν∗

0 ,ν∗
1 ) = (p∗(β ),q∗0(β ),q∗1(β ),ν∗

0 (β ),ν∗
1 (β ))

is the unique interior equilibrium for β ∈ (0,1]. The proof
of the corollary is complete.

Appendix B.

B.1. Proof of Theorem 4
Theorem 4. For the linear (affine) demand function G(p)
from Eq. (17), the price p∗(β ), the outputs q∗i (β ), i = 0,1,
and the influence coefficients ν∗

i (β ), i = 0,1, character-
izing the (unique) interior equilibrium, together with the
total market supply G∗(β ) = q∗0(β )+q∗1(β ), are continu-
ously differentiable by β ∈ (0,1]. Furthermore, q∗0(β ) and
G∗(β ) are strictly growing whereas p∗(β ),ν∗

0 (β ),ν∗
1 (β ),

and q∗1(β ) strictly decrease.

Proof. First, we are going to show that the functions
ν∗

i (β ), i = 0,1, are continuously differentiable and strictly
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decreasing with respect to β . Let us consider the functions

A = A (β ) = (1−β )
(
2K +a1K2)≥ 0, . . (74)

B = B(β ) = β +2a0K +β a1K +a0a1K2 > 0, (75)

C = C (β ) = a0 +a1 +a0a1K > 0, . . . . . (76)

which are continuously differentiable with respect to β ,
with

A ′ = −(2K +a1K2)< 0, . . . . . . . . (77)

B′ = 1+a1K > 0, . . . . . . . . . . . (78)

C ′ = 0. . . . . . . . . . . . . . . . (79)

Using Eqs. (74)–(76) we rewrite Eq. (69) as follows:

ν∗
0 (β ) = ν∗

0 =
2C

B +
√

B2 +4A C
, . . . . . (80)

where

B +
√

B2 +4A C > 0. . . . . . . . . . (81)

Then, ν∗
0 (β ) is continuously differentiable with respect to

β and, similarly to Eq. (58),

ν∗
0
′ =

2(C ′B−CB′)
(
B+

√
B2+4A C

)
+4(A C ′−A ′C )C(

B+
√

B2+4A C
)2√

B2+4A C
. (82)

Since C ′ = 0, then

ν∗
0
′ =

2(−C B′)
(
B+

√
B2+4A C

)
+4(−A ′C )C(

B+
√

B2+4A C
)2√

B2+4A C

=
−2C

[
B′
(
B+

√
B2+4A C

)
+2A ′C

]
(
B+

√
B2+4A C

)2√
B2+4A C

.

. . (83)

Now we are going to estimate the value of Eq. (83) in
order to describe the behavior of ν∗

0 (β ) as a function of
β .

From Eqs. (74)–(76), it is evident that the denominator of
Eq. (83) is positive:(

B +
√

B2 +4A C
)2√

B2 +4A C > 0. . . (84)

Suppose that the numerator of Eq. (83) is non-negative for
some β0 ∈ (0,1], i.e.,

−2C
[
B′
(
B +

√
B2 +4A C

)
+2A ′C

]
≥ 0. (85)

Since C > 0, by Eq. (76), we have that

B′
(
B +

√
B2 +4A C

)
+2A ′C ≤ 0. . . . (86)

Moreover, B′ > 0, by Eq. (78), therefore,√
B2 +4A C ≤ −2A ′C

B′ −B, . . . . . . (87)

where
√

B2 +4A C > 0. Now squaring both sides of
Eq. (87) we have

B2 +4A C ≤ 4A ′2C 2

B′2 +
4A ′C B

B′ +B2. . . (88)

Solving Eq. (88) for A we get

A ≤ A ′2C
B′2 +

A ′B
B′ . . . . . . . . . . . (89)

Multiplying both sides of Eq. (89) by B′2 we deduce

A B′2 ≤ A ′2C +A ′BB′ = A ′ (A ′C +BB′) . (90)

Now, we substitute the values of A and A′ given by
Eqs. (74) and (77) in Eq. (90) to obtain:

(1−β )
(
2K +a1K2)B′2

≤−(2K +a1K2)[−(2K +a1K2)C +BB′] , (91)

and since
(
2K +a1K2

)
> 0, we have that

(1−β )B′2 ≤−[−(2K +a1K2)C +BB′]
=
(
2K +a1K2)C −BB′.

. (92)

The latter implies

(1−β )B′2 +BB′ − (2K +a1K2)C
=
[
(1−β )B′+B

]
B′ − (2K +a1K2)C ≤ 0.

(93)

Plugging Eqs. (75), (76) and (78) in Eq. (93) we yield[
(1−β )B′+B

]
B′ − (2K +a1K2)C

=
[
(1−β )(1+a1K)+

+
(
β +2a0K +β a1K +a0a1K2)](1+a1K)

− (2K +a1K2)(a0 +a1 +a0a1K)

= 1 > 0,

(94)

which contradicts Eq. (93). Hence, Eq. (85) cannot hold
for any β0 ∈ (0,1], which implies

−2C
[
B′
(
B +

√
B2 +4A C

)
+2A ′C

]
< 0 (95)

for all β ∈ (0,1].

Therefore, from Eqs. (84) and (95), we conclude that

ν∗
0
′ =

−2C
[
B′
(
B+

√
B2+4A C

)
+2A ′C

]
(
B+

√
B2+4A C

)2√
B2+4A C

< 0 . (96)

for all β ∈ (0,1]. On account of the latter, ν∗
0 (β ) is contin-

uously differentiable and strictly decreasing with respect
to β ∈ (0,1].

From Eq. (72), it is transparent that ν∗
1 is continuously

differentiable with respect to ν∗
0 and, since ν∗

0 (β ), in its
turm, is also smooth as a function of β , then ν∗

1 (β ) is
continuously differentiable by β .

Differentiating Eq. (73) with respect to β we get

ν∗
0
′ = 1(

1
ν∗

1 +a1
+K
)2

(
1

(ν∗
1 +a1)2 ν∗

1
′
)

= ν∗
0

2
(

ν∗
1
′

(ν∗
1 +a1)2

)
=
(

ν∗
0

ν∗
1 +a1

)2
ν∗

1
′. . . (97)
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Since ν∗
0
′ < 0, then Eq. (97) implies that ν∗

1
′ < 0, for all

β ∈ (0,1]. Thus, ν∗
1 (β ) is continuously differentiable and

strictly decreasing with respect to β , β ∈ (0,1]. Before
continuing the proof, we are going to establish the fol-
lowing inequality:

ν∗
0 +β ν∗

0
′ > 0. . . . . . . . . . . . . . (98)

Substituting Eqs. (80) and (83) in Eq. (98) we get

ν∗
0 +β ν∗

0
′ = 2C

B+
√

B2+4A C

+β
−2C

[
B′
(
B+

√
B2+4A C

)
+2A ′C

]
(
B+

√
B2+4A C

)2√
B2+4A C

= 2C(
B+

√
B2+4A C

)2√
B2+4A C

·
[(

−βB′+
√

B2+4A C
)(

B+
√

B2+4A C
)
−2βA ′C

]
.

(99)

By Eqs. (76), (77), and (84),

2C(
B +

√
B2 +4A C

)2√
B2 +4A C

> 0 . (100)

and

−2βA ′C > 0. . . . . . . . . . . . . (101)

Then, to prove inequality (98), it suffices to show that(
−βB′+

√
B2+4A C

)(
B+

√
B2+4A C

)
>0, . . . (102)

which, by Eq. (81), is equivalent to demonstrating that

−βB′ +
√

B2 +4A C > 0. . . . . . . (103)

Suppose, on the contrary, that

−βB′ +
√

B2 +4A C ≤ 0. . . . . . . (104)

Then√
B2 +4A C ≤ βB′, . . . . . . . . . (105)

where
√

B2 +4A C > 0. Hence, by squaring both sides
of Eq. (105) we have

B2 +4A C ≤ β 2B′2. . . . . . . . . . (106)

Plugging Eqs. (75) and (78) in Eq. (106) yields

(β+2a0K+βa1K+a0a1K2)2+4A C≤β 2(1+a1K)2, . . (107)

which implies

[(β+βa1K)+2a0K+a0a1K2]2+4A C≤(β+βa1K)2. . . (108)

However, by Eqs. (74) and (76),

4A C ≥ 0, . . . . . . . . . . . . . (109)

that is,

[(β+βa1K)+2a0K+a0a1K2]2≤(β+βa1K)2. . . . . (110)

On the other hand,

2a0K +a0a1K2 > 0, . . . . . . . . . (111)

whence

(β+βa1K)<(β+βa1K)+2a0K+a0a1K2, . . . . . (112)

where (β +β a1K) > 0. Now by squaring both sides of
Eq. (105) we have

(β+βa1K)2<[(β+βa1K)+2a0K+a0a1K2]2
. . . . . (113)

Nevertheless, inequality (113) contradicts Eq. (110),
which means that Eq. (103) must hold and thus prove
Eq. (98).

Now, coming back to the proof of the theorem, we are
going to show that the equilibrium price p∗(β ) is contin-
uously differentiable and strictly decreasing with respect
to β . Consider again the function (32) and by plugging it
in G(p∗) = −K p∗+T get the following relationships:

Q(p∗;ν∗
0 ,ν∗

1 )−G(p∗)−D

= p∗
[

1
(1−β )ν∗

0 +a0
+ ν∗

0 +a0
(1−β )ν∗

0 +a0

(
1

ν∗
1 +a1

)]
−
[

b0
(1−β )ν∗

0 +a0
+ ν∗

0 +a0
(1−β )ν∗

0 +a0

(
b1

ν∗
1 +a1

)]
+K p∗−T −D = 0.

. (114)

Consider the function
F (p∗;β )

= p∗
[

1
(1−β )ν∗

0 +a0
+ ν∗

0 +a0
(1−β )ν∗

0 +a0

(
1

ν∗
1 +a1

)]
−
[

b0
(1−β )ν∗

0 +a0
+ ν∗

0 +a0
(1−β )ν∗

0 +a0

(
b1

ν∗
1 +a1

)]
+K p∗−T −D,

. (115)

having in mind that ν∗
0 and ν∗

1 depend on β , but not on p∗.
Now, we rewrite Eq. (114) using Eq. (115) as a functional
equation:

F (p∗;β ) = 0. . . . . . . . . . . . . (116)

Now we are in a position to estimate the value of the par-
tial derivative of the function F (p∗;β ) with respect to p∗:

∂F
∂ p∗ = 1

(1−β )ν∗
0 +a0

+ ν∗
0 +a0

(1−β )ν∗
0 +a0

(
1

ν∗
1 +a1

)
+K≥K>0.

. . . (117)

We observe that the partial derivative F with respect to
p∗ is positive. Hence, by the Implicit Function Theorem,
the function p∗ = p∗(β ) is differentiable with respect to
β , and its partial derivative with respect to β can be found
from the equation

∂F

∂ p∗
d p∗

dβ
+

∂F

∂ β
= 0, . . . . . . . . . (118)

which leads to

d p∗

dβ
= −

∂F
∂ β
∂F
∂ p∗

. . . . . . . . . . . . . (119)

From Eq. (117), we have

∂F

∂ p∗
> 0. . . . . . . . . . . . . . . (120)
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Therefore, to prove that p∗ is strictly increasing, we have
to show that

∂F

∂ β
> 0. . . . . . . . . . . . . . . (121)

Indeed,
∂F
∂ β = ∂

∂ β Q(p∗;ν∗
0 ,ν∗

1 )

= ∂
∂ β

[
p∗−b0

(1−β )ν∗
0 +a0

+ βν∗
0

(1−β )ν∗
0 +a0

(
p∗−b1
ν∗

1 +a1

)
+ p∗−b1

ν∗
1 +a1

]
= p∗−b0

[(1−β )ν∗0 +a0]
2 [ν∗

0 +(1−β )(−ν∗
0
′)]

+
(ν∗0 +βν∗0

′)[(1−β )ν∗0 +a0]+βν∗0 [ν∗0 +(1−β )(−ν∗0
′)]

[(1−β )ν∗0 +a0]
2

(
p∗−b1
ν∗1 +a1

)

+
βν∗0

(1−β )ν∗0 +a0

[
p∗−b1

(ν∗1 +a1)2 (−ν∗
1
′)
]
+

[
p∗−b1

(ν∗1 +a1)2 (−ν∗
1
′)
]
.

. . . . . . . . . . . . . . . . . . (122)

Given the values of a0,a1,b0,b1,β ,ν∗
0 ,ν∗

1 ,ν∗
0
′,ν∗

1
′, p∗,

and Eq. (98), it isn’t difficult to see that Eq. (122) is non-
negative. Moreover,

∂F
∂β = p∗−b0

[(1−β )ν∗0 +a0]
2 [ν∗

0 +(1−β )(−ν∗
0
′)]

+
(ν∗0 +βν∗0

′)[(1−β )ν∗0 +a0]+βν∗0 [ν∗0 +(1−β )(−ν∗0
′)]

[(1−β )ν∗0 +a0]2

(
p∗−b1
ν∗1 +a1

)

+
βν∗0

(1−β )ν∗0 +a0

[
p∗−b1

(ν∗1 +a1)
2 (−ν∗

1
′)
]
+

[
p∗−b1

(ν∗1 +a1)
2 (−ν∗

1
′)
]

≥ p∗−b1

(ν∗1 +a1)2 (−ν∗
1
′)>0,

(123)

which proves Eq. (121). On account of that,

d p∗

dβ
= −

∂F
∂ β
∂F
∂ p∗

< 0, . . . . . . . . . . (124)

where ∂F
∂ β and ∂F

∂ p∗ are continuous with respect to β .
Hence p∗(β ) is continuously differentiable and strictly
decreasing with respect to β , β ∈ (0,1].

Now, since

G∗(β ) = G(p∗(β )) = −K p∗(β )+T, . . . (125)

and p∗(β ) is continuously differentiable and strictly de-
creasing with respect to β , and K and T are positive
constants, then G∗(β ) is continuously differentiable and
strictly increasing with respect to β , β ∈ (0,1].

Now, we are going to show that q∗1(β ) is continuously dif-
ferentiable and strictly decreasing with respect to β . To do
that, we first solve Eq. (114) for p∗ to obtain the following
equality:

p∗=

b0
(1−β )ν∗0 +a0

+
ν∗0 +a0

(1−β )ν∗0 +a0

(
b1

ν∗1 +a1

)
+T+D

1
(1−β )ν∗0 +a0

+
ν∗0 +a0

(1−β )ν∗0 +a0

(
1

ν∗1 +a1

)
+K

=
(ν∗0 +a0)b1+(ν∗1 +a1)b0+[(1−β )ν∗0 +a0](ν∗1 +a1)(T+D)

(ν∗0 +a0)+(ν∗1 +a1)+[(1−β )ν∗0 +a0](ν∗1 +a1)K
.

(126)

We substitute Eq. (126) in q∗1 = q1(p∗;ν∗
0 ,ν∗

1 ), to deduce

q∗1= p∗−b1
ν∗1 +a1

=

(ν∗0 +a0)b1+(ν∗1 +a1)b0+[(1−β )ν∗0 +a0](ν∗1 +a1)(T+D)

(ν∗0 +a0)+(ν∗1 +a1)+[(1−β )ν∗0 +a0](ν∗1 +a1)K
−b1

ν∗1 +a1

=
−(b1−b0)+[(1−β )ν∗0 +a0](G(b1)+D)

(ν∗0 +a0)+(ν∗1 +a1){1+[(1−β )ν∗0 +a0]K} .

(127)

By plugging Eq. (72) in Eq. (127) we have that

q∗1=
−(b1−b0)+[(1−β )ν∗0 +a0](G(b1)+D)

(ν∗0 +a0)+

⎡⎣ (1−β )ν∗0 +a0
1+[(1−β )ν∗0 +a0]K

+a1

⎤⎦{1+[(1−β )ν∗0 +a0]K}

=
−(b1−b0)+[(1−β )ν∗0 +a0](G(b1)+D)

(ν∗0 +a0+a1)+[(1−β )ν∗0 +a0](1+a1K)
= M

N ,

(128)

where

M=M(β )=−(b1−b0)+[(1−β )ν∗
0 +a0](G(b1)+D) . . (129)

and

N=N(β )=(ν∗
0 +a0+a1)+[(1−β )ν∗

0 +a0](1+a1K). . . (130)

It is easy to see that M and N are continuously differen-
tiable with respect to β with

M′ =
[−ν∗

0 +(1−β )ν∗
0
′](G(b1)+D) , . . (131)

N′ = ν∗
0
′ +
[−ν∗

0 +(1−β )ν∗
0
′](1+a1K) . . (132)

Moreover, N > 0, so q∗1 is continuously differentiable with
respect to β and

q∗1
′ =

M′N −MN′

N2 . . . . . . . . . . . (133)

Thus, to find the value of q∗1
′ it suffices to estimate the

value of the numerator of Eq. (133):

M′N −MN′

=[−ν∗
0 +(1−β )ν∗

0
′](G(b1)+D){(ν∗

0 +a0+a1)+

+[(1−β )ν∗
0 +a0](1+a1K)

}
−{−(b1−b0)+[(1−β )ν∗

0 +a0](G(b1)+D)}{ν∗
0
′+

+[−ν∗
0 +(1−β )ν∗

0
′](1+a1K)

}
=[(ν∗

0 +a0)(−ν∗
0−βν∗

0
′)+βν∗

0 ν∗
0
′](G(b1)+D)

+a1[−ν∗
0 +(1−β )ν∗

0
′](G(b1)+D)

+{ν∗
0
′+[−ν∗

0 +(1−β )ν∗
0
′](1+a1K)}(b1−b0).

. (134)

Given the values of a0,a1,b0,b1,β ,ν∗
0 ,ν∗

0
′,G(p),D, and

Eq. (98), it is transparent that Eq. (134) is non-positive.
Moreover,

M′N−MN′=[(ν∗
0 +a0)(−ν∗

0−βν∗
0
′)+βν∗

0 ν∗
0
′](G(b1)+D)

+a1[−ν∗
0 +(1−β )ν∗

0
′](G(b1)+D)

+{ν∗
0
′+[−ν∗

0 +(1−β )ν∗
0
′](1+a1K)}(b1−b0)

≤a1[−ν∗
0 +(1−β )ν∗

0
′](G(b1)+D)<0.

(135)

Thus,

M′N −MN′ < 0, . . . . . . . . . . . (136)

which proves that q∗1
′ < 0, so q∗1(β ) is continuously dif-

ferentiable and strictly decreasing with respect to β , β ∈
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(0,1].

Finally, since

q∗0(β )+q∗1(β ) = G∗(β )+D, . . . . . . (137)

then

q∗0(β ) = −q∗1(β )+G∗(β )+D. . . . . . (138)

And since G∗(β ) is continuously differentiable and
strictly increasing with respect to β , the function q∗1(β )
is continuously differentiable and strictly decreasing with
respect to β . Because D is constant, we have that q∗0(β )
is continuously differentiable and strictly increasing with
respect to β , β ∈ (0,1]. The proof of the theorem is com-
plete.

B.2. Proof of Theorem 5
Theorem 5. For the linear (affine) demand function G(p)
described in Eq. (17), the price pc(β ) and the supply val-
ues qc

i (β ), i = 0,1, from the Cournot-Nash equilibrium,
are continuously differentiable with respect to β ∈ (0,1].
Furthermore, pc(β ) and qc

1(β ) strictly decrease, whereas
qc

0(β ) strictly grows along with β .

Proof. Let’s consider the exterior equilibrium (pc,qc
0,q

c
1),

i.e., such a vector that the following equalities hold:

qc
0 +qc

1 = G(pc)+D, . . . . . . . . . (139)

qc
0= pc−b0

(1−β ) 1
K +a0

+
β 1

K
(1−β ) 1

K +a0

(
pc−b1
1
K +a1

)
, . . . . . (140)

and

qc
1 =

pc −b1
1
K +a1

, . . . . . . . . . . . . (141)

where

G(pc) = −K pc +T. . . . . . . . . . . (142)

From Eq. (139) one has

qc
0 +qc

1 −G(pc)−D = 0. . . . . . . . (143)

By substituting Eqs. (140), (141), and (142) in Eq. (143),
similarly to (32), we have

qc
0+qc

1−G(pc)−D= pc−b0
(1−β ) 1

K +a0
+

β 1
K

(1−β ) 1
K +a0

(
pc−b1
1
K +a1

)
+ pc−b1

1
K +a1

+Kpc−T−D

=pc
[

1
(1−β ) 1

K +a0
+

1
K +a0

(1−β ) 1
K +a0

(
1

1
K +a1

)]
−
[

b0
(1−β ) 1

K +a0
+

1
K +a0

(1−β ) 1
K +a0

(
b1

1
K +a1

)]
+Kpc−T−D=0.

(144)

Solving Eq. (144) for pc, similarly to Eq. (126), we get
the equation

pc=

b0
(1−β ) 1

K +a0
+

1
K +a0

(1−β ) 1
K +a0

(
b1

1
K +a1

)
+T+D

1
(1−β ) 1

K +a0
+

1
K +a0

(1−β ) 1
K +a0

(
1

1
K +a1

)
+K

=
( 1

K +a0)b1+( 1
K +a1)b0+[(1−β ) 1

K +a0]( 1
K +a1)(T+D)

( 1
K +a0)+( 1

K +a1)+[(1−β ) 1
K +a0]( 1

K +a1)K
= X

Y ,

(145)

where

X(β ) =
(

1
K

+a0

)
b1 +
(

1
K

+a1

)
b0

+
[
(1−β )

1
K

+a0

](
1
K

+a1

)
(T +D) ,

(146)

and

Y (β ) =
(

1
K

+a0

)
+
(

1
K

+a1

)
+
[
(1−β )

1
K

+a0

](
1
K

+a1

)
K.

. (147)

It’s easy to see that X and Y are continuously differen-
tiable with respect to β with

X ′ = − 1
K

(
1
K

+a1

)
(T +D) , . . . . . . (148)

Y ′ = −
(

1
K

+a1

)
. . . . . . . . . . . (149)

Moreover, Y > 0, whence pc is continuously differen-
tiable with respect to β with

pc′ =
X ′Y −XY ′

Y 2 . . . . . . . . . . . (150)

To compute the value of pc′ it is sufficient to calculate the
value of the numerator of Eq. (150):

X ′Y −XY ′

= − 1
K

( 1
K +a1

)
(T +D)

{( 1
K +a0

)
+
( 1

K +a1
)

+
[
(1−β ) 1

K +a0
]( 1

K +a1
)

K
}

− [−( 1
K +a1

)]{( 1
K +a0

)
b1 +
( 1

K +a1
)

b0

+
[
(1−β ) 1

K +a0
]( 1

K +a1
)
(T +D)

}
= − 1

K

( 1
K +a0

)( 1
K +a1

)
(G(b1)+D)

− 1
K

( 1
K +a1

)2 (G(b0)+D) .

(151)

Given the values of a0,a1,K,G(p), and D, it is clear that
Eq. (151) is non-positive. Moreover,

X ′Y−XY ′ =− 1
K ( 1

K +a0)( 1
K +a1)(G(b1)+D)

− 1
K ( 1

K +a1)2
(G(b0)+D)

≤− 1
K ( 1

K +a0)( 1
K +a1)(G(b1)+D)<0.

. . . (152)

Then,

X ′Y −XY ′ < 0, . . . . . . . . . . . (153)

which proves that pc′ < 0, so pc(β ) is continuously dif-
ferentiable and strictly decreasing with respect to β , β ∈
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(0,1].

Since

qc
1(β ) =

pc(β )−b1
1
K +a1

, . . . . . . . . . (154)

and pc(β ) is continuously differentiable and strictly de-
creasing with respect to β , and a1,b1 and K are positive
constants, then qc

1(β ) is continuously differentiable and
strictly decreasing with respect to β ∈ (0,1].

Finally, since

qc
0(β )+qc

1(β )=G(pc(β ))+D=−Kpc(β )+T+D, . . . (155)

then,

qc
0(β ) = −qc

1(β )−K pc(β )+T +D. . . . (156)

And as qc
1(β ) is continuously differentiable and strictly

decreasing with respect to β , the function pc(β ) also-
has the same property, and K,T and D are non-negative
constants, then q∗0(β ) is continuously differentiable and
strictly increasing with respect to β ∈ (0,1]. The proof of
the theorem is complete.

B.3. Proof of Theorem 6
Theorem 6. If the demand function G(p) is depicted as
in Eq. (17), the price pt(β ) and the output volumes qt

i(β ),
i = 0,1, related to the perfect competition equilibrium,
are invariant for all β ∈ (0,1] and are described by the
clear-cut expressions:

pt =
a0b1 +a1b0 +a0a1(T +D)

a0 +a1 +a0a1K
; . . . . (157)

qt
0 =

a1 (G(b0)+D)+(b1 −b0)
a0 +a1 +a0a1K

; . . . . (158)

qt
1 =

a0 (G(b1)+D)− (b1 −b0)
a0 +a1 +a0a1K

. . . . . (159)

Proof. Let us consider the exterior equilibrium
(pt ,qt

0,q
t
1), i.e., such a vector that the following equali-

ties hold:

qt
0 +qt

1 = G(pt)+D, . . . . . . . . . (160)

qt
0 =

pt −b0

a0
, . . . . . . . . . . . . (161)

qt
1 =

pt −b1

a1
, . . . . . . . . . . . . (162)

where

G(pt) = −K pt +T. . . . . . . . . . . (163)

From Eq. (139) one gets that

qt
0 +qt

1 −G(pt)−D = 0. . . . . . . . . (164)

Next, by plugging Eqs. (161), (162), and (163) in
Eq. (164), we deduce that

qt
0+qt

1−G(pt)−D= pt−b0
a0

+ pt−b1
a1

+Kpt−T−D

=pt
(

1
a0

+ 1
a1

)
−
(

b1
a1

+ b0
a0

)
+Kpc−T−D=0.

(165)

By solving Eq. (165) for pt , we obtain the equality

pt =
b1
a1

+ b0
a0

+T +D
1
a0

+ 1
a1

+K

=
a0b1 +a1b0 +a0a1(T +D)

a0 +a1 +a0a1K
,

. . . . (166)

showing that the function pt(β ) is constant for all β ∈
(0,1].

Moreover, since

qt
0 =

pt −b0

a0
=

a0b1+a1b0+a0a1(T+D)
a0+a1+a0a1K −b0

a0

=
a1 (G(b0)+D)+(b1 −b0)

a0 +a1 +a0a1K
,

. (167)

and

qt
1 =

pt −b1

a1
=

a0b1+a1b0+a0a1(T+D)
a0+a1+a0a1K −b1

a1

=
a0 (G(b1)+D)− (b1 −b0)

a0 +a1 +a0a1K
,

. (168)

the functions qt
0(β ) and qt

1(β ) are constant for all β ∈
(0,1]. The proof of the theorem is complete.

Appendix C.

C.1. Proof of Theorem 7
Theorem 7. For the linear (affine) function G(p) de-
scribed in Eq. (17), the price functions in the consistent
CVE, p∗(β ), the Cournot-Nash equilibrium, pc(β ), and
the perfect competition equilibrium, pt , satisfy the follow-
ing inequalities:

pt < lim
β→0

p∗(β ) . . . . . . . . . . . (169)

and

p∗(β ) < pc(β ) for all β ∈ (0,1]. . . . . (170)

Proof. First, we prove inequality (21):

pt < lim
β→0

p∗(β ).

Introduce the following notation:

ν̂∗
0 = lim

β→0
ν∗

0 (β )

= 2(a0+a1+a0a1K)

(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2

+4(2K+a1K2)(a0+a1+a0a1K)

(171)

ν̂∗
1 = lim

β→0
ν∗

1 (β )= lim
β→0

(1−β )ν∗0 +a0
1+[(1−β )ν∗0 +a0]K

=
ν̂∗0 +a0

1+(ν̂∗0 +a0)K
>0.

. . . . . . (172)
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Therefore,

lim
β→0

p∗(β )

= lim
β→0

(ν∗0 +a0)b1+(ν∗1 +a1)b0+[(1−β )ν∗0 +a0](ν∗1 +a1)(T+D)

(ν∗0 +a0)+(ν∗1 +a1)+[(1−β )ν∗0 +a0](ν∗1 +a1)K

=
(ν̂∗0 +a0)b1+(ν̂∗1 +a1)b0+(ν̂∗0 +a0)(ν̂∗1 +a1)(T+D)

(ν̂∗0 +a0)+(ν̂∗1 +a1)+(ν̂∗0 +a0)(ν̂∗1 +a1)K
.

(173)

Now, we compute the difference

lim
β→0

p∗(β )−pt

=
(ν̂∗0 +a0)b1+(ν̂∗1 +a1)b0+(ν̂∗0 +a0)(ν̂∗1 +a1)(T+D)

(ν̂∗0 +a0)+(ν̂∗1 +a1)+(ν̂∗0 +a0)(ν̂∗1 +a1)K

− a0b1+a1b0+a0a1(T+D)
a0+a1+a0a1K

=
[(ν̂∗0 +a0)b1+(ν̂∗1 +a1)b0+(ν̂∗0 +a0)(ν̂∗1 +a1)(T+D)](a0+a1+a0a1K)

[(ν̂∗0 +a0)+(ν̂∗1 +a1)+(ν̂∗0 +a0)(ν̂∗1 +a1)K](a0+a1+a0a1K)

− [(ν̂∗0 +a0)+(ν̂∗1 +a1)+(ν̂∗0 +a0)(ν̂∗1 +a1)K][a0b1+a1b0+a0a1(T+D)]

[(ν̂∗0 +a0)+(ν̂∗1 +a1)+(ν̂∗0 +a0)(ν̂∗1 +a1)K](a0+a1+a0a1K)

= R1
R2 ,

(174)

where

R1=
[(

ν̂∗
0 +a0

)
b1+
(

ν̂∗
1 +a1

)
b0

+
(

ν̂∗
0 +a0

)(
ν̂∗

1 +a1

)
(T+D)

]
(a0+a1+a0a1K)

−
[(

ν̂∗
0 +a0

)
+
(

ν̂∗
1 +a1

)
+
(

ν̂∗
0 +a0

)(
ν̂∗

1 +a1

)
K
]
[a0b1+a1b0+a0a1(T+D)],

(175)

and

R2=
[(

ν̂∗
0 +a0

)
+
(

ν̂∗
1 +a1

)
+
(

ν̂∗
0 +a0

)(
ν̂∗

1 +a1

)
K
]
(a0+a1+a0a1K).

. . . (176)

Given the values of a0,a1, ν̂∗
0 , ν̂∗

1 , and K, it is easy to see
that R2 > 0. Hence, to calculate the value of Eq. (174), it
is enough to estimate the value of Eq. (175). That is,

R1=
[(

ν̂∗
0 +a0

)
b1+
(

ν̂∗
1 +a1

)
b0

+
(

ν̂∗
0 +a0

)(
ν̂∗

1 +a1

)
(T+D)

]
(a0+a1+a0a1K)

−
[(

ν̂∗
0 +a0

)
+
(

ν̂∗
1 +a1

)
+
(

ν̂∗
0 +a0

)(
ν̂∗

1 +a1

)
K
]
[a0b1+a1b0+a0a1(T+D)]

=a0ν̂∗
1

[(
ν̂∗

0 +a0

)
(G(b1)+D)−(b1−b0)

]
+a1ν̂∗

0

[(
ν̂∗

1 +a1

)
(G(b0)+D)+(b1−b0)

]
.

. (177)

Given the values of a0,a1,b0,b1, ν̂∗
0 , ν̂∗

1 ,G(p),D, and as-
suming A3, it is trivial that Eq. (177) is non-negative.
Moreover,

R1=a0ν̂∗
1

[(
ν̂∗

0 +a0

)
(G(b1)+D)−(b1−b0)

]
+a1ν̂∗

0

[(
ν̂∗

1 +a1

)
(G(b0)+D)+(b1−b0)

]
≥a1ν̂∗

0

[(
ν̂∗

1 +a1

)
(G(b0)+D)+(b1−b0)

]
≥a1ν̂∗

0

(
ν̂∗

1 +a1

)
(G(b0)+D)

≥a2
1ν̂∗

0 (G(b0)+D)≥a2
1ν̂∗

0 G(b0)>0.

. . . . (178)

And since R1 > 0, by Eq. (178), then

lim
β→0

p∗(β )− pt > 0, . . . . . . . . . (179)

which proves inequality (21).

Now, we establish inequality (22):

p∗(β ) < pc(β ) para todo β ∈ (0,1].

In order to do that, we introduce the following notation:

ν∗
i = ν∗

i (β ), i = 0,1.

From Eqs. (72) and (73) it’s easy to see that the following
inequality hold for all β ∈ (0,1]:

ν∗
i <

1
K

, i = 0,1. . . . . . . . . . . (180)

Now, we compute the difference

(pc−p∗)(β )

=
( 1

K +a0)b1+( 1
K +a1)b0+[(1−β ) 1

K +a0]( 1
K +a1)(T+D)

( 1
K +a0)+( 1

K +a1)+[(1−β ) 1
K +a0]( 1

K +a1)K

−(ν∗0 +a0)b1+(ν∗1 +a1)b0+[(1−β )ν∗0 +a0](ν∗1 +a1)(T+D)

(ν∗0 +a0)+(ν∗1 +a1)+[(1−β )ν∗0 +a0](ν∗1 +a1)K

= S1
S2 ,

(181)

where

S1 = {( 1
K +a0)b1+( 1

K +a1)b0+[(1−β ) 1
K +a0]( 1

K +a1)(T+D)}·
·{(ν∗

0 +a0)+(ν∗
1 +a1)+[(1−β )ν∗

0 +a0](ν∗
1 +a1)K}

−{( 1
K +a0)+( 1

K +a1)+[(1−β ) 1
K +a0]( 1

K +a1)K}·
·{(ν∗

0 +a0)b1+(ν∗
1 +a1)b0+[(1−β )ν∗

0 +a0](ν∗
1 +a1)(T+D)},

. . . . . . . . . . . . . . . . . (182)

and
S2={( 1

K +a0)+( 1
K +a1)+[(1−β ) 1

K +a0]( 1
K +a1)K}·

·{(ν∗
0 +a0)+(ν∗

1 +a1)+[(1−β )ν∗
0 +a0](ν∗

1 +a1)K}.
(183)

For any fixed values of a0,a1,β ,ν∗
0 ,ν∗

1 , and K, it is appar-
ent that S2 > 0. Because of that, in order to find the value
of Eq. (181), it suffices to calculate the value of Eq. (182).
So,

S1={[(1−β ) 1
K +a0](ν∗

0 +a0)( 1
K +a1)

−[(1−β )ν∗
0 +a0](ν∗

1 +a1)( 1
K +a0)}(G(b1)+D)

+{[(1−β ) 1
K +a0](ν∗

1 +a1)( 1
K +a1)

−[(1−β )ν∗
0 +a0](ν∗

1 +a1)( 1
K +a1)}(G(b0)+D)

+[(ν∗
1 +a1)( 1

K +a0)−(ν∗
0 +a0)( 1

K +a1)](b1−b0)

=X1(G(b1)+D)+X2(G(b0)+D)+X3(b1−b0),

. (184)

where

X1 =
[
(1−β )

1
K

+a0

]
(ν∗

0 +a0)
(

1
K

+a1

)
− [(1−β )ν∗

0 +a0] (ν∗
1 +a1)

(
1
K

+a0

)
,

(185)
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X2 =
[
(1−β )

1
K

+a0

]
(ν∗

1 +a1)
(

1
K

+a1

)
− [(1−β )ν∗

0 +a0] (ν∗
1 +a1)

(
1
K

+a1

) (186)

and

X3 =(ν∗
1 +a1)

(
1
K

+a0

)
− (ν∗

0 +a0)
(

1
K

+a1

)
.

. . . . . . (187)

Now, for any given values of a0,a1,β ,ν∗
0 ,ν∗

1 ,K, and
Eq. (180), one finds

X2 =
[
(1−β )

1
K

+a0

]
(ν∗

1 +a1)
(

1
K

+a1

)
− [(1−β )ν∗

0 +a0] (ν∗
1 +a1)

(
1
K

+a1

)
=(1−β )

(
1
K
−ν∗

0

)
(ν∗

1 +a1)
(

1
K

+a1

)
≥ 0

(188)

for all β ∈ (0,1].

Now, we are going to show that X1 > 0 for all β ∈ (0,1].
Plugging Eq. (72) in X1, we obtain

X1=[(1−β ) 1
K +a0](ν∗

0 +a0)( 1
K +a1)

−[(1−β )ν∗
0 +a0]

(
(1−β )ν∗0 +a0

1+[(1−β )ν∗0 +a0]K
+a1

)
( 1

K +a0)

=
[(1−β ) 1

K +a0](ν∗0 +a0)( 1
K +a1){1+[(1−β )ν∗0 +a0]K}

1+[(1−β )ν∗0 +a0]K

− [(1−β )ν∗0 +a0][(1−β )ν∗0 +a0+a1{1+[(1−β )ν∗0 +a0]K}]( 1
K +a0)

1+[(1−β )ν∗0 +a0]K

= T1
T2 ,

(189)

where
T 1=[(1−β ) 1

K +a0](ν∗
0 +a0)( 1

K +a1){1+[(1−β )ν∗
0 +a0]K}

−[(1−β )ν∗
0 +a0][(1−β )ν∗

0 +a0

+a1{1+[(1−β )ν∗
0 +a0]K}]( 1

K +a0),
(190)

and

T2 = 1+[(1−β )ν∗
0 +a0]K. . . . . . . (191)

For any fixed values of a0,β ,ν∗
0 , and K, it is transparent

that T 2 > 0. Therefore, to compute the value of Eq. (189),
we need to calculate the value of T 1:

T 1=(1−β )2( 1
K +a1)( 1

K −ν∗
0)a0Kν∗

0 +(1−β )[( 1
K +a1)(ν∗

0 +a0) 1
K

+( 1
K +a1)(ν∗

0 +a0)( 1
K +ν∗

0)a0K

−( 1
K +a0)a1ν∗

0−2( 1
K +a0)(1+a1K)a0ν∗

0 ]
+( 1

K +a0)a0[( 1
K +a1)Kν∗

0−a1]
=(1−β )2Y1+(1−β )Y2+( 1

K +a0)a0Y3,

(192)

where

Y1 =
(

1
K

+a1

)(
1
K
−ν∗

0

)
a0Kν∗

0 , . . . (193)

Y2=( 1
K +a1)(ν∗

0 +a0) 1
K +( 1

K +a1)(ν∗
0 +a0)( 1

K +ν∗
0)a0K

−( 1
K +a0)a1ν∗

0−2( 1
K +a0)(1+a1K)a0ν∗

0 ,
(194)

and

Y3 =
(

1
K

+a1

)
Kν∗

0 −a1. . . . . . . . (195)

For any fixed values of a0,a1,ν∗
0 ,K, and Eq. (180), one

concludes that Y1 > 0, and Y3 = Y3(β ) strictly decreases
by β , since ν∗

0 = ν∗
0 (β ) is strictly decreasing with respect

to β , and
( 1

K +a1
)

K > 0. Thus,

Y3 =Y3(β ) ≥ Y3(1) =
(

1
K

+a1

)
Kν∗

0 (1)−a1

=

[
(1+a1K)2 − (2+a1K)a1K

]
a0

1+2a0K +a1K +a0a1K2

=
a0

1+2a0K +a1K +a0a1K2 > 0.

(196)

Then, Y3 > 0 for all β ∈ (0,1].

Now, we are going to show that Y2 > 0 for all β ∈ (0,1]:

Y2=( 1
K +a1)(ν∗

0 +a0) 1
K +( 1

K +a1)(ν∗
0 +a0)( 1

K +ν∗
0)a0K

−( 1
K +a0)a1ν∗

0−2( 1
K +a0)(1+a1K)a0ν∗

0

=
[
( 1

K +a1)a0Kν∗
0 +
(

1
K2 −a0a1

)]
ν∗

0

+( 1
K +a0)( 1

K +a1)( 1
K −ν∗

0)a0K

=Z1ν∗
0 +Z2,

(197)

where

Z1 =
(

1
K

+a1

)
a0Kν∗

0 +
(

1
K2 −a0a1

)
. (198)

and

Z2 =
(

1
K

+a0

)(
1
K

+a1

)(
1
K
−ν∗

0

)
a0K. (199)

Given the values of a0,a1,ν∗
0 ,K, and Eq. (180), one has

that Z2 > 0 for all β ∈ (0,1], and Z1 = Z1(β ) is strictly
decreasing with respect to β , because ν∗

0 (β ) strictly de-
creases by β ,and (a1 + 1

K )a0K > 0. Thus,

Z1=Z1(β )≥Z1(1)=( 1
K +a1)a0Kν∗

0 (1)+
(

1
K2 −a0a1

)
=( 1

K +a1)a0K a0+a1+a0a1K
1+2a0K+a1K+a0a1K2 +

(
1

K2 −a0a1

)
=

a2
0

1+2a0K+a1K+a0a1K2 + 1
K2 >0.

. (200)

Then Z1 > 0 for all β ∈ (0,1], which proves that Y2 =
ν∗

0 Z1 +Z2 > 0 for all β ∈ (0,1].

Now, since Y1,Y2,Y3 > 0, we have that

T1 = (1−β )2Y1 +(1−β )Y2 +
(

1
K

+a0

)
a0Y3 > 0

. . . . . . . . . . . . . . . . . . (201)

which proves that

X1 =
T1
T2

> 0. . . . . . . . . . . . . (202)

Since X1 > 0 and X2 ≥ 0, then, if X3 ≥ 0 for β0 ∈ (0,1],
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we have that

S1=X1(G(b1)+D)+X2(G(b0)+D)+X3(b1−b0)>0, . . (203)

for β0 ∈ (0,1].

On the other hand, if X3 < 0 for β0 ∈ (0,1], then,

S1=X1(G(b1)+D)+X2(G(b0)+D)+X3(b1−b0)

=[(1−β ) 1
K +a0](ν∗

0 +a0)( 1
K +a1)(G(b1)+D)

−[(1−β )ν∗
0 +a0](ν∗

1 +a1)( 1
K +a0)(G(b1)+D)

+X2(G(b0)+D)+X3(b1−b0)

=(1−β )[ 1
K (ν∗

0 +a0)( 1
K +a1)

−ν∗
0(ν∗

1 +a1)( 1
K +a0)](G(b1)+D)

−a0[(ν∗
1 +a1)( 1

K +a0)−(ν∗
0 +a0)( 1

K +a1)](G(b1)+D)

+X2(G(b0)+D)+X3(b1−b0)

=(1−β )X4(G(b1)+D)−a0X3(G(b1)+D)

+X2(G(b0)+D)+X3(b1−b0)

=(1−β )X4(G(b1)+D)−X3[a0(G(b1)+D)−(b1−b0)]

+X2(G(b0)+D),

(204)

where

X4= 1
K (ν∗

0 +a0)( 1
K +a1)−ν∗

0(ν∗
1 +a1)( 1

K +a0). . . . (205)

Applying inequality Eq. (180) to Eq. (205), we see that

X4= 1
K (ν∗

0 +a0)( 1
K +a1)−ν∗

0(ν∗
1 +a1)( 1

K +a0)
> 1

K (ν∗
0 +a0)(ν∗

1 +a1)−ν∗
0(ν∗

1 +a1)( 1
K +a0)

=a0(ν∗
1 +a1)( 1

K −ν∗
0)>0.

. . . (206)

Thus, X4 > 0 for β0 ∈ (0,1], and since X2 ≥ 0, X3 < 0 and
we assume A3, we have that

S1=(1−β )X4(G(b1)+D)−X3[a0(G(b1)+D)−(b1−b0)]

+X2(G(b0)+D)

≥−X3[a0(G(b1)+D)−(b1−b0)]>0,

. (207)

for β0 ∈ (0,1].

Therefore, S1 > 0 for all β ∈ (0,1], that is,

(pc − p∗)(β ) =
S1
S2

> 0, . . . . . . . . (208)

which finally proves Eq. (22). The proof of the theorem
is complete.

C.2. Proof of Theorem 8

Theorem 8. The functions π∗
1 (β ) and πc

1(β ) are strictly
decreasing with respect to β ∈ (0,1]. Moreover, the fol-
lowing inequalities hold:

π∗
1 (1) > πc

1(1) . . . . . . . . . . . . (209)

and

lim
β→0

π∗
1 (β ) < lim

β→0
πc

1(β ). . . . . . . . . (210)

Proof. First, we are going to show that π∗
1 and πc

1 strictly
decrease by β .

The function π∗
1 is differentiable with respect to β and

π∗
1
′ =
(

p∗q∗1 −
1
2

a1q∗1
2 −b1q∗1

)′

=p∗′q∗1 + p∗q∗1
′ −a1q∗1q∗1

′ −b1q∗1
′

=p∗′q∗1 +(p∗ −a1q∗1 −b1)q∗1
′

=p∗′q∗1 +
(

p∗−b1 −a1
p∗ −b1

ν∗
1 +a1

)
q∗1

′

=p∗′q∗1 +
ν∗

1
ν∗

1 +a1
(p∗ −b1)q∗1

′.

. (211)

Given the values of a1,b1,ν∗
1 , p∗,q∗1, p∗′ and q∗1

′, it’s easy
to see that

π∗
1
′ = p∗′q∗1 +

ν∗
1

ν∗
1 +a1

(p∗ −b1)q∗1
′ < 0. . . (212)

Similarly,

πc
1
′ = pc′qc

1 +
1
K

1
K +a1

(pc −b1)qc
1
′ < 0. . . (213)

Because of that, π∗
1 and πc

1 strictly decrease with respect
to β ∈ (0,1].

Now consider the difference of the functions π∗
1 and πc

1 as
follows:

πc
1−π∗

1 =(pcqc
1− 1

2 a1qc
1

2−b1qc
1)−(p∗q∗1− 1

2 a1q∗1
2−b1q∗1)

=(pc−b1− 1
2 a1qc

1)qc
1−(p∗−b1− 1

2 a1q∗1)q∗1

=
[
( 1

K +a1) pc−b1
1
K +a1

− 1
2 a1qc

1

]
qc

1

−
[
(ν∗

1 +a1) p∗−b1
ν∗1 +a1

− 1
2 a1q∗1

]
q∗1

=( 1
K + 1

2 a1)qc
1

2−(ν∗
1 + 1

2 a1)q∗1
2.

(214)

From Eq. (127) we have that

q∗1=
−(b1−b0)+[(1−β )ν∗0 +a0](G(b1)+D)

(ν∗0 +a0)+(ν∗1 +a1){1+[(1−β )ν∗0 +a0]K}
=

[(1−β )ν∗0 +a0](G(b1)+D)−(b1−b0)

(ν∗0 +a0)+(ν∗1 +a1)+[(1−β )ν∗0 +a0](ν∗1 +a1)K
,

. . . (215)

and similarly to Eqs. (127) and (215),

qc
1=

[(1−β ) 1
K +a0](G(b1)+D)−(b1−b0)

( 1
K +a0)+( 1

K +a1)+[(1−β ) 1
K +a0]( 1

K +a1)K
. . . (216)

By substituting the expression of ν∗
1 given by Eq. (72) in

Eq. (215) we have that

q∗1=
[(1−β )ν∗0 +a0](G(b1)+D)−(b1−b0)

(ν∗0 +a0)+(ν∗1 +a1)+[(1−β )ν∗0 +a0](ν∗1 +a1)K

=
[(1−β )ν∗0 +a0](G(b1)+D)−(b1−b0)

(ν∗0 +a0+a1)+(1+a1K)[(1−β )ν∗0 +a0]
.

. . . (217)

By Eq. (72),

ν∗
1 =

(1−β )ν∗
0 +a0

1+
[
(1−β )ν∗

0 +a0
]

K
,
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therefore,

ν∗
1 +

1
2

a1 =
(1−β )ν∗

0 +a0

1+
[
(1−β )ν∗

0 +a0
]

K
+

1
2

a1

=
1
2 a1 +

(
1+ 1

2 a1K
)
[(1−β )ν∗

0 +a0]
1+
[
(1−β )ν∗

0 +a0
]

K
.

(218)

On the other hand, from the expression for qc
1 obtained

from Eq. (216) we have that

qc
1=

[(1−β ) 1
K +a0](G(b1)+D)−(b1−b0)

( 1
K +a0)+( 1

K +a1)+[(1−β ) 1
K +a0]( 1

K +a1)K

=
{[(1−β ) 1

K +a0](G(b1)+D)−(b1−b0)}K

(1+a0K)+(1+a1K)[(2−β )+a0K] .

. . . (219)

Plugging Eqs. (217), (218), and (219) in Eq. (214) we
deduce

πc
1−π∗

1 =( 1
K + 1

2 a1)qc
1

2−(ν∗
1 + 1

2 a1)q∗1
2

=( 1
K + 1

2 a1)
({[(1−β ) 1

K +a0](G(b1)+D)−(b1−b0)}K

(1+a0K)+(1+a1K)[(2−β )+a0K]

)2

−
(

1
2 a1+(1+ 1

2 a1K)[(1−β )ν∗0 +a0]
1+[(1−β )ν∗0 +a0]K

)
·

·
(

[(1−β )ν∗0 +a0](G(b1)+D)−(b1−b0)

(ν∗0 +a0+a1)+(1+a1K)[(1−β )ν∗0 +a0]

)2

= 1
2 K(2+a1K)

(
[(1−β ) 1

K +a0](G(b1)+D)−(b1−b0)
(1+a0K)+(1+a1K)[(2−β )+a0K]

)2

− 1
2

(
a1+(2+a1K)[(1−β )ν∗0 +a0]

1+[(1−β )ν∗0 +a0]K

)
·

·
(

[(1−β )ν∗0 +a0](G(b1)+D)−(b1−b0)

(ν∗0 +a0+a1)+(1+a1K)[(1−β )ν∗0 +a0]

)2

.

(220)

Then, to prove the inequalities Eqs. (33) and (34) the fol-
lowing conditions has to be met:

πc
1(1)−π∗

1(1) = (πc
1 −π∗

1 )(1) < 0 . . . . (221)

and
lim

β→0
πc

1(β )− lim
β→0

π∗
1 (β )= lim

β→0
(πc

1−π∗
1 )(β )>0. . . . . (222)

Evaluating the expression of ν∗
0 given by Eq. (69) for β =

1 and using the notation ν∗
0 = ν∗

0 (1), one has

ν∗
0 =ν∗

0 (1)

= 2(a0+a1+a0a1K)

(1+2a0K+a1K+a0a1K2)+

√
(1+2a0K+a1K+a0a1K2)2

=
a0 +a1 +a0a1K

1+2a0K +a1K +a0a1K2 .

(223)

Now, we evaluate Eq. (220) for β = 1 to obtain

(πc
1−π∗

1 )(1)= 1
2 K(2+a1K)

(
[a0](G(b1)+D)−(b1−b0)

(1+a0K)+(1+a1K)[1+a0K]

)2

− 1
2

(
a1+(2+a1K)[a0]

1+[a0]K

)(
[a0](G(b1)+D)−(b1−b0)

(ν∗0 +a0+a1)+(1+a1K)[a0]

)2

= 1
2

[a0(G(b1)+D)−(b1−b0)]
2

1+a0K
K

2+2a0K+a1K+a0a1K2

− 1
2

[a0(G(b1)+D)−(b1−b0)]
2

1+a0K
2a0+a1+a0a1K

(ν∗0 +2a0+a1+a0a1K)2

=U1
V1
W1

,

(224)

where

U1= 1
2

[a0(G(b1)+D)−(b1−b0)]
2

1+a0K , . . . . . . . . (225)

V1=K(ν∗
0 +2a0+a1+a0a1K)2

−(2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)
. . (226)

and

W1=(2+2a0K+a1K+a0a1K2)(ν∗
0 +2a0+a1+a0a1K)2

. (227)

Given the values of a0,a1,ν∗
0 , and K, it isn’t difficult to

see that U1 > 0 and W1 > 0. Hence, to prove Eq. (221)
it is enough to show that V1 < 0. Indeed, plugging the
expression of ν∗

0 given by Eq. (223) in Eq. (226), we have
that

V1=K(ν∗
0 +2a0+a1+a0a1K)2

−(2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)

=K
(

a0+a1+a0a1K
1+2a0K+a1K+a0a1K2 +2a0+a1+a0a1K

)2

−(2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)

=
K[a0+a1+a0a1K+(2a0+a1+a0a1K)(1+2a0K+a1K+a0a1K2)]2

(1+2a0K+a1K+a0a1K2)2

− (2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)
(1+2a0K+a1K+a0a1K2)2 ·

·(1+2a0K+a1K+a0a1K2)2

= P
Q ,

(228)

where
P=K[a0+a1+a0a1K+

+(2a0+a1+a0a1K)(1+2a0K+a1K+a0a1K2)]2

−(2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)·
·(1+2a0K+a1K+a0a1K2)2

,

. . (229)

and

Q =
(
1+2a0K +a1K +a0a1K2)2 . . . . (230)

For any fixed values of a0,a1, and K, it is clear that Q > 0,
and

P<K[(2a0+a1+a0a1K)

+(2a0+a1+a0a1K)(1+2a0K+a1K+a0a1K2)]2

−(2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)·
·(1+2a0K+a1K+a0a1K2)2

=−(2a0+a1+a0a1K)(2+2a0K+a1K+a0a1K2)<0.

. (231)

Therefore, P < 0, which shows that

V1 =
P
Q

< 0. . . . . . . . . . . . . (232)

Then since U1 > 0 and W1 > 0, we have that

(πc
1 −π∗

1 )(1) =U1
V1

W1
< 0, . . . . . . (233)

which proves Eq. (221).

Now, we need only to prove Eq. (222). Using the notation
ν̂∗

0 = lim
β→0

ν∗
0 (β ) given by Eq. (171), from Eq. (220) we
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have that
lim

β→0
(πc

1−π∗
1 )(β )

= 1
2 K(2+a1K)

(
[ 1

K +a0](G(b1)+D)−(b1−b0)
(1+a0K)+(1+a1K)[2+a0K]

)2

− 1
2

(
a1+(2+a1K)[ν̂∗0 +a0]

1+[ν̂∗0 +a0]K

)(
[ν̂∗0 +a0](G(b1)+D)−(b1−b0)

(ν̂∗0 +a0+a1)+(1+a1K)[ν̂∗0 +a0]

)2

= 1
2 K(2+a1K)

(
( 1

K +a0)(G(b1)+D)−(b1−b0)
(1+a1K)+(1+a0K)(2+a1K)

)2

− 1
2

1
1+(ν̂∗0 +a0)K

[(ν̂∗0 +a0)(G(b1)+D)−(b1−b0)]
2

a1+(2+a1K)(ν̂∗0 +a0)
= 1

2
V2
W2

,

(234)

where

V2=K(2+a1K)[( 1
K +a0)(G(b1)+D)−(b1−b0)]2·

·
[
1+
(

ν̂∗
0 +a0

)
K
][

a1+(2+a1K)
(

ν̂∗
0 +a0

)]
−[(1+a1K)+(1+a0K)(2+a1K)]2·

·
[(

ν̂∗
0 +a0

)
(G(b1)+D)−(b1−b0)

]2
,

. . (235)

and
W2=[(1+a1K)+(1+a0K)(2+a1K)]2·

·
[
1+
(

ν̂∗
0 +a0

)
K
][

a1+(2+a1K)
(

ν̂∗
0 +a0

)]
.

. . . (236)

For arbitrary fixed values of a0,a1, ν̂∗
0 , and K, it is evident

that W2 > 0. Hence, to prove Eq. (222) it lacks only to
show that V2 > 0. Indeed,

V2=
[
(1+a1K)+

(
ν̂∗

0 +a0

)
(2+a1K)K

]2·
·[( 1

K +a0)(G(b1)+D)−(b1−b0)]2

−[(1+a1K)+( 1
K +a0)(2+a1K)K]2·

·
[(

ν̂∗
0 +a0

)
(G(b1)+D)−(b1−b0)

]2
−[( 1

K +a0)(G(b1)+D)−(b1−b0)]2
.

. . . . . (237)

Now introduce the following notation:

η = 1+a1K > 0, . . . . . . . . . . (238)

ξ = K (1+η) = K (2+a1K) > 0, . . . . (239)

Z =η +a0ξ = (1+a1K)
+a0K (2+a1K) > 0,

. . . . . . . (240)

G1 = G(b1)+D > 0 . . . . . . . . . (241)

and
G3 = a0G1− (b1−b0) =

= a0 (G(b1)+D)− (b1 −b0) > 0.
. . (242)

Based on that, we can rewrite Eq. (237) as follows:

V2=
(

ν̂∗
0 ξ+Z

)2
( 1

K G1+G3)2

−( 1
K ξ+Z )2

(
ν̂∗

0 G1+G3
)2−( 1

K G1+G3)2

=
(

1
K2 −ν̂∗

0
2
)
(Z 2G12−ξ 2G32)− 1

K G1( 1
K G1+2G3)

+2Z G3
(

1
K −ν̂∗

0

)
(Z G1−ξ G3)−G32

+2 1
K ν̂∗

0 ξ G1
(

1
K −ν̂∗

0

)
(Z G1−ξ G3)

=P1+Q1+R1,

(243)

where

P1=
(

1
K2 −ν̂∗

0
2
)
(Z 2G12−ξ 2G32)− 1

K G1( 1
K G1+2G3), (244)

Q1=2Z G3
(

1
K −ν̂∗

0

)
(Z G1−ξ G3)−G32 . . . . . (245)

and

R1=2 1
K ν̂∗

0 ξ G1
(

1
K −ν̂∗

0

)
(Z G1−ξ G3). . . . . . (246)

Now, we are going to show that

Z G1−ξ G3 > 0. . . . . . . . . . . (247)

Using Eqs. (240) and (242), we have that

Z G1−ξ G3=(η+a0ξ )G1−ξ (a0G1−(b1−b0))

=ηG1+ξ (b1−b0)≥ηG1>0,
. . . (248)

which proves Eq. (247).
Thus, given the values of ν̂∗

0 ,K, Eqs. (239), (241), (180),
and (247), we can conclude that R1 > 0.
Now,

Q1=2Z G3
(

1
K −ν̂∗

0

)
(Z G1−ξ G3)−G32

=
[
2Z
(

1
K −ν̂∗

0

)
(Z G1−ξ G3)−G3

]
G3,

. . . . (249)

and using Eq. (242) we can rewrite Eq. (249) as follows:

Q1=
{

2Z
(

1
K −ν̂∗

0

)
(Z G1−ξ [a0G1−(b1−b0)])

−[a0G1−(b1−b0)]
}

G3

=
{[

2Z (Z −a0ξ )
(

1
K −ν̂∗

0

)
−a0

]
G1

+
[
2ξZ

(
1
K −ν̂∗

0

)
+1
]
(b1−b0)

}
G3.

. . . (250)

Moreover, from Eq. (240), we have that

η = Z −a0ξ = 1+a1K. . . . . . . . (251)

Substituting Eq. (251) in Eq. (250) we have that

Q1=
{[

2Z (1+a1K)
(

1
K −ν̂∗

0

)
−a0

]
G1

+
[
2ξZ

(
1
K −ν̂∗

0

)
+1
]
(b1−b0)

}
G3

=
{[

2a1KZ
(

1
K −ν̂∗

0

)
+2Z

(
1
K −ν̂∗

0

)
−a0

]
G1

+
[
2ξZ

(
1
K −ν̂∗

0

)
+1
]
(b1−b0)

}
G3

=[(V3+W3)G1+U3(b1−b0)]G3,

. . . (252)

where,

V3 = 2a1KZ

(
1
K
− ν̂∗

0

)
, . . . . . . . (253)
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W3 = 2Z

(
1
K
− ν̂∗

0

)
−a0, . . . . . . . (254)

and

U3 = 2ξZ

(
1
K
− ν̂∗

0

)
+1. . . . . . . . (255)

For any given values of a1,K,ξ ,and Z , one easily de-
duces that V3 > 0 and U3 > 0. Now, we are going to
show that W3 > 0. In order to do that, we first substitute
Eq. (240) in Eq. (254) to get:

W3=2[(1+a1K)+a0K(2+a1K)]
(

1
K −ν̂∗

0

)
−a0

>a0K(2+a1K)
(

1
K −ν̂∗

0

)
−a0

=a0

[
K(2+a1K)

(
1
K −ν̂∗

0

)
−1
]
.

. . . . (256)

Now, making use of the expression of ν̂∗
0 given by

Eq. (171) we have that
1
K −ν̂∗

0

= 1
K − 2(a0+a1+a0a1K)

(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2

+4(2K+a1K2)(a0+a1+a0a1K)

=

√
(2a0K+a0a1K2)2

+4(2K+a1K2)(a0+a1+a0a1K)−a1K(2+a0K)

K

[
(2a0K+a0a1K2)+

√
(2a0K+a0a1K2)2

+4(2K+a1K2)(a0+a1+a0a1K)
] .

. . . . . . . . . . . . . . . . . . . (257)

Now plugging Eq. (257) in Eq. (256) we get:

W3 >a0

[
K (2+a1K)

(
1
K
− ν̂∗

0

)
−1
]

=a0
V4

W4
,

. . (258)

where
V4=−K(2+a1K)[a0(1+a1K)+2a1]+

(1+a1K)
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)
(259)

and
W4=(2a0K+a0a1K2)+√

(2a0K+a0a1K2)2
+4(2K+a1K2)(a0+a1+a0a1K).

(260)

For any values of a0,a1, and K, we see that W4 > 0; thus,
to compute the value of Eq. (258) we need only to esti-
mate the value of V4. Suppose that

V4 ≤ 0. . . . . . . . . . . . . . . . (261)

Then, we would have

(1+a1K)
√

(2a0K+a0a1K2)2
+4(2K+a1K2)(a0+a1+a0a1K)

≤K(2+a1K)[a0(1+a1K)+2a1].
(262)

Both sides of Eq. (262) are positive, then, squaring them
we have that

(1+a1K)2
[
(2a0K+a0a1K2)2

+4(2K+a1K2)(a0+a1+a0a1K)
]

≤K2(2+a1K)2[a0(1+a1K)+2a1]2.
(263)

Thus,

(1+a1K)2[a2
0K2(2+a1K)2+4K(2+a1K)(a0+a1+a0a1K)]

≤K2(2+a1K)2[a0(1+a1K)+2a1]2,
(264)

which leads to
K(2+a1K)(1+a1K)2[a2

0K(2+a1K)+4(a0+a1+a0a1K)]
≤K2(2+a1K)2[a0(1+a1K)+2a1]2,

. (265)

where K (2+a1K) > 0. Therefore,

(1+a1K)2[a2
0K(2+a1K)+4(a0+a1+a0a1K)]

≤K(2+a1K)[a0(1+a1K)+2a1]2.
. . . . (266)

Now expanding the squares we arrive at:

(1+a1K)2[a2
0K(2+a1K)+4(a0+a1+a0a1K)]

≤K(2+a1K)[a2
0(1+a1K)2+4a0a1(1+a1K)+4a2

1],
. . (267)

and by distributing some terms:

a2
0K(2+a1K)(1+a1K)2+4(a0+a1+a0a1K)(1+a1K)2

≤a2
0K(2+a1K)(1+a1K)2

+4a0a1K(2+a1K)(1+a1K)+4a2
1K(2+a1K).

. (268)

Thus
4(a0+a1+a0a1K)(1+a1K)2

≤4a0a1K(2+a1K)(1+a1K)+4a2
1K(2+a1K),

. . . . (269)

and distributing again:

4(a0+a1)(1+a1K)2+4a0a1K(1+a1K)2

≤4a0a1K(1+a1K)+4a0a1K(1+a1K)2+4a2
1K(2+a1K),

. (270)

which leads to

4 (a0 +a1)(1+a1K)2

≤ 4a0a1K (1+a1K)+4a2
1K (2+a1K) .

. . (271)

Finally,

(a0 +a1)(1+a1K)2

≤ a0a1K (1+a1K)+a2
1K (2+a1K) ,

. . . (272)

and by distributing some terms and expanding he squares
again we deduce that

(a0 +a1)
(
1+2a1K +a2

1K2)
≤ a0a1K (1+a1K)+a2

1K (1+a1K)+a2
1K,

(273)

thus,

(a0 +a1)
(
1+2a1K +a2

1K2)
≤ (a0 +a1)a1K (1+a1K)+a2

1K,
. . . . (274)

which leads to

(a0 +a1)
(
1+2a1K +a2

1K2)
≤ (a0 +a1)

(
a1K +a2

1K2)+a2
1K.

. . . . (275)

Hence,

(a0 +a1)(1+a1K) ≤ a2
1K, . . . . . . (276)
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which finally leads to

a0 +a1 +a0a1K +a2
1K ≤ a2

1K, . . . . (277)

which is impossible since a0 +a1 +a0a1K > 0.
On a base of that, we conclude that

V4 > 0, . . . . . . . . . . . . . . . (278)

so

W3 > a0
V4

W4
> 0. . . . . . . . . . . . (279)

Now, since V3 > 0, W3 > 0, U3 > 0, and given the values
of b0,b1,G1 an G3, we have that

Q1 =[(V3 +W3)G1+U3(b1 −b0)]G3 > 0. (280)

So we need only to estimate the value of P1:

P1=
(

1
K2 −ν̂∗

0
2
)
(Z 2G12−ξ 2G32)− 1

K G1( 1
K G1+2G3)

=
(

1
K Z G1+ 1

K ξ G3+ν̂∗
0 Z G1+ν̂∗

0 ξ G3
)(

1
K −ν̂∗

0

)
·

·(Z G1−ξ G3)− 1
K G1( 1

K G1+2G3).

(281)

By Eqs. (239), (242), and (251), we have that

ξ = K (2+a1K) > 2K, . . . . . . . . (282)

Z G1−ξ G3 =Z G1−ξ [a0G1− (b1 −b0)]
≥Z G1−a0ξ G1 = ηG1,

(283)

Z = η +a0ξ > η , . . . . . . . . . . (284)

and

ν̂∗
0 ξ G3 > 0. . . . . . . . . . . . . . (285)

Using inequalities Eqs. (282)–(285) in Eq. (281) we get:

P1>
(

1
K Z G1+2G3+ν̂∗

0 ηG1
)(

1
K −ν̂∗

0

)
ηG1

− 1
K G1( 1

K G1+2G3)
=
{[(

1
K Z +ν̂∗

0 η
)

ηG1+2ηG3
](

1
K −ν̂∗

0

)
− 1

K ( 1
K G1+2G3)

}
G1.

. (286)

Now making use of Eqs. (238), (240), and (282), we come
to

η = 1+a1K > 1 . . . . . . . . . . . (287)

and

Z = η +a0ξ > η +2a0K. . . . . . . . (288)

Then, applying inequalities Eqs. (287) and (288) to
Eq. (286) one gets:

P1>
{[(

1
K Z +ν̂∗

0 η
)

ηG1+2ηG3
](

1
K −ν̂∗

0

)
− 1

K ( 1
K G1+2G3)

}
G1

>
{[(

1
K (η+2a0K)+ν̂∗

0

)
G1+2ηG3

](
1
K −ν̂∗

0

)
− 1

K ( 1
K G1+2G3)

}
G1

=
{[(

1
K η+2a0+ν̂∗

0

)
G1+2ηG3

](
1
K −ν̂∗

0

)
− 1

K ( 1
K G1+2G3)

}
G1.

. (289)

Substituting the value of G3 given by Eq. (242) in

Eq. (289) we have:

P1>
{[(

1
K η+2a0+ν̂∗

0

)
G1+2ηG3

](
1
K −ν̂∗

0

)
− 1

K ( 1
K G1+2G3)

}
G1

=
{[(

1
K η+2a0+ν̂∗

0

)
G1+2η[a0G1−(b1−b0)]

](
1
K −ν̂∗

0

)
− 1

K{ 1
K G1+2[a0G1−(b1−b0)]}

}
G1

=
{[(

1
K η+2a0+2a0η+ν̂∗

0

)(
1
K −ν̂∗

0

)
− 1

K ( 1
K +2a0)

]
G1

+2
[

1
K −η

(
1
K −ν̂∗

0

)]
(b1−b0)

}
G1.

(290)

Next, we substitute the value of η given by Eq. (238) in
Eq. (290) to obtain:

P1>
{[(

1
K η+2a0+2a0η+ν̂∗

0

)(
1
K −ν̂∗

0

)
− 1

K ( 1
K +2a0)

]
G1

+2
[

1
K −η

(
1
K −ν̂∗

0

)]
(b1−b0)

}
G1

=
{[(

1
K (1+a1K)+2a0+2a0η+ν̂∗

0

)(
1
K −ν̂∗

0

)
− 1

K ( 1
K +2a0)

]
G1+2

[
1
K −(1+a1K)

(
1
K −ν̂∗

0

)]
(b1−b0)

}
G1

=
{[

(a1+2a0η)
(

1
K −ν̂∗

0

)
−ν̂∗

0

(
2a0+ν̂∗

0

)]
G1

+2
[
(1+a1K)ν̂∗

0−a1

]
(b1−b0)

}
G1

=[V5G1+2W5(b1−b0)]G1,

(291)

where

V5 = (a1 +2a0η)
(

1
K
− ν̂∗

0

)
− ν̂∗

0

(
2a0 + ν̂∗

0

)
(292)

and

W5 = (1+a1K) ν̂∗
0 −a1. . . . . . . . . (293)

Now, we only need to show that V5 > 0 and W5 > 0.

First, since ν∗
0 (β ) is strictly decreasing, we have ν̂∗

0 =
lim
β→0

ν∗
0 (β ) > ν∗

0 (1) = ν∗
0 , thus,

W5 = (1+a1K) ν̂∗
0 −a1 > (1+a1K)ν∗

0 −a1. (294)

Substituting the value of ν∗
0 given by Eq. (223) in

Eq. (294) we have that:

W5>(1+a1K)ν∗
0−a1

=(1+a1K)
(

a0+a1+a0a1K
1+2a0K+a1K+a0a1K2

)
−a1

=
(1+a1K)(a0+a1+a0a1K)−a1(1+2a0K+a1K+a0a1K2)

1+2a0K+a1K+a0a1K2

= V6
W6

,

. (295)

where
V6 =(1+a1K)(a0 +a1 +a0a1K)

−a1
(
1+2a0K +a1K +a0a1K2) . . (296)

and

W6 = 1+2a0K +a1K +a0a1K2. . . . . . (297)

Given the values of a0,a1 and K, it’s easy to see that W6 >
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0. Now we calculate the value of V6:

V6 =(1+a1K)(a0 +a1 +a0a1K)

−a1
(
1+2a0K +a1K +a0a1K2)

=a0 > 0.

. . (298)

Therefore, V6 > 0 and

W5 >
V6

W6
> 0. . . . . . . . . . . . . (299)

So we only lack showing that V5 > 0:

V5=(a1+2a0η)
(

1
K −ν̂∗

0

)
−ν̂∗

0

(
2a0+ν̂∗

0

)
=
[
(a1+a0η)

(
1
K −ν̂∗

0

)
−ν̂∗

0

(
a0+ν̂∗

0

)]
+a0

[
η
(

1
K −ν̂∗

0

)
−ν̂∗

0

]
=V7+a0W7,

(300)

where

V7 = (a1 +a0η)
(

1
K
− ν̂∗

0

)
− ν̂∗

0

(
a0 + ν̂∗

0

)
(301)

and

W7 = η
(

1
K
− ν̂∗

0

)
− ν̂∗

0 . . . . . . . . . (302)

Finally, we will demonstrate that V7 > 0 and W7 > 0. Sub-
stituting the value of η given by Eq. (238) in V7 we get:

V7=(a1+a0η)
(

1
K −ν̂∗

0

)
−ν̂∗

0

(
a0+ν̂∗

0

)
=[a1+a0(1+a1K)]

(
1
K −ν̂∗

0

)
−ν̂∗

0

(
a0+ν̂∗

0

)
= 1

K (a1+a0+a0a1K)−ν̂∗
0 (a1+2a0+a0a1K)−ν̂∗

0
2
.

. . (303)

Now, we use the relationship

(1−β )
(−2τ +a1τ2)ν2

0

+
(
β −2a0τ −β a1τ +a0a1τ2)ν0

− (a0 +a1 −a0a1τ) = 0,

given by Eq. (44), for τ =−K. Now by applying the limit
when β → 0, one obtains the following equality:

(2K+a1K2)ν̂∗
0

2
+(2a0K+a0a1K2)ν̂∗

0−(a0+a1+a0a1K)=0. (304)

Therefore,

(2K+a1K2)ν̂∗
0

2
+(2a0K+a0a1K2)ν̂∗

0−(a0+a1+a0a1K)

=
[

ν̂∗
0

2
+(a1+2a0+a0a1K)ν̂∗

0− 1
K (a0+a1+a0a1K)

+(1+a1K)ν̂∗
0

2−a1ν̂∗
0

]
K=0.

(305)

Since K > 0, we have that

ν̂∗
0

2
+(a1+2a0+a0a1K)ν̂∗

0− 1
K (a0+a1+a0a1K)

+(1+a1K)ν̂∗
0

2−a1ν̂∗
0 =0,

. . . (306)

thus,

(1+a1K) ν̂∗
0

2 −a1ν̂∗
0 =

1
K

(a0 +a1 +a0a1K)

− (a1 +2a0 +a0a1K) ν̂∗
0 − ν̂∗

0
2
.

(307)

Applying equality Eq. (307) to Eq. (303) we have that:

V7 =
1
K

(a0 +a1 +a0a1K)

− (a1 +2a0 +a0a1K) ν̂∗
0 − ν̂∗

0
2

=(1+a1K) ν̂∗
0

2 −a1ν̂∗
0

=
[
(1+a1K) ν̂∗

0 −a1

]
ν̂∗

0

=W5ν̂∗
0 .

. . . (308)

Now recalling that W5 > 0 and ν̂∗
0 > 0, we have:

V7 = W5ν̂∗
0 > 0. . . . . . . . . . . . (309)

So we only need to show that W7 > 0. To do this, we plug
the value of η given by Eq. (238) in W7 to get:

W7 =η
(

1
K
− ν̂∗

0

)
− ν̂∗

0

=(1+a1K)
(

1
K
− ν̂∗

0

)
− ν̂∗

0

=
1
K

(1+a1K)− (2+a1K) ν̂∗
0 .

. . . . (310)

Using relationship Eq. (304) we have that:

(2K+a1K2)ν̂∗
0

2
+(2a0K+a0a1K2)ν̂∗

0−(a0+a1+a0a1K)

=
{

(2+a1K)ν̂∗
0

2− 1
K a1+a0

[
(2+a1K)ν̂∗

0− 1
K (1+a1K)

]}
K.

(311)

Since K > 0, we have that:

(2+a1K)ν̂∗
0

2− 1
K a1+a0

[
(2+a1K)ν̂∗

0− 1
K (1+a1K)

]
=0, . (312)

which implies

(2+a1K)ν̂∗
0

2− 1
K a1=−a0

[
(2+a1K)ν̂∗

0− 1
K (1+a1K)

]
,. . (313)

As a0 > 0, one gets:

1
a0

[
(2+a1K)ν̂∗

0
2− 1

K a1

]
= 1

K (1+a1K)−(2+a1K)ν̂∗
0 . . . (314)

Now, applying equality Eq. (314) to Eq. (310), we deduce:

W7 =
1
K

(1+a1K)− (2+a1K) ν̂∗
0

=
1
a0

[
(2+a1K) ν̂∗

0
2 − 1

K
a1

]
=

U8

a0
,

. . . . (315)

where

U8 = (2+a1K) ν̂∗
0

2 − 1
K

a1. . . . . . . . (316)

Finally, let us suppose, on the contrary, that

U8 ≤ 0. . . . . . . . . . . . . . . (317)

Substituting the value of ν̂∗
0 , given by Eq. (171), in U8 we
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have:

U8 =(2+a1K) ν̂∗
0

2 − 1
K

a1

=
V9

W9
≤ 0,

. . . . . . . (318)

where

V9=(2+a1K)[2(a0+a1+a0a1K)]2− 1
K a1

[
(2a0K+a0a1K2)

+
√

(2a0K+a0a1K2)2+4(2K+a1K2)(a0+a1+a0a1K)
]2

,

(319)

and

W9=
[
(2a0K+a0a1K2)+√

(2a0K+a0a1K2)2
+4(2K+a1K2)(a0+a1+a0a1K)

]2

.

(320)

For any given values of a0,a1 and K, one has W9 > 0.
Therefore, Eq. (318) implies

V9 ≤ 0. . . . . . . . . . . . . . . . (321)

Hence

V9=(2+a1K)[2(a0+a1+a0a1K)]2− 1
K a1

[
(2a0K+a0a1K2)

+
√

(2a0K+a0a1K2)2
+4(2K+a1K2)(a0+a1+a0a1K)

]2

=2a0(2+a1K)

[
2a0+a1K(2 1

K +2a0+2a1+a0a1K)

−a1

√
K(2+a1K){a2

0K(2+a1K)+4[a1+a0(1+a1K)]}
]
≤0.

(322)

Since 2a0 (2+a1K) > 0, then, from Eq. (322) the follow-
ing condition must be met:

2a0+a1K(2 1
K +2a0+2a1+a0a1K)

−a1

√
K(2+a1K){a2

0K(2+a1K)+4[a1+a0(1+a1K)]}≤0.
(323)

Therefore,

2a0+a1K(2 1
K +2a0+2a1+a0a1K)

≤a1

√
K(2+a1K){a2

0K(2+a1K)+4[a1+a0(1+a1K)]}.
. (324)

Since both sides of inequality Eq. (324) are positive, then

[2a0+a1K(2 1
K +2a0+2a1+a0a1K)]2

≤a2
1[K(2+a1K){a2

0K(2+a1K)+4[a1+a0(1+a1K)]}], . (325)

which leads to
0≤a2

1[K(2+a1K){a2
0K(2+a1K)+4[a1+a0(1+a1K)]}]

−[2a0+a1K(2 1
K +2a0+2a1+a0a1K)]2

=−4(a0+a1+a0a1K)2.

. (326)

Thus,

−4 (a0 +a1 +a0a1K)2 ≥ 0,

which cannot happen due to a0 +a1 +a0a1K > 0.

Therefore, the assumption was false, so U8 > 0. Thus,

W7 =
U8

a0
> 0, . . . . . . . . . . . . (327)

then,

V5 = V7 +a0W7 > 0, . . . . . . . . . (328)

which proves that

P1 > [V5G1+2W5(b1 −b0)]G1

≥V5G12 > 0.
. . . . . (329)

So we have that P1 > 0, Q1 > 0 and R1 > 0, then,

V2 = P1 +Q1 +R1 > 0, . . . . . . . (330)

and therefore,

lim
β→0

(πc
1 −π∗

1 )(β ) =
1
2

V2

W2
> 0, . . . . (331)

which proves Eq. (222). The proof of the theorem is com-
plete.

Vol.21 No.7, 2017 Journal of Advanced Computational Intelligence A-17
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

