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In this study, we focus on the feature selection problem
in regression, and propose a new version of LLL111 support
vector regression (LLL111-SVR), known as LLL111-norm least
squares support vector regression (LLL111-LSSVR). The
alternating direction method of multipliers (ADMM),
a method from the augmented Lagrangian family, is
used to solve LLL111-LSSVR. The sparse solution of LLL111-
LSSVR can realize feature selection effectively. Fur-
thermore, LLL111-LSSVR is decomposed into a sequence
of simpler problems by the ADMM algorithm, result-
ing in faster training speed. The experimental results
demonstrate that LLL111-LSSVR is not only as effective as
LLL111-SVR, LSSVR, and SVR in both feature selection
and regression, but also much faster than LLL111-SVR and
SVR.

Keywords: support vector regression, L1-norm, least
squares, feature selection, ADMM

1. Introduction

Feature selection is an important and pervasive prob-
lem in regression. The main goal of feature selection is
to discard the redundant or uninformative features and re-
tain the useful ones. Feature selection in support vector
regression (SVR) [1–4] has been widely studied [5–10].
However, the solution of standard SVR method [1] lacks
sparseness and may utilize all features without discrimi-
nation. Thus, it is not suitable to address the feature se-
lection problem.

L1-norm support vector regression (L1-SVR) was pro-
posed to overcome this drawback [7, 8]. Compared to
the standard SVR solution, the L1-SVR solution is much
sparser. This implies that it has an inherent feature se-
lection property [11, 12]. However, the training speed of
L1-SVR is low. We propose a least squares version of L1-
SVR, which is based on the least squares support vector
regression (LSSVR) [13] known as L1-LSSVR, to convert
the inequality constraints into equality ones. We adopt an

alternating direction method of multipliers (ADMM) [14,
15], which is a simple yet powerful algorithm, to solve
L1-LSSVR. The ADMM algorithm is based on a vari-
able splitting method to obtain a constrained optimization
formulation, which is then addressed with the augmented
Lagrangian method. The proposed algorithm reduces the
computational complexity of L1-LSSVR significantly.

L1-LSSVR has the following characteristics: (i) The
linear L1-LSSVR has the ability to select important fea-
tures and discard the rest; (ii) When these selected fea-
tures are structurally nonlinear, the nonlinear L1-LSSVR
realizes the regression problem effectively; (iii) L1-
LSSVR needs to solve only the resulting constrained op-
timization, leading to a higher training speed. The exper-
imental results of both artificial and real-world data sets
demonstrate the superiority of L1-LSSVR. In particular,
compared to LSSVR and SVR, the proposed L1-LSSVR
not only selects fewer features but also has good regres-
sion effectiveness. Furthermore, by using the ADMM al-
gorithm, the training speed of L1-LSSVR is much higher
compared to that of L1-SVR and SVR.

In Section 2 of this paper, we introduce the standard
SVR, L1-SVR, and LSSVR. In Section 3, we describe
the linear and nonlinear L1-LSSVR. Section 4 describes
the artificial and UCI datasets experiments and Section 5
presents the conclusion of our study.

2. Background

Consider the following regression problem in an n-
dimensional real vector space Rn. Let (A,Y ), denote a
training set in which A is an l × n matrix and the i-th
row Ai ∈ Rn represents the i-th training sample, where
i = 1,2, . . . , l. Let Y = (y1,y2, . . . ,yl)T denote the response
vector of the training sample, where yi ∈ R.

We then review the standard SVR, L1-SVR, and
LSSVR, which are closely related to the proposed L1-
LSSVR. For simplicity, we introduce only their linear ver-
sions. The optimal linear regression function is as fol-
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lows:

f (x) = wT x+b, . . . . . . . . . . . . (1)

where w ∈ Rn and b ∈ R.

2.1. Support Vector Regression

The primal problem of the standard SVR [1–4], is as
follows:

min
w,b,ξ ,η

1
2
||w||2 +C(eT ξ + eT η)

s.t. Y − (Aw+ eb)≤ εe+ξ , ξ ≥ 0,

(Aw+ eb)−Y ≤ εe+η , η ≥ 0,

. . (2)

where ||.||2 represents the L2-norm, C > 0 is a parameter
determining the tradeoff between the empirical risk and
the regularization term, and e is a vector of ones of appro-
priate dimensions.

The parameters in function (1) are determined by prob-
lem (2). The standard SVR may suffer from the presence
of redundant or uninformative features because the solu-
tion w lacks sparseness, which means that the standard
SVR may use all features without discrimination.

2.2. LLL111-Support Vector Regression

By replacing the square of the L2-norm in problem (2)
with the L1-norm, the linear L1-SVR [7, 8] is expressed as
follows:

min
w,b,ξ ,η

||w||1 +C(eT ξ + eT η)

s.t. Y − (Aw+ eb)≤ εe+ξ , ξ ≥ 0,

(Aw+ eb)−Y ≤ εe+η , η ≥ 0,

. . (3)

where ||.||1 represents the L1-norm, C is a positive param-
eter, and ξ and η are slack vectors.

By using the L1-norm, a small enough C will drive
some coefficients of wi toward zero [11, 12]. This means
that w is more sparse than that of the standard SVR. Thus,
L1-SVR has an inherent feature selection property.

2.3. Least Squares Support Vector Regression

The standard SVR [1–4] is time-consuming because it
involves solving a quadratic programming problem (QPP)
with linear inequality constraints. To improve the train-
ing speed, [13] used an equality constraint to introduce
LSSVR, which is expressed as follows:

min
w,b,ξ

1
2
||w||2 +

C
2

ξ T ξ

s.t. Y − (Aw+ eb) = ξ .
. . . . . . . . (4)

In comparison, LSSVR solves only a system of linear
equations and improves the training speed significantly.
However, LSSVR tends to lose sparseness [16] because it
is formulated based on the L2-norm.

3. LLL111-Norm Least Squares Support Vector Re-
gression

Combining the idea of L1-SVR and LSSVR, we pro-
pose a new feature selection algorithm called L1-LSSVR.
In the following sections, we will present a linear L1-
LSSVR version, and then extend the linear L1-LSSVR to
a nonlinear version.

3.1. Linear LLL111-Norm Least Squares Support Vector
Regression

L1-LSSVR searches for an optimal linear regression
function:

f (x) = wT x+b, . . . . . . . . . . . . (5)

where w ∈ Rn and b ∈ R. By introducing a regularization
term ‖w‖1 + |b| and a slack variable ξ , the primal problem
of the proposed L1-LSSVR can be expressed as follows:

min
w,b,ξ

‖w‖1 + |b|+ C
2

ξ�ξ

s.t. Y − (Aw+ eb) = ξ ,
. . . . . . . . (6)

where C > 0 is a parameter determining the trade-off be-
tween the empirical risk and regularization term. The reg-
ularization term, ‖w‖1 + |b| in problem (6), is similar to
that in [17–19].

To solve L1-LSSVR, we adopt the ADMM algorithm.
We define z = [w;b] and G = [A,e]. Then, problem (6) can
be expressed as follows:

min
z,ξ
‖z‖1 +

C
2

ξ�ξ

s.t. Y −Gz = ξ .
. . . . . . . . . . . (7)

According to the constraint in problem (7), we can ob-
tain the following problem:

min
z
‖z‖1 +

C
2
‖Y −Gz‖2

2 . . . . . . . . (8)

Using the following translation form,

min
z,u
‖u‖1 +

C
2
‖Y −Gz‖2

2

s.t. u− z = 0,
. . . . . . . . (9)

the ADMM iterating procedures become

zk+1 = argmin
z

C
2
‖Y −Gz‖2

2 +
μ
2
‖z−uk−dk‖2

2, (10)

uk+1 = argmin
u
‖u‖1 +

μ
2
‖zk+1−u−dk‖2

2, . . (11)

dk+1 = dk− (zk+1−uk+1), . . . . . . . . (12)

where {zk ∈Rn+1, k = 0,1, . . .}, {uk ∈Rn+1, k = 0,1, . . .},
and {dk ∈ Rn+1, k = 0,1, . . .} are three sequences.

Problem (10) requires solving a quadratic problem, the
solution of which is

zk+1← B−1w, . . . . . . . . . . . . . (13)

where B≡CGT G+ μI and w≡CGTY + μ(uk +dk). B is
always invertible, as μ > 0.
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Algorithm 1 ADMM for problem (7)
Input: Training data matrix G = [A,e]; Parameters C,
and μ .
Output: Solution w∗ and b∗.
Process:
1 Set k = 1, choose u0, and d0;
2 repeat
3 w←CGTY + μ(uk +dk)
4 zk+1← B−1w
5 νk+1← zk+1−dk

6 uk+1← so f t(νk,1/μ)
7 dk+1← dk− (zk+1−uk+1)
8 k← k +1
9 until stopping criterion is satisfied;
10 Obtain solution (w∗T ,b∗) = z∗.
end

Algorithm 2 Linear L1-LSSVR with feature selection
Input: Training data matrix G = [A,e]; Parameters C and
μ .
Output: Selected feature index set F ′; Components of x̃ ;
Approximate solution w̃∗ and b∗.
Process:
1 Apply Algorithm 1 to problem (7) to get the solution
(w∗;b∗);
2 Select the feature index set: F ′ = { j||[w∗] j| > 0, j =
1, . . . ,n};
3 Set w̃∗ = ([w∗]s1 , . . . , [w

∗]sk) and x̃ = ([x]s1 , . . . , [x]sk),
where s j ∈ F ′;
4 Construct regression function f (x̃) = (w̃∗)T x̃+b∗.
end

The solution of problem (11) would be the well-known
threshold [14, 15]:

uk+1← so f t
(

νk,
1
μ

)
, . . . . . . . . . (14)

where νk ≡ zk+1− dk. The ADMM algorithm for prob-
lem (7) is detailed in Algorithm 1.

By obtaining the solution of problem (7) w∗ using Al-
gorithm 1, we have either |[w∗] j| �= 0 or |[w∗] j|= 0, where
j = 1,2, . . . ,n. When |[w∗] j| �= 0, the corresponding fea-
tures are selected. The remaining features are considered
redundant and thus discarded. Therefore, the linear L1-
LSSVR can realize feature selection effectively by using
Algorithm 2.

3.2. Nonlinear LLL111-Norm Least Squares Support
Vector Regression

To extend the linear L1-LSSVR to a nonlinear one, we
express the regression function in kernel space as follows:

f (x) = K(xT ,AT )w+b, . . . . . . . . . (15)

where K is a Gaussian kernel. Using the same idea as
the linear L1-LSSVR, the primal problem of the nonlinear

Algorithm 3 ADMM for problem (16)
Input: Training data matrix H = [K(A,AT ),e]; Parame-
ters C, and μ .
Output: w∗ and b∗.
Process:
1 Set k = 1, choose u0, and d0;
2 repeat
3 w←CHTY + μ(uk +dk)
4 zk+1← B−1w
5 νk+1← zk+1−dk

6 uk+1← so f t(νk,1/μ)
7 dk+1← dk− (zk+1−uk+1)
8 k← k +1
9 until stopping criterion is satisfied;
10 Obtain solution (w∗T ,b∗) = z∗.
end

L1-LSSVR is formulated as follows:

min
w,b,ξ

1
2
‖w‖1 +

C
2

ξ�ξ

s.t. Y − (K(A,AT )w+ eb) = ξ .
. . . . . (16)

Problem (16) can be also be rewritten as

min
z,ξ
‖z‖1 +

C
2

ξ�ξ

s.t. Y −Hz = ξ ,
. . . . . . . . . . . (17)

where z = [w;b] and H = [K(A,AT ),e]. We now apply the
ADMM algorithm using the following translation form:

min
z,ξ
‖z‖1 +

C
2
‖Y −Hz‖2

2

s.t. u− z = 0.
. . . . . . . . (18)

The ADMM iterating procedures are

zk+1 = argmin
z

C
2
‖Y −Hz‖2

2 +
μ
2
‖z−uk−dk‖2

2, (19)

uk+1 = argmin
u
‖u‖1 +

μ
2
‖zk+1−u−dk‖2

2, . . (20)

dk+1 = dk− (zk+1−uk+1), . . . . . . . . (21)

where {zk ∈Rl+1, k = 0,1, . . .}, {uk ∈ Rl+1, k = 0,1, . . .},
and {dk ∈ Rl+1, k = 0,1, . . .} are three sequences.

The z-update, which involves solving a quadratic prob-
lem, can be written explicitly as follows:

zk+1← B−1w, . . . . . . . . . . . . . (22)

where B≡CHT H + μI, and w≡CHTY + μ(uk +dk).
The solution of problem (20) would be the thresh-

old [14, 15]:

uk+1← so f t
(

νk,
1
μ

)
, . . . . . . . . . (23)

where νk ≡ zk+1− dk. The solution of problem (16) is
obtained by using Algorithm 3.
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Algorithm 4 Nonlinear L1-LSSVR with feature selection
Input: Training data matrix G = [A,e]; Parameters C,
and μ .
Output: w∗ and b∗.
Process:
1 Use Algorithm 2 to get the selected feature index set
F ′ and x̃;
2 Set H = [K(Ã, ÃT ) ẽ], where Ã is the new input data, as
the definition of matrix A; choose parameters C and μ .
3 Use Algorithm 3 to get solution (w∗T ,b∗) = z∗ and
construct regression function f (x̃) = K(x̃T , ÃT )w∗+b∗.
end

When a data set is structurally nonlinear, we combine
the superiority of both linear and nonlinear L1-LSSVR to
realize feature selection and nonlinear regression in two
steps. We generate reduced input space features via the
linear L1-LSSVR as in [20]. Based on this reduced input
space, the regression procedure is then realized via the
nonlinear L1-LSSVR. The nonlinear L1-LSSVR with the
feature selection property is described in Algorithm 4.

4. Numerical Test

In this section, we conduct experiments to demonstrate
the regression effectiveness of the proposed L1-LSSVR,
and then analyze its feature selection ability. We then
test the training speed of the proposed L1-LSSVR. All
experiments are conducted in a MATLAB R2011b en-
vironment on a PC running on a Windows XP OS with
64 bit, 3.10 GHz Intel(R) Xeon(R) processor equipped
with 6 GB of RAM. In our experiments, the parameters
of these algorithms, including the Gaussian kernel param-
eter δ , are obtained by searching in the range of 2−8 to
28.

Table 1 lists the evaluation criteria [19, 21, 22]. Let
m be the number of testing samples, ŷi be the prediction
value of yi , and ȳ = 1/m ·∑m

i=1 yi be the average value of
y1, . . . ,ym. The sum of squared error (SSE) is used to eval-
uate the predicted ability of an estimator. The total sum
of squares (SST) reflects the under lying variance of the
testing samples. The sum of squares for regression (SSR)
reflects the explanation ability of the regressor. NMSE
is normalized mean squared error. R2 is the coefficient
of determination. The definitions of these evaluation cri-
teria show that the statistical information obtained from
the testing samples increases R2 increases and NMSE de-
creases.

4.1. Regression Analysis
In this section, we test the regression effectiveness of

the proposed L1-LSSVR. We consider function y = x2/3.
The training samples of this data set are corrupted by
Gaussian noise with a mean of 0 and standard deviation
of 0.2. In practice, the training samples (xi,yi) are as fol-

Table 1. Performance metrics and their calculation.

SSE SSE =
m

∑
i=1

(yi− ŷi)2

SST SST =
m

∑
i=1

(yi− ȳ)2

SSR SSR =
m

∑
i=1

(ŷi− ȳ)2

NMSE NMSE =
SSE
SST

=

m

∑
i=1

(yi− ŷi)2

m

∑
i=1

(yi− ȳ)2

R2 R2 =
SSR
SST

=

m

∑
i=1

(ŷi− ȳ)2

m

∑
i=1

(yi− ȳ)2

lows:

yi = x
2
3
i +ζi,

xi ∼U [−2,2], ζi ∼ N(0,0.22).
. . . . . (24)

To avoid a biased comparison, we use a MATLAB tool-
box to generate 10 independent groups of noisy samples
which consist of 200 training and 200 noise test sam-
ples. Fig. 1 shows the estimated results obtained by L1-
LSSVR, L1-SVR, LSSVR, and SVR. Table 2 lists their
corresponding performances. This experimental results
show that SSE and NMSE decrease and R2 increases us-
ing L1-LSSVR. This indicates that the regression effec-
tiveness of the proposed L1-LSSVR is as good as that of
other algorithms. In addition, L1-LSSVR requires less
CPU time than L1-SVR and SVR for the linear equality
constraints and ADMM algorithm.

To further test the effect of parameter selection on the
effectiveness of the proposed L1-LSSVR regression, we
investigate the influence of parameters C, μ , and δ on
the NMSE and CPU time for the artificial data set. We
fix parameter δ as the optimal value, and investigate the
influence of C and μ on the NMSE and CPU time. In
Figs. 2(a) and (b), we see that the training speed of L1-
LSSVR changes significantly as the value of parameter μ
increases. Thus, C has a strong influence on the regression
results, while μ affects the training speed significantly.

4.2. Feature Selection Analysis
To test the feature selection and regression effective-

ness, we consider one artificial data set function [19] as
follows:

yi =
sin(x1i + x2i)
(x1i + x2i)

+ξi,

x1i ∼U [−4π,4π],
x2i =−4π +8πεi,

ξi ∼ N(0,0.12),
εi ∼U [0,1],

. . . . . . . . . (25)

where U [a,b] represents the uniformly random variables
in [a,b], and N(c,d2) represents the Gaussian random
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Fig. 1. Prediction of L1-LSSVR, L1-SVR, LSSVR, and SVR of function y = x
2
3 .

Table 2. Comparison results of L1-LSSVR, L1-SVR, LSSVR, and SVR in artificial data sets.

Data set Regressor SSE NMSE R2 CPU Sec.

(24)

L1-LSSVR 9.9200 0.2297 0.8247 0.5205
L1-SVR 9.7069 0.2248 0.8810 1.7899
LSSVR 9.1991 0.2130 0.7804 0.0183

SVR 8.9982 0.2083 0.7291 1.0352
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Fig. 2. Influence of parameters C, and μ on NMSE (a), and CPU time (b). Parameter δ is fixed as 2.
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Fig. 3. Prediction of L1-LSSVR, L1-SVR, LSSVR, and SVR.

Table 3. Comparison results of the proposed L1-LSSVR, L1-SVR, LS-SVR, and SVR for one artificial data set.

Data set Regressor No. of SSE NMSE R2 CPU sec.
selected features

(25)

L1-LSSVR 1 0.3019 0.0056 0.9939 0.2050
L1-SVR 1 6.2849 0.1160 0.9429 2.0285
LSSVR 2 3.4692 0.0641 0.9703 0.0107

SVR 2 4.0604 0.0750 0.9835 1.6128

variable with mean c and variance d2. The training sam-
ples are corrupted by Gaussian noise, with a mean of 0
and a standard deviation of 0.1. Our data set consists of
252 training samples and 503 test samples.

Figures 3(a)-(d) illustrate the estimated functions ob-
tained by using L1-LSSVR, L1-SVR, LSSVR, and SVR,
respectively. Because the solutions of SVR and LSSVR
lack sparseness, both the algorithms select two features.
However, L1-LSSVR and L1-SVR select only the first fea-
ture x1 and discard the second feature x2.

Table 3 lists the regression results for different crite-
ria. We observe that the proposed L1-LSSVR derives
the smallest NMSE and largest R2 when compared to L1-
SVR, LSSVR, and SVR. This implies that the statistical
information in the training data set is well captured by the
proposed L1-LSSVR. Moreover, the training speed of the
proposed L1-LSSVR is much higher than that of L1-SVR

for the linear equality constraints.
Furthermore, feature selection and regression tests are

conducted on five real-world data sets, namely Orange
Juice1, Wine1, Bankruptcy Prediction [23], Auto Price2,
and Boston Housing3. Table 4 lists the specifications of
these data sets.

Table 5 lists the feature selection and regression results
of the proposed L1-LSSVR, L1-SVR, LSSVR, and SVR
for these five data sets. We consider three comparison re-
sults, including the number of selected features, NMSE,
and R2. Table 5 shows that the proposed L1-LSSVR
selects fewer features and results in a small NMSE and

1. http://mlg.info.ucl.ac.be/index.php?page=DataBases [accessed August
19, 2015]

2. http://www.ics.uci.edu/mlearn/ MLRepository.html [accessed July 29,
2015]

3. http://www.ics.uci.edu/mlearn/MLRepository.html [accessed July 30,
2015]
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Table 4. Specification of real-world regression cases.

Data set Training samples Testing samples No. of features
Orange Juice 150 68 700
Wine 94 30 256
Bankruptcy Prediction 200 300 41
Auto price 80 79 15
Boston Housing 300 206 13

Table 5. Comparison of L1-LSSVR, L1-SVR, LSSVR and SVR for five benchmark data sets.

Data set Regressor No. of SSE NMSE R2 CPU sec.
selected features

Orange Juice L1-LSSVR 39 23.7176 0.4835 0.8583 0.2624
L1-SVR 6 53.1003 1.0825 0.9352 0.9096
LSSVR 700 23.3334 0.4757 0.9197 0.0108
SVR 700 22.1670 0.4519 0.8496 5.1472

Wine L1-LSSVR 8 0.7040 0.0517 0.8937 0.5839
L1-SVR 4 0.4893 0.0360 0.9037 0.2333
LSSVR 256 0.2905 0.0213 0.9320 0.0083
SVR 256 0.6265 0.0460 0.9196 0.5713

Bankruptcy L1-LSSVR 11 29.7447 0.3987 0.9421 0.1785
Prediction L1-SVR 35 89.3111 1.1973 0.9777 0.7558

LSSVR 41 183.6322 0.6116 0.9941 0.0094
SVR 41 449.1753 1.5084 0.9900 8.3231

Auto Price L1-LSSVR 6 16.2974 0.3360 0.7473 0.1401
L1-SVR 5 19.9546 0.4114 0.8672 0.1697
LSSVR 15 10.8150 0.2229 0.8058 0.0078
SVR 15 9.9902 0.2059 0.7854 0.0282

Boston Housing L1-LSSVR 11 273.0308 1.8217 0.9481 0.2944
L1-SVR 12 255.7137 1.7061 0.8873 5.0612
LSSVR 13 285.0096 1.9016 0.9770 0.0141
SVR 13 227.6036 1.5186 0.9612 0.6189

Table 6. Best parameters of L1-LSSVR and L1-SVR for five
real-world data sets.

L1-LSSVR L1-SVR
Data set μ C δ . C δ .
Orange Juice 2−2 26 20 26 20

Wine 20 26 21 24 20

Bankruptcy Prediction 20 26 22 20 21

Auto Price 22 25 21 24 21

Boston Housing 20 27 21 24 21

large R2, which indicates that a few selected features
capture useful information. Furthermore, Table 5 also
shows the corresponding training CPU time of these data
sets, implying that the training speed of the proposed L1-
LSSVR is higher than that of L1-SVR in the Orange Juice,
Bankruptcy Prediction, Auto price, and Boston Housing
data sets. Therefore, the proposed L1-LSSVR has a higher
training speed than L1-SVR. Table 6 lists the best param-
eters selected by the L1-LSSVR and L1-SVR algorithms.

4.3. Time Analysis
In this section, we test the influence of the sample

number on the training time of the proposed L1-LSSVR
and L1-SVR. The data sets are Anthrokids4 and Delve-
Census5. In our experiments, we apply the proposed L1-
LSSVR and L1-SVR for feature selection in both the data
sets. Then, both the new data sets are randomly split into
training samples and testing samples. We then test the
influence of the data set size on the training time.

Figures 4(a) and (b) show the comparison results of
the computation time of both the algorithms. We ob-
serve the following: (1) The proposed L1-LSSVR is much
faster than L1-SVR. (2) The training time of L1-SVR ex-
hibits a sharp increase, particularly when the data sets
contain more than 400 training samples. However, the
training time of the proposed L1-LSSVR remains steady.
(3) When the training samples reach 700 for the Delve-
Census data set, the L1-SVR algorithm runs out of mem-
ory, while the L1-LSSVR algorithm still has memory. L1-
LSSVR uses an equality constraint instead of an inequal-
ity one in L1-SVR. L1-LSSVR applies the ADMM algo-
rithm to solve its optimal problem.

4. http://research.cs.aalto.fi/aml/index.shtml [accessed August 22, 2015]
5. http://www.cs.toronto.edu/ delve/data/census-house/desc.html [accessed

August 23, 2015]
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Fig. 4. Training time along with the training set size on
Anthrokids (a) and Delve-Census (b).

5. Conclusion

We proposed a new feature selection method in regres-
sion called L1-LSSVR. L1-LSSVR uses the L1-norm that
gives it an inherent features selection property. Computa-
tional comparisons between the proposed L1-LSSVR, and
L1-SVR, LSSVR, and SVR on several data sets indicate
that the proposed L1-LSSVR can select less features with
good regression performance. In addition, the proposed
L1-LSSVR operates much faster than L1-SVR due to the
employment of the ADMM algorithm, which decomposes
a difficult problem into a sequence of simpler ones. Fur-
thermore, the feature selection ability and speed of the
proposed L1-LSSVR are superior compared to those of
L1-SVR, LSSVR, and SVR.
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gistic regression,” J. of the Royal Statistical Society, Series B (Sta-
tistical Methodology), Vol.70, No.1, pp. 53-71, 2008.

[13] J. A. K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J.
Vandewalle, “Least squares support vector machine classifiers: a
large scale algorithm,” Proc. of European Conf. of Circuit Theory
Design, 1999.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learn-
ing, Vol.3, pp. 1-122, 2010.

[15] J. M. Bioucas-Dias and M. A. T. Figueiredo, “Alternating direction
algorithm for constrained sparse regression: application to hyper-
spectral unmixing,” 2010 2nd Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing, pp. 1-4, 2010.

[16] J. A. K. Suykens, J. D. Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: robustness and
sparse approximation,” Neurocomputing, Vol.48, pp. 85-105, 2002.

[17] Y. F. Ye, Y. X. Jiang, Y. H. Shao, and C. N. Li, “Financial conditions
index construction through weighted lp-norm support vector regres-
sion,” J. Adv. Comput. Intell. Intell. Inform., Vol.19, pp. 397-406,
2015.

[18] Y. F. Ye, Y. H. Shao, and C. N. Li, “Wavelet lp-norm support vec-
tor regression with feature selection,” J. Adv. Comput. Intell. Intell.
Inform., Vol.19, pp. 407-416, 2015.

[19] Y. H. Shao, C. H. Zhang, Z. M. Yang, L. Jing, and N. Y. Deng, “An
ε-twin support vector machine for regression,” Neural Computing
and Applications, Vol.23, pp. 175-185, 2013.

[20] O. L. Mangasarian and E. W. Wild, ”Feature selection for nonlin-
ear kernel support vector machines,” IEEE 7th Int. Conf. on data
mining, 2007.

[21] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” Int. J. of Forecasting, Vol.22, pp. 679-688, 2006.

[22] Y. F. Ye, Y. H. Shao, and W. J. Chen, “Comparing inflation forecasts
using an ε-wavelet twin support vector regression,” J. of Informa-
tion and Computational Science, Vol.10, pp. 2041-2049, 2013.

[23] Q. Yu, Y. Miche, E. Séverin, and A. Lendasse, “Bankruptcy predic-
tion using extreme learning machine and financial expertise,” Neu-
rocomputing, Vol.128, pp. 296-302, 2014.

1024 Journal of Advanced Computational Intelligence Vol.21 No.6, 2017
and Intelligent Informatics



L1-Norm Least Squares Support Vector Regression via ADMM

Name:
Ya-Fen Ye

Affiliation:
College of Science, Zhejiang University of Tech-
nology

Address:
288 Liuhe Road, Hangzhou 310023, China
Brief Biographical History:
2008 Received Master’s degree in Quantitative Economics from Zhejiang
Gongshang University
2011 Received Ph.D. degree in Statistics in College of Statistics and
Mathematics from Zhejiang Gongshang University
2014- Associate Professor at the Zhijiang College, Zhejiang University of
Technology
Main Works:
• Quantitative economics
•Machine learning and data mining
Membership in Academic Societies:
• OPTIMAL Group (http://www.optimal-group.org/)

Name:
Chao Ying

Affiliation:
Rainbow City Primary School

Address:
501 Weiye Road, Hangzhou 310013, China
Brief Biographical History:
2009 Received her Bachelor’s degree in applied mathematics from
Shaoxing University
2016- First-Grade Teacher at Rainbow City Primary School
Main Works:
•Machine learning and data mining

Name:
Yue-Xiang Jiang

Affiliation:
College of Economics, Zhejiang University

Address:
Hangzhou 310024, China
Brief Biographical History:
1996 Received his Ph.D. degree of Statistics from University of Bern
1999 Received his Ph.D. degree of Management from Zhejiang University
2005- Professor and Doctoral Supervisor, College of Economics, Zhejiang
University
Main Works:
•Measure economics
• Random financial theory and its application
•Macro economic theory and policy
Membership in Academic Societies:
• Zhejiang Social Insurance Association, Director
• Swiss Statistics Association Research Areas, Member

Name:
Chun-Na Li

Affiliation:
Zhijiang College, Zhejiang University of Tech-
nology

Address:
182 Zhijiang Road, Hangzhou 310024, China
Brief Biographical History:
2009 Received her Master’s degree from Harbin Institute of Technology
2012 Received her Ph.D. degree in Department of Mathematics from
Harbin Institute of Technology
2012- Lecturer at the Zhijiang College, Zhejiang University of Technology
Main Works:
• Optimization methods
•Machine learning and data mining
Membership in Academic Societies:
• OPTIMAL Group (http://www.optimal-group.org/)

Vol.21 No.6, 2017 Journal of Advanced Computational Intelligence 1025
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

