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In this paper, we introduce an autonomous decentral-
ized method for directing multiple automated guided
vehicles (AGVs) in response to uncertain delivery re-
quests. The transportation route plans of AGVs are
expected to minimize the transportation time while
preventing collisions between the AGVs in the sys-
tem. In this method, each AGV as an agent com-
putes its transportation route by referring to the
static path information. If potential collisions are de-
tected, one of the two agents chosen by a negotiation-
rule modifies its route plan. Here, we propose a
reinforcement learning approach for improving the
negotiation-rules. Then, we confirm the effectiveness
of the proposed approach based on the results of com-
putational experiments.

Keywords: reinforcement learning, AGV transportation
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1. Introduction

Recently, the problems of planning and operation have
been recognized as among the most important issues in
production and logistic systems. In particular, transporta-
tion planning using automated guided vehicles (AGVs)
in steel production, semiconductor production, and ware-
housing systems has been widely studied from both the
theoretical and practical viewpoints [1, 2]. This paper fo-
cuses on the AGV routing problem [2]. In this problem,
all of the transportation requests are given, but it is neces-
sary to determine a transportation route plan that prevents
collisions between AGVs.

An efficient method for responding to ad hoc requests is
proposed based on an autonomous decentralized method
for the AGV routing problem [3]. First, each AGV, as
an agent, finds the shortest route that satisfies the re-

quests assigned to it. If potential collisions (collisions that
have been predicted to occur if no pre-emptive action is
taken) are detected, one of the two AGVs, as selected by
a negotiation-rule, modifies its route. A set of negotiation-
rules is used for every collision avoidance action. These
rules consist of a condition-part and an action-part. The
rule that matches the conditions of the two agents in-
volved in a potential collision is selected from a set of
rules.

Here, we propose a reinforcement learning (RL) [4] ap-
proach for improving the negotiation-rules. However, it is
difficult to construct a state space in the AGV route plan-
ning problem. Thus, we introduce a state space filter for
adaptive state space construction [5] that (i) will not re-
quire specific RL methods and (ii) enables an easier visu-
alization of the filter than the other state space construc-
tion methods [6–8]. Furthermore, we confirm the effec-
tiveness of the proposed approach based on the results of
three computational experiments.

Several collision-free AGV routing strategies have been
proposed [9, 10]. These methods give good performances,
but require the determination of the “priority” of each of
the AGVs at every node and arc using the routes of all
the AGVs. Therefore, they require a central-computer
that calculates the priorities prior to the movement of
each AGV. On the other hand, the proposed approach re-
quires a central-computer that maintains and calculates
the negotiation-rules when AGVs are moving in real time.

This paper is organized as follows. In Section 2, we
describe an AGV routing problem. In Section 3, we intro-
duce an autonomous decentralized planning method [3].
In Section 4, we propose a reinforcement learning (RL)
[4] approach for improving the negotiation-rules. In Sec-
tion 5, we investigate the effectiveness of the proposed
approach using the results of three computational experi-
ments. Finally, in Section 6, we give a summary of this
paper.
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AGV

Fig. 1. Example of AGV transportation system.

2. Problem Description

This section describes an AGV route planning problem.
An example of our target AGV transportation system is
illustrated in Fig. 1. There is a set of transportation re-
quests, and a fleet of AGVs is available to fulfill these re-
quests. Each AGV has to move to the destination specified
by the request assigned to it, on the rail-guided system.

The transportation problem using AGVs can be broken
down into three sub-problems:

(a) the problem of designing the rail network,

(b) the problem of assigning the requests to AGVs,

(c) the problem of routing the AGVs to the destination
points.

It is difficult to find routing plans without collisions to
solve sub-problem (c). This paper discusses sub-problem
(c) under the given rail network and the given assignment
of transportation requests as an AGV route planning prob-
lem because this would be considered a major issue in
practical use.

The AGV route planning problem is defined as fol-
lows: NV AGVs Vi (i = 1, . . . ,NV) are available in the
rail system. The rail system is represented as NN nodes N j
( j = 1, . . . ,NN) and NA arcs Ak (k = 1, . . . ,NA). A node
represents the area for the loading and unloading points
and branching points of the rail. An arc represents the
path for an AGV. Vi moves to destination node D�, which
is specified by request R� (� = 1, . . . ,NR) assigned to Vi.
R� is given to the system at occurrence time tR

� , and R� is
assigned to Vi. These problem parameters can be summa-
rized as follows:

(a) AGV Vi (i = 1, . . . ,NV),

+ Initial node Pi,

(b) Node N j ( j = 1, . . . ,NN),

(c) Arc Ak (k = 1, . . . ,NA),

(d) Request R� (� = 1, . . . ,NR) :

+ occurrence time tR
� ,

+ destination node D�.

The following constraints should be taken into account
in the planning process:

(1) All AGVs must move synchronously.

(2) The velocity of each AGV is constant.

(3) Each AGV can travel on the arc and turn only at a
node. The distance between nodes is constant.

(4) Each arc has a width of one AGV. Therefore, two
AGVs cannot simultaneously travel between two
nodes from opposite directions.

(5) Each of the AGVs has its own destination node that
does not overlap with any of the destination nodes of
any other AGV.

Various kinds of criteria may be considered for the eval-
uation of the routing plan. Here, we consider the maxi-
mum completion time Cmax:

Cmax = maxtV
i . . . . . . . . . . . . . (1)

where tV
i represents the arrival time at destination node Di

assigned to Vi.
In this paper, we assume that the parameters for R�

are available after time tR
� , i.e., a real-time environment.

Therefore, an on-line route planning system is required.

3. Autonomous Decentralized Route Planning
System

3.1. Algorithm Based on Negotiation-Rules
In this section, we introduce an autonomous decen-

tralized planning method [3], in which each AGV, as an
agent, repeats the planning of its own route and exchang-
ing of route information with the other agents until there
is no potential collision. The route of each AGV is cal-
culated using Dijkstra’s method [11] on the graph repre-
sentation. If potential collisions are detected, one of the
two AGVs, as selected by a negotiation-rule, modifies its
route. The entire route planning process is designed as
follows:

(i) Initialization: Each AGV is given an ordinal in-
dex (1,2,3, . . .) and calculates the minimum distance
route from its start node to the destination node.

(ii) Information Exchange: All of the AGVs within a
certain distance dF exchange their route information
and indexes with each other.

(iii) Termination: If any potential collisions are de-
tected until a certain time step tL ahead, the process
advances to stage (iv), otherwise the current set of
routes are output, and the process moves to the next
step.

(iv) Re-planning: One of the two AGVs involved in
a potential collision is chosen by a negotiation-rule,
which is applied to the AGV with the lowest index,
and it re-plans its route to avoid the collision. The
process reverts to stage (ii).
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Fig. 2. Virtually adding one dummy node with same arc as
node.

At stage (iv), a new route plan is acquired by re-
planning using Dijkstra’s method on the network graph
in such a way that the weight value for the arc adjacent to
the potential collision node is increased by one.

However, it is impossible to pass through the same node
several times using only Dijkstra’s method. In this route
planning, it is effective to move backward into an adja-
cent node in order to avoid a collision, thus allowing the
other AGV to safely pass without a collision. Thus, it is
necessary to pass through the same node several times.

Therefore, we allow the AGV to pass through the same
node up to two times using Dijkstra’s method by virtu-
ally adding one dummy node (with the same arc as the
normal node) to each of the nodes, as shown in Fig. 2, al-
though it may be effective to pass through the same node
more than three times. One of the two AGVs re-creates
its route plan in this procedure. In particular, in a case
where the AGV is required to re-plan its route, after the
weight value for the arc adjacent to the potential collision
node is increased by one, Dijkstra’s method is used to re-
plan the route. Increasing the weight value by one means
that the time required for moving is increased by one step.
Thus, the AGV’s stay at its current node is prolonged by
one step. In the case of using a dummy node, if the arc
to the dummy node has a weight value of one, then the
AGV continues to move to the dummy node. Nishi et al.
[2] proposed agent-based AGV routing algorithms using
all of the request information in an offline manner prior
to execution, where both of the AGVs involved in a po-
tential collision modify their route plans separately. In
their approach, both AGVs might move in the same direc-
tion to avoid the potential collision node. However, new
route plans remain infeasible. In contrast, in our proposed
approach, the dummy nodes make it possible to avoid a
potential collision. In route planning, it is effective to
move backward into an adjacent node in order to avoid
a collision, thus allowing the other AGV to safely pass
without collision. In some cases this solves the oscillat-
ing phenomenon that occurs in the early-stage learning
of the negotiation-rules. Our proposed approach is free
from such a phenomenon when the negotiation-rules have
been sufficiently learned. If the oscillating phenomenon
occurs, the value of the negotiation-rule that caused the
phenomenon decreases. Thus, the phenomenon ceases
to occur as the learning continues. Therefore, the phe-
nomenon does not occur in the later-stage learning.

Shared route information

Potential collision

Rule 1

Rule 2

Rule 3
.
.
.

Shared rule set

Evaluation

Intervention

Reinforcement learning

Fig. 3. Framework of rule learning using reinforcement
learning.

3.2. Structure of Negotiation-Rules
The AGV that re-plans its own route is determined by a

negotiation-rule. In this paper, the negotiation-rule set is
shared among all the AGVs.

The negotiation-rule consists of a condition-part and an
action-part. The rule that matches the difference between
the states of the two AGVs involved in a potential colli-
sion is selected from a set of rules. As for the state param-
eters, we introduce three kinds of variables to represent
the whole state space SSS:

sO: The amount of incremental change in the route
length after the re-creation,

sR: The route length from the potential collision node to
the destination node,

sF: The number of nodes with three or more arcs.

Among the state parameters, sF represents the flexibility
of the route creation. Then, SSS is divided into nS portions
SSSu (u = 1, . . . ,nS). The action-part expresses whether or
not the AGV with the lower index re-creates its route.

The reinforcement learning approach described in Sec-
tion 4 is applied to acquire a good rule set.

4. Reinforcement Learning Approach for Ac-
quisition of Negotiation-Rules

4.1. Basic Idea
It is difficult to design good negotiation-rules, as shown

in Section 3.2, in advance without an advance knowledge
of the object system. Here, we propose a reinforcement
learning (RL) [4] approach to improve the negotiation-
rules. A framework for rule learning using RL is shown
in Fig. 3. However, this framework can only be formu-
lated as partially observable Markov decision processes
(POMDPs), not as Markov decision processes (MDPs).
Because this framework does not make it possible to ob-
serve the positions of all the AGVs, it is not possible to
determine the next state of the negotiation-rule. How-
ever, the probability of the next state can be determined
through updating the probability distribution of the next
state from the current state using RL. Specifically, we use
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Q-learning (QL) [12] which is one of the typical RL meth-
ods, where state and action spaces are constructed using
the condition-parts of the negotiation-rules and the action-
parts, namely 0 or 1, respectively. Here, the negotiation-
rules consist of the state space of QL.

It is necessary to design a positive reinforcement signal
(reward) based on an evaluation of the route plans of all
the AGVs. In this paper, the reward is given to a RL agent
when all the AGVs arrive at the destination node allowing
the maximum completion time Cmax to be evaluated. This
reward setting is considered to be effective, even if AGVs
move asynchronously.

However, it is difficult to construct a state space in the
AGV route planning problem.

4.2. State Space Filter for Adaptive State Space
Construction

We have proposed a state space filter based on the en-
tropy [5], which is defined by action selection probability
distributions in a state, for adaptive state space construc-
tion. This state space filter (i) does not require specific
RL methods and (ii) enables an easier visualization of the
filter than the other state space construction methods [6–
8]. Here, the entropy of the action selection probability
distributions using Boltzmann selection in a state H(s) is
defined by

HD(s) = −
(

1
log |AAA|

)
∑
a∈AAA

π(a|s) logπ(a|s). . (2)

where π(a|s) specifies the probabilities of taking each ac-
tion a in each state s, AAA is the action space and |AAA| is the
number of available actions.

The state space filter is adjusted by treating this entropy
H(s) as an index of the correctness of the state aggrega-
tion in state s. In particular, in a case where the map-
ping from the inner state space is roughly digitized to the
state space, a perceptual aliasing problem occurs. In other
words, the action that an agent should select cannot be
clearly identified. Thus, the entropy may not be small
in the state space that should be divided. In this paper,
the sufficiency of the number of learning opportunities is
judged using a threshold value θL.

Therefore, if the entropy does not become smaller than
a threshold value θH, despite the sufficient number of
learning opportunities, the state space filter will be ad-
justed by dividing the state, as a result of the occurrence of
the perceptual aliasing problem. Through this operation,
the size of the divided state space increases by (23 − 1),
where 3 is the number of dimensions. In addition, please
note that the values of the new 23 states are those of the
state before having been divided.

Similarly, if the entropy is smaller than θH in both a
state s and a different state s′, mapping from a transited
input state, in addition to the representative actions in the
states being the same, then the state space filter will be
adjusted by integrating the states as a result of the states
being too divided. Moreover, please note that the value
of the new state is an average of the values of the two
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Fig. 4. Rail network of N35.
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Fig. 5. Rail network of N18.

states before being integrated. In addition, if a state s ex-
ists that has never been mapped ever once during a cer-
tain period θt, then the state space filter will be adjusted
by integrating s and a state adjacent to s. It should also
be noted that the values of the new state are those of the
state adjacent to s before having been integrated. Through
these operations, the size of the state space after being in-
tegrated decreases by one. If the size of the state space
of the state space filter is small, then the negotiation-rules
are easily understood, and it is easy to analyze what vari-
ables are necessary. On the other hand, a larger size for
the state space requires more memory, and more compu-
tational time.

5. Computational Experiments

5.1. Experimental Settings
The effectiveness of the proposed approach is inves-

tigated in this section. We prepared three AGV route
planning problems (hereafter called “N35,” “N18-1,” and
“N18-2”).

The parameters of N35 are described as follows:

N35: NV = 6, {Pi,Di} = {0,34},{1,30},{7,6},
{13,21},{28,16},{34,0}.

The rail network of N35 is shown in Fig. 4. In this rail
network, heavy congestion is predicted to occur around
nodes 9 and 10.

The parameters of N18-1 and N18-2 are described as
follows:

N18-1: NV = 6,{Pi,Di} = {0,17},{17,0},{6,11},
{11,6},{13,4},{4,13}.

N18-2: NV = 6,{Pi,(D0i,D1i)} = {0,(17,0)},
{17,(0,17)},{6,(11,6)},{11,(6,11)},
{13,(4,13)},{4,(13,4)}.
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Table 1. Parameters for experiments.

Parameter Value
α 0.1
γ 0.9
τ 0.1

θH 0.47
θL 1000
θt 100 episodes

The rail network used for both N18-1 and N18-2 is shown
in Fig. 5. In this rail network, potential collisions occur
as often as we can design them, which may be more often
than in real rail networks. In N18-2, each AGV makes
a round trip from the initial node to the destination node
on the rail network of N18. One step is defined as the
time step for moving to the adjacent node. One episode
is defined as the steps needed to accomplish the task or
100 steps, which ever comes first. In each episode, each
AGV departs from its initial node. All of the occurrence
times ∀l, tR

l = 0, the detectable time step tL = 2, and the
exchangeable distance dF = 2, which is the Manhattan
distance. The smallest numbers of steps required for ac-
complishing N35 and N18-1, assuming none of the AGVs
collide with each other, are 10 and 7, respectively.

To apply QL with a state space filter, a three-
dimensional initial state space is designed with an ini-
tial size of one (hereafter called “SF”). For comparison,
three state space constructions with a one-dimensional
state space are designed so that the state space is evenly
divided into two (hereafter called “2-1-1,” “1-2-1,” and
“1-1-2”) to apply QL without a state space filter. In ad-
dition, a three-dimensional state space is designed so that
the state space is evenly divided into 2× 2× 2 (hereafter
called “2-2-2”) to apply QL without a state space filter.

Further, for a comparison with a conventional method,
Maza’s method was used [9], as one of the conventional
methods proposed with a two-stage approach: one stage
for finding the shortest routes (on the condition that all
the AGVs could not consider detour routes) for AGVs
to determine their priorities at every node and arc using
the routes of all the AGVs, and the other stage for avoid-
ing collisions while following the determined shortest
routes of the AGVs. However, Maza’s method only uses
the shortest routes (without considering detour routes).
Therefore, when the routes of two AGVs overlap (when
the shortest respective routes of two AGVs moving in op-
posing directions overlap), the resulting routing problem
cannot be resolved in N18-1 and N18-2. Therefore, the
number of steps required by Maza’s method is only in-
vestigated for the N35 problem. Here, their priorities are
calculated based on the route lengths from the initial to
destination nodes of all the AGVs.

The reward r = 10 (reward) is given to the agent only
when all the AGVs arrive at their destination nodes; the
reward r = −5 (punishment) is given to the agent only
when the weight of the arc is more than 100; and the re-
ward r = 0 is given to the agent at any other node.
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Computational experiments were performed using the
parameters listed in Table 1, where α is the learning rate,
γ is the discount factor, and τ is the temperature for Boltz-
mann selection.

In addition, all the initial Q-values were set at 5.0 as op-
timistic initial values. Here, θH was set at approximately
0.47, which was the maximal value of the entropy when
the highest selection probability for one action was 0.9
from within two available actions.

5.2. Results
The average number of steps required and the sizes of

the state spaces needed to solve N35, N18-1, and N18-2
problems were observed during learning over 20 simu-
lations with different state constructions, as described in
Figs. 6, 7, 8, 9, 10, and 11, respectively.

Cross-sections of the negotiation-rules obtained by SF
for N18-1 at 50 episodes and 150 episodes are shown
in Fig. 12. Here the gray cells show re-routing, and
the size of the circle in the cell shows the maximum Q-
value in the state. Stages 1 and 2 show cross-sections
of the negotiation-rules at episode 50 (taken as an ex-
ample of early-stage learning) and at episode 150 (taken
as an example of late-stage learning). Because the
negotiation-rules were composed of three-dimensional
variables, stages 1 and 2 show two-dimensional cross-
sections from near the center of each space at sO = 1,
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Fig. 9. Size of state space for N18-1.

sR = 1, and sF = 1. Stage 3 shows two-dimensional
cross-sections far from the center of each space at sO = 8,
sR = 8, and sF = 8.

The variance of the required steps under the 20 simula-
tions by SF and the numbers of steps required by Maza’s
method for N35, N18-1, and N18-2 listed in Table 2.

The average number of steps required and the sizes of
the state spaces needed to solve the N18-1 problem were
observed during learning over 20 simulations with five
initial state constructions, 1-1-1, 1-1-2, 1-2-1, 2-1-1, and
2-2-2, with the state space filter (hereafter called “SF1-1-
1,” “SF1-1-2,” “SF1-2-1,” “SF2-1-1,” and “SF2-2-2,” re-
spectively), as described in Figs. 13 and 14, respectively.

Finally, the best routes acquired for N35 and N18-2 by
SF are shown in Figs. 15 and 16, respectively. The col-
ored circles signify the different AGVs, and the colored
triangles signify their destinations. Here, the size of the
state space of SF was three when SF acquired the best
routes for N35.

The following can be seen in Figs. 6 and 7:

1. The proposed approach could acquire feasible route
plans that just exceeded the least number of required
steps, and could perform well in N35, even if the size
of the state space was one.

2. 2-2-2 showed a worse performance than SF, 2-1-1,
1-2-1 and 1-1-2 with regard to the learning speed,
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because the size of the state space was larger than
any other construction.

The following can be seen in Figs. 8 and 9:

1. With the exception of 1-1-2, the proposed ap-
proaches could acquire feasible route plans just ex-
ceeding the least number of required steps.

2. 1-1-2 showed a worse performance than any other
construction. Therefore, sF is not important for N18-
1.

The following can be seen in Figs. 10 and 11:

1. 1-2-1 and 1-1-2 could not acquire any appropri-
ate negotiation-rules. Therefore, no appropriate
negotiation-rules could be constructed using either
variable sR or sF in N18-2. The results pointed to the
conclusion that neither sR nor sF was important.

2. 2-1-1 showed a better performance than any other
construction. Therefore, sO is important for N18-2.

The following can be seen in Fig. 12:

1. In accordance with the progression of learning, the
states were appropriately integrated for the following
reasons. Figs. 8 and 9 confirm that the performance
was maintained at episode 150, whereas, at episode
50, the part that was divided too finely in the state
space was integrated at episode 100.
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Fig. 12. Cross-sections of the negotiation-rules by SF for N18-1.

Table 2. Variance of required steps by SF and number of
steps required by Maza’s method for experiments.

SF
Problem Average Standard deviation Maza’s method

N35 15.6 1.8 15
N18-1 7.7 0.8 -
N18-2 16.5 1.5 -

2. At the 150th episode in N18-1, the cross-sections of
the negotiation-rules at sO = 1 and sO = 8; and at
sR = 1 and sR = 8; and at sF = 1 and sF = 8 were the
same respectively. Thus, whether the values were
positive or negative was the only relevant aspect.

3. At episode 150, it can be seen that at the cross-
section of sR = 1, we confirmed that the Q-value
of the action where the route was re-planned, under
the conditions sO < 0 and sF < 0, was larger than
the Q-value of the action where the route was not
re-planned, under the conditions sO ≥ 0 and sF < 0.
In other words, we can conclude that at sR = 1, the
negotiation-rule where sO < 0 and sF < 0 is closer to
being able to acquire the reward than the negotiation-
rule where sO ≥ 0 and sF < 0, because the Q-values
become larger the closer they are to being able to ac-
quire the reward.

The following can be seen in Table 2:

1. SF had stability over the three problems.

2. SF showed a slightly worse performance than
Maza’s method using the routes of all the AGVs in
N35. However, SF has the potential of acquiring
shorter routes than Maza’s method.

The following can be seen in Figs. 13 and 14:
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Fig. 14. Size of state space for N18-1 by QL with various
initial state space filters.

1. SF1-1-1 had the best performance. This may have
been for the following reasons. As the size of the
initial state space decreased, it became more con-
nected to the generalization of the reward, and the
small size of the initial state space was related to the
promotion of the learning speed. On the other hand,
the over-generalization of the reward was connected
to the perceptual aliasing problem, leading to the in-
ability to learn effectively. Our proposed approach
avoided this problem by adjusting the state space fil-
ter through dividing the state. As a result, SF1-1-1
had a better performance than the other initial state
space filters.

The following can be seen in Figs. 15 and 16:

1. The AGVs could acquire appropriate routes to move
backward to avoid collisions. Fig. 15 shows what are
considered to be the optimal routes because they are
shorter than the routes obtained by Maza’s method.
Fig. 16 also shows the optimal routes.

2. It was confirmed that, in step 5 of N35, in order to
move backward to node 31 to avoid a collision, the
AGV passed through node 24 twice. Similarly, in
step 7, in order to move backward to node 25 to avoid
a collision, the AGV passed twice through nodes 17
and 18.
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Fig. 15. Best acquired routes by SF for N35.

Fig. 16. Best acquired routes by SF for N18-2.

Consequently, we confirmed the following:

1. SF and 2-1-1 showed better performances than any
other construction for the three problems.

2. It was difficult to construct a state space.

3. The importance of the variables differed depending
on the problems.

4. Therefore, SF could acquire feasible and efficient
rule sets for the problems for the following reasons.
Although 2-1-1 showed the best performance in the
three computational experiments, because the im-
portance of the variables differed depending on the
problem, it may not be possible to resolve other
problems with 2-1-1, with only uses the variable sO.

6. Conclusions

This paper considered the AGV route planning prob-
lem and introduced an autonomous decentralized route
planning method. To realize a solution, we introduced
an autonomous decentralized route planning method, in
which each AGV, as an agent, computes its transporta-
tion route by referring to the static path information, and
exchanges route plans with the other AGVs. If potential
collisions are detected, one of the two agents, as selected
by a negotiation-rule, modifies its route plan. Here, we
proposed a reinforcement learning approach for improv-
ing the negotiation-rules. In three computational experi-
ments, it was observed that when the proposed approach,
particularly a state space filter, was applied, feasible and
efficient rule sets could be acquired for the problems.

Our future projects include evaluating the effective-
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ness of our proposed approach under the condition that
more than one request is assigned to each AGV, com-
paring comprehensively the performance of our proposed
approach in rail network settings with wider applicabil-
ity, and confirming the effectiveness of our proposed ap-
proach when there are changes in the network or differ-
ences in the topology or size of the network.
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