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In recent years, many studies have been performed on
the automatic classification of human body motions
based on inertia sensor data using a combination of
inertia sensors and machine learning; training data is
necessary where sensor data and human body motions
correspond to one another. It can be difficult to con-
duct experiments involving a large number of subjects
over an extended time period, because of concern for
the fatigue or injury of subjects. Many studies, there-
fore, allow a small number of subjects to perform re-
peated body motions subject to classification, to ac-
quire data on which to build training data. Any clas-
sifiers constructed using such training data will have
some problems associated with generalization errors
caused by individual and trial differences. In order
to suppress such generalization errors, feature spaces
must be obtained that are less likely to generate gener-
alization errors due to individual and trial differences.
To obtain such feature spaces, we require indices to
evaluate the likelihood of the feature spaces generat-
ing generalization errors due to individual and trial
errors. This paper, therefore, aims to devise such eval-
uation indices from the perspectives. The evaluation
indices we propose in this paper can be obtained by
first constructing acquired data probability distribu-
tions that represent individual and trial differences,
and then using such probability distributions to calcu-
late any risks of generating generalization errors. We
have verified the effectiveness of the proposed evalua-
tion method by applying it to sensor data for butter-
fly and breaststroke swimming. For the purpose of
comparison, we have also applied a few available ex-
isting evaluation methods. We have constructed clas-
sifiers for butterfly and breaststroke swimming by ap-
plying a support vector machine to the feature spaces
obtained by the proposed and existing methods. Based
on the accuracy verification we conducted with test
data, we found that the proposed method produced
significantly higher F-measure than the existing meth-
ods. This proves that the use of the proposed evalua-
tion indices enables us to obtain a feature space that

is less likely to generate generalization errors due to
individual and trial differences.

Keywords: feature selection, lower dimensional, ma-
chine learning, body motion classification, inertia sensor

1. Introduction

In recent years, many studies have been performed on
the automatic determination of human body motions us-
ing data acquired from inertia sensors built into smart
phones or wristband-type health care terminal devices.

Plenty of training data should be available to construct a
body motion classifier. Experiments on acquiring training
data should not be too long in duration out of concern for
the fatigue or injury of the experimental subjects. If body
motions subject to classification require a certain level of
skill, it may sometimes be difficult to secure a sufficient
number of subjects for the experiments. Under such cir-
cumstances, it is often difficult to acquire data from a large
number of subjects. For practical reasons in many studies,
therefore, a limited number of subjects repeat the same
motion several times to produce the data used to construct
a classifier.

For instance, Khan et al. [1] used a neural network
(NN) to classify such motions as walking, running, sit-
ting down, and standing up using sensor data acquired
from six subjects; Lester et al. [2] used a hidden Markov
model (HMM) to classify such motions as walking, run-
ning, brushing teeth, and riding an elevator using sensor
data acquired from 12 subjects; He et al. [3] used a sup-
port vector machine (SVM) to classify such motions as
walking, running, and jumping using sensor data acquired
from 11 subjects; Ward et al. [4] used HMM to classify
such motions as assembly work (using drills and vises)
using sensor data acquired from five subjects; Siirtola et
al. [5] classified motions such as swimming strokes (back-
stroke, crawl, turn, etc.) using sensor data acquired from
11 subjects; Kon et al. [6] classified swimming strokes
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Fig. 1. Generalization errors caused by individual and trial
differences.

using a decision tree (DT) with sensor data acquired from
one subject.

Classifiers constructed with data acquired from a lim-
ited number of subjects may experience problems due to
individual and trial differences. Such classifiers may be
unable to properly classify any unknown third party data.
Fig. 1 shows how generalization errors are caused by in-
dividual and trial differences. Classes 1 and 2 indicate the
body motions to be classified, such as walking, running,
and standing still. Fig. 1(a) shows scatter plots on a two-
dimensional feature space of the sensor data for the Class
1 and 2 motions of three subjects (Sub.1, Sub.2, Sub.3)
as converted into some features: Feature 1 and Feature
2. The black solid curve in Fig. 1(a) indicates an assumed
separation boundary in machine learning (SVM, NN, etc.)
by the classification models.

The red dashed arrows in Fig. 1(a) indicate individual
differences. The feature space in Fig. 1(a) shows them
clustered for each subject, which can be attributed to the
fact that sensor data for the same motion by different sub-
jects may vary with the individual habits of the subjects.
The red dashed arrows in Fig. 1(a) connect the barycentric
coordinates of the difference clusters for respective sub-
jects with one another: differences in the motions of indi-
vidual subjects are displayed in the feature space. Hence,
we call the red dashed arrows individual differences.

The blue dotted arrows in Fig. 1(a) indicate trial differ-
ences. The feature space in Fig. 1(a) shows slight vari-
ations in the arrows for the same motion by the same
subject, which can be attributed to the fact that identical
sensor data cannot be acquired for the same motion by
the same human being because of many different factors,

such as the condition of the subject or the status of the
sensor. The same motion by the same human being gen-
erates a cluster of individual differences in the same place
in the feature space. The blue dotted arrows represent the
expanse of a cluster of differences as acquired from the
same motion by a subject (that is, differences in different
trials). Hence, we refer to the blue dotted arrows as trial
differences.

The individual and trial differences seem to in-
crease generalization errors for the following reasons:
Figs. 1(b1) and (b2) show plots in the feature space of
generalization errors caused by individual and trial differ-
ences, respectively, when a subject who was not engaged
in learning performed Class 1 motions more than once.

Figure 1(b1) shows how generalization errors can be
caused by individual differences. Assuming that there are
individual differences in human motions, such differences
may be plotted at a slight distance from the training data
(Sub.1, Sub.2, Sub.3). When such data were plotted be-
yond the class separation boundary, generalization errors
increased.

Figure 1(b2) shows how generalization errors can be
caused by trial differences. Even if the barycentric coor-
dinates of a subject not engaged in learning stayed within
the class separation boundary, they could move past the
class separation boundary because of trial differences.
This would also lead to an increase in generalization er-
rors.

Any increases in generalization errors as shown in
Figs. 1(b1) and (b2) can be suppressed by the following
approaches: The first approach is to collect as much train-
ing data as possible. The second approach is to utilize
machine learning like SVM. This technique can generate
a class separation boundary that will maximize the dis-
tance between Classes.

The first approach cannot be applied unless a sufficient
number of subjects participate in the research. The second
approach appears to be preferable only if a feature space
that is less likely to cause generalization errors (because
of individual and trial differences) is already available.
Evaluation indices for features and feature spaces include:
the ratio of variance between the Classes to the variance
within the Classes (BW-Ratio) [7]; a method using the
out-of-bag samples generated during ensemble learning
(OOB) [8]; and a method using feature similarities for the
same class (ReliefF) [9]. However, none of these are in-
tended to reduce generalization errors due to individual
and trial differences.

In this paper, we propose evaluation indices for fea-
ture spaces that represent the likelihood of generalization
errors being caused by individual and trial differences.
Based on the assumption that training data can only be
collected from a small number of subjects, the proposed
indices are intended to search from numerous candidates
for features expected to have high generalization perfor-
mance. In other words, we assume that the proposed
indices can be applied in the process of constructing a
lower-dimensional classifier.
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2. Proposed Method

2.1. Overview
In this paper, a feature space composed of features x is

expressed by [[x]]. For example, the feature space in Fig. 1
is expressed by [[Feature1,Feature2]].

To allow for better understanding of the proposed
method, we explain it for a simple problem: “when
classifying Classes into two Classes (c1 and c2),
constitute an optimal two-dimensional feature space
[[aopt1,aopt2]], (aopt1,aopt2 ∈ A) out of a set with p features
as members A = {a1, . . . ,ap}.”

In the proposed method, in order to search an optimal
feature space, we calculate the indices with which to eval-
uate the superiority of the feature space [[ai,a j]] (i, j =
1, . . . , p, i �= j) composed of ai,a j ∈ A in the classi-
fication problem. Then, we adopt a feature space
with the best indices as the optimal feature space
[[aopt1,aopt2]], (aopt1,aopt2 ∈ A).

Figure 2 outlines the evaluation indices for feature
spaces. The proposed method consists of the following
two phases: phase 1) for constructing the feature space
[[ai,a j]] (i, j = 1, . . . , p, i �= j) that is expressed by two ar-
bitrary features out of p feature probability distributions
of Class cn (n = 1,2), considering individual differences
and trial differences; phase 2) to process misclassification
likelihood into one-dimensional actual values, using the
probability distributions. The phase 1) is referred to in
Sections 2.2 to 2.4 and the phase 2) is referred to in Sec-
tion 2.5.

In order to construct probability distributions for Class
cn that take individual and trial differences into consider-
ation, we first construct the probability distributions that
generate individual differences. Then, we construct the
probability distributions that generate trial differences. In
particular, the method for constructing the probability dis-
tributions that generate individual differences is described
in Section 2.2, and the method for constructing the prob-
ability distributions that generate trial differences is re-
ferred to in Section 2.3.

2.2. Probability Distributions of Individual Differ-
ences

As shown by the red dashed arrows in Fig. 1(a), the
barycentric coordinates in the feature space may differ
with the subjects. We first construct the probability den-
sity function to generate in the feature space different
barycentric coordinates with the subjects and generate
their barycenters by following said function. We have
adopted a multivariate normal distribution as the shape of
the probability density function. For the actually acquired
data for all M subjects, we calculate the mean barycentric
coordinate of each subject and the variance-covariance
matrix; these constitute the parameters of the multivari-
ate normal distributions.

If subject m performs Class cn motions more than once,

the mean value of ai and a j is denoted by a{cn}
i,m ,a{cn}

j,m . By
executing the same operation for all of M subjects, the

mean vector www{cn}
ai, j and variance-covariance matrix V {cn}

ai, j
are calculated by the following equations:

www{cn}
ai, j =

(
w{cn}

ai w{cn}
a j

)T
, . . . . . . . . . (1)

V {cn}
ai, j =

(
v{cn} 2

ai v{cn}
ai, j

v{cn}
ai, j v{cn} 2

a j

)
, . . . . . . . (2)

where w{cn}
ai denotes the mean value for all of M subject

of a{cn}
i,m and is calculated by the following equation:

w{cn}
ai =

1
M

M

∑
m=1

a{cn}
i,m . . . . . . . . . . . (3)

w{cn}
a j can be calculated by replacing subscript i in Eq. (3)

with j (hereinafter, denotations are omitted without no-
tice if replacement of subscripts fulfills calculations and
causes no special confusion). v{cn} 2

ai and v{cn}
ai, j denote the

variance and covariance of a{cn}
i,m , respectively, and are cal-

culated by the following equations:

v{cn} 2
ai =

1
M

M

∑
m=1

(
w{cn}

ai −a{cn}
i,m

)2

, . . . . . (4)

v{cn}
ai, j =

1
M

M

∑
m=1

(
w{cn}

ai −a{cn}
i,m

)(
w{cn}

a j −a{cn}
j,m

)
. (5)

By adopting the mean value vector www{cn}
ai, j and variance-

covariance matrix V {cn}
ai, j obtained from the calculations as

the parameters of the multivariate normal distributions,
unknown subject m′s barycentric coordinates aaai, j,m′ =
(ai,m′ a j,m′)T in the feature space are generated by fol-
lowing the probability distributions:

F{cn}
Individual ( aaai, j,m′) =

1

(
√

2π)2
√
|V {cn}

ai, j |
×

exp
(
− 1

2

(
aaai, j,m′ −www{cn}

ai, j

)T
V {cn} −1

ai, j ×(
aaai, j,m′ −www{cn}

ai, j

))
. . . . . . . . . (6)

The barycentric coordinates of Class cn by M′ subjects
are generated in the feature space by following the prob-
ability distributions. The second feature space on left
side of Fig. 2 represents the individual barycentric coor-
dinates of M′ = 9 people (i.e., m′ = 1, . . . ,9) that have
been generated following F{cn}

Individual(aaai, j,m′). Thus, the

use of F{cn}
Individual(aaai, j,m′) enables us to generate individual

barycentric coordinates in the feature space.

2.3. Probability Distributions of Trial Differences
The discussions in Section 2.2 have accomplished con-

structing M′ subjects’ barycentric coordinates in the fea-
ture space. We represent trial differences by adding vari-
ance to the obtained barycentric coordinates and spread-
ing them (i.e., the variance added to the barycentric coor-
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dinates, which represent individual differences, represents
trial differences.) Using the actually obtained data for M
subjects, we construct probability distributions to spread
a single subject’s barycentric coordinates in the feature
space. The probability density function is a multivariate
normal distribution type, the same as in the preceding Sec-
tion 2.2.

The variances of the features ai and a j of subject m in
Class cn are denoted by σ{cn}

ai,m , σ{cn}
a j,m . They represent vari-

ances in the plural trials for subject m of Class cn motions
in the feature space [[ai,a j]], and correspond to trial differ-
ences. Then, the mean value vector uuu{cn}

ai, j for all subject
trial differences in the feature space [[ai,a j]] and variance-
covariance matrix S{cn}

ai, j are expressed by the following
equations:

uuu{cn}
ai, j =

(
u{cn}

ai u{cn}
a j

)T
, . . . . . . . . . (7)

S{cn}
ai, j =

(
s{cn} 2

ai s{cn}
ai, j

s{cn}
ai, j s{cn} 2

a j

)
, . . . . . . . . (8)

where u{cn}
ai , u{cn}

a j , s{cn} 2
ai and s{cn}

ai, j respectively, denote
the mean value, variance, and covariance for all subjects
in relation to each subject’s variance in Class cn in the
feature space [[ai,a j]]. These are defined by the following
equations:

u{cn}
ai =

1
M

M

∑
m=1

σ{cn}
ai,m , . . . . . . . . . . (9)

s{cn} 2
ai =

1
M

M

∑
m=1

(σ{cn}
ai,m −u{cn}

ai )2, . . . . . . (10)

s{cn}
ai, j =

1
M

M

∑
m=1

(σ{cn}
ai,m −u{cn}

ai )(σ{cn}
a j ,m −u{cn}

a j ). . (11)

With the mean value vector uuu{cn}
ai, j and variance-covariance

matrix S{cn}
ai, j as parameters of the multivariate normal dis-

tribution, for an unknown subject m′ trial difference xxxm′
in the feature space [[ai,a j]] is generated by following the
probability distribution described below:

F{cn}
Trial (xxxm′) =

1

(
√

2π)2
√
|S{cn}

ai, j |
×

exp
(
− 1

2

(
xxxm′ −uuu{cn}

ai, j

)T ×

S{cn} −1
ai, j

(
xxxm′ −uuu{cn}

ai, j

))
. . . . (12)

xxxm′ is a two-dimensional vector with the variance of fea-
tures ai, a j in plural trials of subject m′ of Class cn mo-
tions as a component. The third feature space from the left
of Fig. 2 shows that we have given the variance generated
by following the probability distribution F{cn}

Trial (xxxm′) we
have constructed in this section to the individual barycen-
tric coordinates generated by following the probability
distribution F{cn}

Trial (xxxm′).
We have generated variances by following probability

distributions, so that such variances sometimes have neg-
ative values. If the probability distributions F{cn}

Trial (xxxm′)
used to generate individual trial differences should gen-
erate negative variances, they would have the value of 0.
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2.4. Probability Distributions of Class cccnnn Through
Introduction of Individual/Trial Differences

Equation (6) described in Section 2.2 enables us to gen-
erate the barycentric coordinates aaai, j,m′ of subject m′ in the
feature space [[ai,a j]]. Eq. (12) described in Section 2.3
further enables us to introduce trial differences xxxm′ into
the barycentric coordinates of generated subject m′.

Then, features aaam′ = (ai a j)T to be calculated for the
plural trials of subject m′ of Class cn motions are gener-
ated in the feature space [[ai,a j]] by the following mul-
tivariate normal distributions, which follow parameters
aaai, j,m′ and xxxm′ :

G{cn}(aaam′) =
1

(
√

2π)2
√|xxxm′ | ×

exp
(
− 1

2
(aaam′ −aaai, j,m′)T ×

xxx−1
m′ (aaam′ −aaai, j,m′)

)
. . . . . . (13)

Thus, the probability distribution enables us to generate
the features for the plural trials of subject m′ of Class cn
motions.

The features of Class cn motions of M′ subjects are
plotted in the feature space [[ai,a j]] by the following prob-
ability distribution:

H{cn}(ai,a j) =
1

M′
M′

∑
m′=1

G{cn}(aaam′). . . . . . (14)

G{cn}(aaam′) is a multivariate normal distribution and
H{cn}(ai,a j), standardized for the total sum to be a prob-
ability distribution, should have a mixed Gaussian distri-
bution.

The fourth feature space from the left of Fig. 2 depicts
the probability distribution H{cn}(ai,a j) of Class cn, in
which individual and trial differences are introduced.

2.5. Class Overlapping Function and Error Risk
We introduce evaluation indices for feature spaces, us-

ing the probability distribution H{cn}(ai,a j) of Class cn,
where individual and trial differences are introduced. This
corresponds to the “calculation of importance index for
feature space” described on the right side of Fig. 2.

The feature space [[ai,a j]], where a comparison of the
probability distributions of Classes c1 and c2 (with indi-
vidual and trial differences introduced therein) shows the
coordinates of a class with a high occurrence probabil-
ity of overlapping one another, may be regarded as a fea-
ture space where misclassifications are more likely to be
caused. We have worked out the following function to
represent the likelihood of the coordinates in the feature
space causing misclassifications:

D(ai,a j) = H{c1}(ai,a j)×H{c2}(ai,a j). . . . (15)

Any H{cn}(ai,a j), being a probability density function,
has positive values over the entire domain. Hence, func-
tion D(ai,a j), obtained by multiplying the probability
density function, is also assured to be positive in value

over the entire domain. If the coordinates of Class c1 or
c2 with a higher occurrence probability overlap one an-
other, D(ai,a j) will have a higher value. Therefore, we
refer to D(ai,a j) as a class overlapping function.

We define a function integrating D(ai,a j) over the en-
tire domain. This represents the error risk of features ai
and a j in the class separation problem for Classes c1 and
c2:

I(ai,a j) =
∫ 1

0

∫ 1

0
D(ai,a j)daida j. . . . . . (16)

Error risk I(ai,a j) corresponds to the volume of the class
overlapping function D(ai,a j). Being a one-dimensional
real-valued function, it has a higher value when the co-
ordinates of classes with higher occurrence probabilities
overlap one another. In other words, a feature space with
the smallest error risk is meant to be the most important
feature space for the separation of Classes c1 and c2. In-
cidentally, Eq. (16) can be approximated by the following
equation:

I(ai,a j) � ∑
ai∈[0,1]

∑
a j∈[0,1]

D(ai,a j). . . . . . (17)

As a feature space with a smaller error risk I(ai,a j), the
coordinates of a class with a higher occurrence probability
do not overlap. Two optimal features aopt1 and aopt2 for
separating Classes c1 and c2 can be obtained by solving
the following optimization problem:

[[aopt1,aopt2]] = argmin
ai,a j

I(ai,a j). . . . . . . (18)

The heat map on the left side of Fig. 3 exhibits the class
overlapping function D(ai,a j) of feature space [[ai,a j]],
composed of features ai and a j. Deeper blue colors
(darker region in the case of gray scale print) indicate
lower values and deeper yellow colors (lighter region) in-
dicate higher values.

D(a1,a2) has generally low values across the entire fea-
ture space. This indicates either that the coordinates of
Classes c1 and c2, which have high occurrence probabil-
ities, overlap one another almost nowhere on the entire
feature space, or that the feature space has a low error
risk. Therefore, the error risk I(a1,a2), which is obtained
from the definite integral over the entire domain, should
be low.

D(a1,a3) has generally high values across the entire
feature space. This indicates either that the coordinates
of Classes c1 and c2, which have high occurrence prob-
abilities, overlap one another nearly on the entire fea-
ture space, or that the feature space has a high error risk.
Therefore, the error risk I(a1,a3) obtained from the defi-
nite integral over the entire domain should be high.

D(a1,a4) has generally high values in regions where a1
is low and a4 is high. This indicates that the coordinates
of Classes c1 and c2 with high occurrence probabilities
overlap one another at the lower right. With the coordi-
nates with high occurrence probabilities overlapping one
another, the error risk I(a1,a4) obtained from the integral
of D(a1,a4) over the entire domain should be high.
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Fig. 3. Relationships between Class overlapping function,
error risk, and optimal solution.

Apply the operations to all combinations of selection
candidate features and, in ascending order, sort them as
I(ai,a j), so that you can place the feature spaces in the or-
der of error risks. As the optimal solution in Fig. 3 shows,
the combination of features at the top creates a feature
space with the lowest error risk.

2.6. Multiclass Separation Problem on Multidimen-
sional Feature Space

We generalize our proposed method. Specifically, we
perform the following function: “In a Cmax class separa-
tion problem with Classes c1, . . . ,cCmax , compose an op-
timal ν-dimensional feature space [[aopt1,aopt2, . . . ,aoptν ]]
out of a set A = {a1, . . . ,ap} with p features as members.”
p and ν are natural numbers and ν < p.

To search an optimal feature space, we calculate the
indices for evaluating the ν-dimensional feature space
[[ai1 ,ai2 , . . . ,aiν ]] (i1, i2, . . . , iν = 1, . . . , p, i1 �= i2, . . . , �=
iν), which is composed of ai1 ,ai2 , . . . ,aiν ∈ A in solving
the class separation problem. Additionally, we select a
feature space that has the best index as an optimal feature
space [[aopt1,aopt2, . . . ,aoptν ]], (aopt1,aopt2, . . . ,aoptν ∈ A).

As in Sections 2.2 to 2.4, we pick ν features
ai1 ,ai2 , . . . ,aiν (i1, i2, . . . , iν = 1, . . . , p, i1 �= i2, . . . , �= iν )
out of a set A = {a1, . . . ,ap} with p features as
members, and calculate a mixed Gaussian distribution
H{cn}(ai1,ai2 , . . . ,aiν ) of cn (n = 1, . . . ,Cmax) in the ν-
dimensional feature space [[ai1 , . . . ,aiν ]]. Then, we can
grasp the occurrence probabilities of the respective classes
on feature space [[ai1 ,ai2, . . . ,aiν ]].

The overlapping of coordinates with high occurrence
probabilities in each class indicates higher error risks.
Therefore, we can obtain a function for expressing which
regions of the feature space are likely to misclassify how
much by multiplying the mixed Gaussian distributions

H{cn}(ai1 ,ai2 , . . . ,aiν ):

D(ai1 ,ai2 , . . . ,aiν ) =
Cmax

∏
n=1

H{cn}(ai1 ,ai2 , . . . ,aiν ). (19)

This is the class overlapping function of feature
space [[ai1 ,ai2 , . . . ,aiν ]] composed of ν features
ai1 ,ai2 , . . . ,aiν (i1, i2, . . . , iν = 1, . . . , p, i1 �= i2, . . . , �= iν )
picked from a set A = {a1, . . . ,ap} with p features as
members.

We calculate the error risks I(ai1 ,ai2, . . . ,aiν ) represent-
ing the overall error risk of feature space [[ai1 ,ai2 , . . . ,aiν ]].
This is defined by the ν-multiple integral of the class over-
lapping function, calculated from the combinations of all
features. Because a feature space with the smallest error
risk is the most desirable, the optimal feature space can be
obtained from the following equation:

I(ai1,ai2 , . . . ,aiν ) =∫ 1

0
. . .
∫ 1

0︸ ︷︷ ︸
ν

D(ai1 ,ai2 , . . . ,aiν )dai1 . . .daiν , (20)

[[aopt1, . . . ,aoptν ]] = argmin
ai1 ,ai2 ,...,aiν

I(ai1,ai2 , . . . ,aiν ).(21)

The calculation frequency number for calculating error
risks I(ai1 ,ai2, . . . ,aiν ) to search ν effective features out
of p features is CmaxCν . We should note, therefore, that
the calculation time will become exponentially long if the
scale of the problem is too large.

3. Evaluation Experiments

3.1. Experimental Purpose and Outline

We verify whether the indices for evaluating the fea-
ture spaces proposed in this paper can really select better
features than existing methods. The problem we have as-
signed in the evaluation experiment is classifying butterfly
and breaststroke from one another using the inertia sensor
data acquired during a swimming race. The swimming
style classifier constructed in many earlier studies have
commonly confused butterfly and breaststroke [17–20].
This is attributable to the fact that butterfly and breast-
stroke are more similar than other swimming motions.
This was adopted because a problem with higher solu-
tion difficulty is better suited for evaluating the proposed
method.

We apply the proposed method to solve the problem of
converting inertia sensor data into various features, and
selecting from among them two features effective at clas-
sifying between butterfly and breaststroke.

To evaluate how our proposed method is an improved
solution, we have solved the same problem using existing
feature space evaluation indices such as BW-Ratio [7],
OOB [8], ReliefF [9], and Minimum Reference Set
(MRS) [10]. Among the existing feature space evaluation
indices, BW-Ratio, ReliefF, and OOB are widely used as
general methods for selecting features, and are believed to
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Fig. 4. Sensor mounting position and axial settings.

be highly reliable (for instance, BW-Ratio is used in Ref-
erences [11, 12], OOB, in References [13, 14], and Reli-
efF, in References [15, 16]). In contrast, MRS selects fea-
tures using a small amount of training data, which is one
of the aims of this paper. We followed the following pro-
cedure: extract some data out from the training data and
check whether such extracted data can classify all training
data using the 1-nearest neighbor method; then, any fea-
ture space where all training data can be classified without
errors with as little data as possible is interpreted as a bet-
ter space.

To evaluate the methods, we conducted experiments us-
ing a total of 23 student subjects (nine males and four
females) in a swimming club of the university. The
subjects are 19.9±1.7 years, 168.8±6.6 cm tall, weigh
63.4±5.3 kg, and have 14.2±3.9 years of swimming ex-
perience. The pool we used for the experiments is a short
course (25 m). In conducting the experiments, we told
the subjects that the “acquired data are used for research
purposes only” and conducted the experiments only with
swimming club members who consented to the research.

In the experiments, we used sensors made by Sports
Sensing Co., Ltd. [24]. The specifications of the sensors
are: acceleration (±5 G); angular velocity (±1500 dps);
acquisition of terrestrial magnetism information; sam-
pling frequency 100 Hz; mass 20 g; size 67 mm × 26 mm
× 8 mm. Acquired data are stored in built-in mem-
ory (32 MB). For more detailed specifications, refer to
the product catalog (Waterproof 9-Axial Wireless Motion
Sensor (5 G/1500 dps), Model SS-WS1215, Type A).

Figure 4 shows the position of the sensor and axial set-
tings, where Xacc denotes the acceleration of the X-axis
and Xang denotes the angular velocity of the X-axis; the
same notation applies to the Y -axis and Z-axis. In con-
ducting the experiments, the subjects were asked to select
two swimming styles they are good at from four swim-
ming styles, and the subjects who selected either butter-
fly or breaststroke performed the motions. They were in-
structed to lap swim a 25 m pool (50 m in total) with full
force. We taped the swimming motions with a video cam-
era (30 fps) in order to collate the sensor data waveforms

Table 1. Adopted features ai(i = 1, . . . ,42).

Definition Acceleration Angular velocity
i ζ i ζ

Mean 1 Xacc 22 Xang
ai = Mean(ζ ) 2 Yacc 23 Yang

3 Zacc 24 Zang
Variance 4 Xacc 25 Xang
ai = Var(ζ ) 5 Yacc 26 Yang

6 Zacc 27 Zang
Skew 7 Xacc 28 Xang
ai = Skew(ζ ) 8 Yacc 29 Yang

9 Zacc 30 Zang
Kurtosis 10 Xacc 31 Xang
ai = Kurt(ζ ) 11 Yacc 32 Yang

12 Zacc 33 Zang
Maximum 13 Xacc 34 Xang
ai = Max(ζ ) 14 Yacc 35 Yang

15 Zacc 36 Zang
Minimum 16 Xacc 37 Xang
ai = Min(ζ ) 17 Yacc 38 Yang

18 Zacc 39 Zang
Frequency 19 Xacc 40 Xang
Domain Entropy 20 Yacc 41 Yang
ai = Ent(ζ ) 21 Zacc 42 Zang

Macc : M-axial acceleration
Mang : M-axial angular velocity

and swimming motions. We used a Sony digital HD video
camera recorder HDR-CX720V [25].

3.2. Results and Discussion
From the experiments conducted using the conditions,

we acquired data from four subjects for breaststroke and
six subjects for butterfly.

3.2.1. Conversion into Features
We converted inertia sensor acquired data into features

using the sliding window method [21, 22]. In construct-
ing a classifier to classify swimming styles, the window
width was decided from the time required for one stroke
during a swimming race [23]: construct normal distribu-
tions of stroke time for all swimming styles and calculate
their total sum, to obtain a stroke time with the highest oc-
currence probability that can be applied to any swimming
style. The selected window width was 106 sample points
and the selected slide width was 53 sample points (half of
the window width).

Convert sensor data in the said window width into
features. We have used 42 types of features (A =
{a1, . . . ,a42}), as shown in Table 1. These are the same
features used in earlier studies on swimming style classi-
fication [17–20].

We consecutively converted sensor data into features
using the procedures, and obtained 162 and 210 feature
vector points for breaststroke and butterfly, respectively.
In the proposed method, in view of the domain for defin-
ing the multiple integral, the range of each feature must be
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standardized to [0,1]. Therefore, the maximum and min-
imum values for each feature were searched. The maxi-
mum value was standardized as 1 and the minimum value
was standardized as 0.

3.2.2. Separation of Training and Test Data

We separated the acquired data for four subjects for
breaststroke and six subjects for butterfly into training and
test data. Training data were used to select features and
construct a classifier. Test data were used to verify the
generalization performance of the proposed method. For
breaststroke, the data for three subjects were separated as
training data, and the data from one subject were used as
test data. For butterfly, the data from five subjects were
separated as training data and the data from one subject
were used as test data. To conduct the evaluations under
the strictest conditions possible, we selected one subject
each for breaststroke and butterfly, whose feature vectors
are most different from those of the other subjects. The
following is the process for selecting data from the sin-
gle subject (for both breaststroke and butterfly) as the test
data.

With “br” denoting breaststroke and “bu” denoting but-
terfly; ai(γβ k) value means γβ k -th features of subject β k in
swimming k ∈ {br,bu}. The total features obtained by ap-
plying the sliding window method to the sensor data from
subject β k means Γβ k . Then, the mean value ai(β k) of the
features ai of subject β k in swimming style k is expressed
as follows:

ai(β k) =
1

Γβ k

Γβk

∑
γβk =1

ai(γβ k). . . . . . . . . (22)

Calculate the mean value for each swimming style of for
all the subjects. Then, calculate the mean value ak

i of for
all the subjects’ features ai in for swimming style k:

ak
i =

1
Mk

Mk

∑
β k=1

ai(β k). . . . . . . . . . . (23)

Mk denotes the number of subjects for swimming style
k ∈ {br,bu}, where Mbr = 4 and Mbu = 6. Term ak

i is
the mean value of the features ai of all subjects for swim-
ming style k, and is a representative value of features ai for
swimming style k. By subtracting from ak

i the mean value
ai(β k) of features ai for subject βk, we can quantitatively
express the extent to which subject βk deviates from the
representative value of features ai. Therefore, we define
the deviations in features ai of subject βk in swimming
style k as follows:

Δai(β k) = |ak
i −ai(β k)| . . . . . . . . . (24)

We calculate such deviations in for all of the features
a1, . . . ,a42 and calculate their total ΔA(β k) as follows:

ΔA(β k) =
42

∑
i=1

Δai(β k). . . . . . . . . . . (25)

ΔA(β k) is obtained by totaling the deviations of features
ai of subject βk, and can represent the extent to which
subject βk deviates from the other subjects.

We calculated ΔA(β k) for all subjects for swimming
style k and selected the subject data with the largest
ΔA(β k) as the test data. We separated the data for the
four breaststroke subjects into three training data and one
test data and the data for the six butterfly stroke subjects
into five training data and one test data. Because the test
data represent the data for a subject whose features most
deviate in value from the others, the separation problem
we assigned should be relatively more difficult than that
for randomly selected test data.

3.2.3. Feature Selection Results and Classification Accu-
racy

We discuss the problem of selecting two features (from
42 total) that effectively classify between breaststroke and
butterfly. There are 42C2 = 861 solution patterns. We se-
lected two features important for discriminating butterfly
from breaststroke, by calculating the feature space evalu-
ation indices for all of the solution patterns using both the
proposed method and existing methods (BW-Ratio, OOB,
and ReliefF). One of the parameters we used in apply-
ing the proposed method was the number of people M′,
which was generated following the probability distribu-
tion G{cn}(aaam′). In view of computational complexity, we
adopted M′ = 100. The feature selection results are listed
in the first row of Table 2. Because the importance of
feature combinations is available for BW-Ratio and the
proposed method, the top five important combinations of
features are listed. In OOB and ReliefF, where importance
per feature is output, we selected the first and second im-
portant features for the first important feature space, the
third and fourth important features for the second impor-
tant feature space, and so on for the top five feature spaces.
We can see from Table 2 that features a3, a7 and a8 are re-
garded as important in any method. Because any method
is designed to improve generalization performance, some
similar features are reasonably selected using any method.

We constructed a classifier to classify between the but-
terfly and breaststroke using SVM on training data for
the selected feature spaces. We used the following three
kernel functions: linear kernel (linear), Gaussian kernel
(RBF), and poly-nominal kernel (poly). We set two co-
efficients to impose a penalty on training data misclas-
sifications: c = 1 and c = 100. c = 1 corresponds to
a soft-margin SVM that imposes little penalty on train-
ing data misclassifications and c = 100 corresponds to a
hard-margin SVM that imposes a great penalty on train-
ing data misclassifications. The hard margin SVM, which
is deeply matched to training data, can generate complex
classification criteria, but is more susceptible to overlearn-
ing. In contrast, the soft margin SVM, which is not over-
matched to training data, is less susceptible to overlearn-
ing, and is more likely to improve generalization perfor-
mance.

We constructed six types of SVM using a combination
of three types of kernel functions and two types of mar-
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Table 2. F-measures of test data for respective classifiers on feature spaces composed of top 5 indices.

Feature Selected Classification condition (SVM)
selection Top 5 features Hard margin (c = 100) Soft margin (c = 1) Mean 1 Mean 2 Max Min
algorithm Linear RBF Poly Linear RBF Poly

1 [[ a7,a38]] .902 .738 .727 .885 .780 .780 .802
2 [[ a7,a8 ]] .957 .936 .957 .957 .957 .957 .953

BW-Ratio [7] 3 [[ a8,a37]] .957 .281 .339 .957 .550 .368 .575 .787 .957 .281
4 [[ a7,a31]] .894 .375 .375 .894 .773 .773 .680
5 [[ a7,a17]] .936 .936 .898 .913 .936 .917 .923
1 [[ a8,a24]] .080 .000 .000 .154 .080 .080 .066
2 [[a27,a34]] .000 .000 .000 .000 .000 .000 .000

OOB [8] 3 [[ a7,a39]] .550 .723 .723 .636 .571 .667 .645 .345 .723 .000
4 [[ a3,a38]] .571 .524 .524 .558 .558 .558 .549
5 [[a15,a16]] .450 .444 .444 .488 .488 .474 .465
1 [[ a8,a34]] .452 .452 .452 .452 .452 .452 .452
2 [[ a3,a7 ]] .957 .762 .716 .957 .885 .885 .860

ReliefF [9] 3 [[ a2,a18]] .960 .909 .958 .960 .980 .980 .958 .654 .980 .347
4 [[a19,a28]] .578 .667 .649 .571 .585 .585 .606
5 [[a12,a20]] .410 .390 .368 .450 .390 .347 .392
1 [[ a3,a37]] .558 .558 .558 .558 .558 .558 .558
2 [[a36,a37]] .400 .276 .276 .400 .276 .387 .336

MRS [10] 3 [[ a8,a22]] 1.000 .588 .535 1.000 .844 .760 .788 .535 1.000 .276
4 [[a15,a34]] .452 .452 .452 .452 .452 .452 .452
5 [[a14,a28]] .571 .529 .571 .571 .485 .529 .543
1 [[ a3,a7 ]] .957 .762 .716 .957 .885 .885 .860
2 [[ a3,a8 ]] .980 .941 .941 .980 .960 .941 .957

Ours 3 [[ a7,a8 ]] .957 .936 .957 .957 .957 .957 .953 .873 .980 .558
4 [[ a3,a18]] .980 .960 .941 .980 .960 .960 .963
5 [[ a3,a5 ]] .558 .787 .774 .558 .558 .558 .632

Linear: Linear kernel SVM, RBF: Gaussian kernel SVM, Poly: Polynomial kernel SVM

gins for feature spaces composed of the top five features
extracted by each method. Additionally, we calculated the
F-measures of the test data. The results are listed in the
4th to 13th rows of Table 2. The Mean 1 values are the
mean F-measures of six types of classifiers for the individ-
ual feature spaces. Mean 2 is the mean of the six Mean
1 values, and represents the overall generalization perfor-
mance of the feature spaces obtained from the respective
methods. Max and Min indicate the maximum and mini-
mum F-measures for all feature classifiers obtained from
the respective methods. A comparison of the Mean 1 val-
ues for the respective methods shows that the proposed
method is not necessarily more accurate than other meth-
ods, but a comparison of the Mean 2 values shows that
the proposed method is the most accurate. In terms of the
maximum F-measures of a total of 30 types of classifiers
(a combination of top five feature spaces and six patterns),
MRS, an existing method, has the highest value, and the
proposed method has the highest value in terms of mini-
mum F-measures. In terms of the F-measures for optimal
solutions by the various methods, the proposed method
also produces the best result. The highest mean value
(Mean 2) means that the method has the highest expec-
tation for generalization performance; the highest mini-
mum value means that it is less likely to obtain feature
spaces with low generalization performance; the highest
F-measure for the optimal solutions means that the best

Table 3. Comparison of mean F-measures obtained from 30
types of classifiers.

Comparison def p-value
Ours vs BW-Ratio +.087 *
Ours vs ReliefF +.220 **
Ours vs OOB +.528 **
Ours vs MRS +.338 **

*:p < .05, **:p < .01

solution is obtained by selecting just one pair of features
and automatically applying the methods.

Incidentally, OOB produced extremely low values.
OOB is a method for calculating the importance of fea-
tures using increases in errors by randomly varying the
values of features. This is done to calculate the impor-
tance of the pseudo test data generated by the bootstrap
sampling method. In this paper, we have selected as test
data from a subject whose feature vector most deviated
from those of other subjects. It is anticipated, therefore,
that the pseudo test data by OOB and the real test data
are different from one another in the feature space, and
that the importance of features as measured on pseudo test
data is not well reflected in the accuracy of real test data.
To conduct a more quantitative evaluation, we have com-
pared the Mean 2 t-test values for the proposed method
and each existing method. Table 3 shows the comparison
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Fig. 5. Calculation time by respective methods (Proposed
Method, BW-Ratio, OOB, ReliefF).

results. The second row of Table 3 shows the subtrac-
tions of the Mean 2 values of the existing methods from
those of the proposed method. A comparison between
the proposed method and BW-Ratio method shows that
the proposed method has a significant difference (at a 5%
level) in F-measures in comparison with OOB, ReliefF
and MRS shows the proposed method have a significant
difference of 1% level. The experimental results suggest
that the proposed feature space evaluation indices have
the potential to select features with higher generalization
performance than existing methods, in a context in which
training data can only be acquired from a small number of
subjects.

3.3. Calculation Time
We evaluate the calculation time required by the pro-

posed method. We have executed the evaluations, us-
ing a the same computer for both the proposed method
and the existing methods in the following environment:
OS: Windows 8.1, CPU: Intel(R) Core(TM) i7-4510 CPU
(2.00 GHz-2.59 GHz), RAM 8.00 GB. The data we used
were the training data described in Section 3.2.2. We mea-
sured the calculation time after converting the sensor data
into features, so that conversion time was not included in
the compuation time.

The evaluation results are shown in Figs. 5 and 6. Fig. 5
shows a comparison of calculation times between the
proposed method, BW-Ratio, OOB, and ReliefF. Fig. 6
shows a comparison between the proposed method and
MRS.

With the searched space size indicated on the axis of
abscissa and the calculation time on the axis of ordinate,
Figs. 5 and 6 show the lengths of time taken to select two
effective features from the overall feature set (5 to 42) in-
dicated on the axis of abscissa. The different colors and
lines indicate different methods: green dashed line with
circle for BW-Ratio, blue dashed dot line with circle for
ReliefF, red dashed line with circle or square for OOB,
purple dashed with circle in Fig. 6 for MRS, and black
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Fig. 6. Calculation time by respective methods (Proposed
Method, MRS).

solid line with circle, triangle or square for the proposed
method. The forms of the markers indicate the heuristic
parameters of the different methods: red dashed line with
square indicates that 100 weak learning machines are con-
structed by OOB and red dashed line with circle indicates
that 300 weak learning machines are constructed. The
more weak learning machines are constructed, the fewer
decision surfaces are generated to separate the noise data
present in training data as a result of decreased variance.
This tends to improve generalization performance. On the
other hand, as the number of weak learning machines in-
creases, more decision trees must be constructed, which
directly leads to increased calculation time.

The individual barycentric coordinates M′ generated
by the probability distributions in the proposed method
are indicated by a black solid line with circle (100 per-
sons), black line with square (50 persons), or black
solid line with triangle (10 persons). As the individual
barycentric coordinates are generated for more individu-
als, more mixed Gaussian distributions Hcn(ai,a j) with
a high capacity for representing unknown data are gen-
erated, which will increase the possibility of discovering
more appropriate features. On the other hand, the more
persons, the more probability distributions must be con-
structed, which will increase calculation time.

Considering these factors, we interpret the obtained re-
sults. We can see from Fig. 5 that BW-Ratio and ReliefF
take an extremely short time (approximately one second)
to select two effective features, despite the large number
of features that must be considered. In contrast, OOB
and the proposed method require a longer calculation time
than BW-Ratio. OOB requires a longer calculation time
because it must construct classifiers by ensemble learn-
ing the feature spaces for all features. To measure the
importance of features, we constructed classifiers using a
random forest consisting of a number of decision trees.
In constructing decision trees, OOB must solve the opti-
mization problem to search for features that can minimize
information entropy. OOB has solved said optimization
problem an enormous number of times, which appears to
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have required a longer calculation time than ReliefF or
BW-Ratio. The proposed method seems to have taken a
long time to construct a large number of probability distri-
butions. We can see, however, that the proposed method
and OOB can adjust their calculation times using heuris-
tically decided parameters, so that in the case of a large-
scale problem, calculation time can be shortened by the
use of smaller parameter values.

We can see from Fig. 6 that MRS required more cal-
culation time than any other method. MRS is a method
for selecting (from training data) the data that meet spe-
cific conditions. For instance, MRS constructs 1-nearest
neighboring method on such data and checks whether all
training data can be classified. If all training data cannot
be classified, the same checking procedures are repeated
by increasing such data one by one until all training data
can properly be classified. The repetitive checking pro-
cedures seem to have led to the longer calculation time
required by MRS, relative to that required for other meth-
ods.

The shape of the line graph seems to suggest that the
proposed method uses an exponential time algorithm. In
the case of a large-scale problem, therefore, the search of
all features could not be completed within a realistic time.
Then, it would be necessary to first decrease the number
of candidate features: some important features could first
be selected by making them lower-dimensional through
principal component analysis or auto encoder, or by ap-
plying existing methods that require a shorter calculation
time (BW-Ratio, ReliefF, etc.). Therefore, the proposed
method should be used only after the scale of a problem
is reduced.

4. Conclusion

In recent years, many studies have been performed on
the classification of human body motions using a combi-
nation of inertia sensors and machine learning. Such hu-
man body motion classifications require a huge amount
of training data. Practically, however, it is often diffi-
cult to collect long-term data from a large number of sub-
jects, both because subjects must be experienced at spe-
cific skills and because of concerns regarding fatigue and
injuries. Therefore, many studies have constructed hu-
man body motion classifiers using training data collected
from a small number of subjects [1–6]. In contrast, train-
ing data from a small number of subjects is susceptible to
generalization errors caused by individual and trial differ-
ences. To suppress the generation of such generalization
errors, we selected feature spaces from the training data
that were less likely to generate generalization errors due
to individual and trial errors. However, few studies were
available on indices for evaluating such feature spaces.

This paper proposed evaluation indices for representing
the likelihood that a feature space would generate gen-
eralization errors due to individual and trial differences.
The proposed evaluation indices were obtained by first
using acquired data to construct probability distributions

representing individual and trial differences, and then by
applying such probability distributions in calculating the
risks of causing generalization errors. To verify the ef-
fectiveness of the proposed method, we acquired sensor
data for butterfly and breaststroke swimming and selected
feature spaces that were effective at classifying the swim-
ming styles. In selecting such feature spaces, we ap-
plied the proposed method and certain existing methods
(BW-Ratio [7], OOB [8], ReliefF [9], MRS [10]). We
constructed a breaststroke/butterfly classifiers by apply-
ing SVM to the selected feature spaces. The accuracy
verification conducted with test data verified that the fea-
ture space obtained using the proposed method had sig-
nificantly higher mean F-measures than existing methods.

Furthermore, we measured and compared the calcu-
lation time for each method. We found that the pro-
posed method required a longer calculation time than ex-
isting methods, and that the proposed method could have
the characteristics of an exponential time algorithm. Al-
though the proposed method can solve the problem as-
signed in Section 3 within a reasonable amount of time,
in the case of a large-scale classification problem, it would
need to use higher-dimensional feature spaces with an
increased number of candidate features. Eventually, an
enormous calculation time would be required. Practically,
therefore, it would be useful to apply the proposed method
only after reducing the problem scale by selecting effec-
tive features from all features for classification by existing
methods that require short calculation times.

The use of the proposed evaluation indices enabled us
to search for feature spaces that were less likely to cause
generalization errors because of individual and trial differ-
ences, even in environments where a sufficient amount of
training data could not be collected. This paper, however,
only verified the effectiveness of the proposed method for
one theme. In the future, therefore, we will need to further
verify the effectiveness and generalization performance of
the proposed method for more themes. With training data
sizes as parameters, we will also need to verify the train-
ing data sizes from which the proposed method can search
for effective features.
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