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The major objective of the paper is to investigate a
new probabilistic supervised learning approach that
incorporates “missingness” into a decision tree classi-
fier splitting criterion at each particular attribute node
in terms of software effort development predictive ac-
curacy. The proposed approach is compared empiri-
cally with ten supervised learning methods (classifiers)
that have mechanisms for dealing with missing values.
10 industrial datasets are utilized for this task. Over-
all, missing incorporated in attributes 3 is the top per-
forming strategy, followed by C4.5, missing incorpo-
rated in attributes, missing incorporated in attributes
2, missing incorporated in attributes, linear discrimi-
nant analysis and so on. Classification and regression
trees and C4.5 performed well in data with high cor-
relations among attributes while kkk-nearest neighbour
and support vector machines performed well in data
with higher complexity (limited number of instances).
The worst performing method is repeated incremental
pruning to produce error reduction.

Keywords: missing data, software effort prediction, de-
cision tree imputation

1. Introduction

Accurate and unbiased effort prediction is one impor-
tant contributor to effective software project management.
In fact, knowledge of accurate effort estimates in the soft-
ware project life cycle enables project managers to exploit
resources more efficiently. In recent years classifiers have
been employed to predict software effort using historical
datasets. It is also generally accepted that the highest ac-
curacy results that a supervised learning system (classi-
fier) can achieve depends heavily on the quality of data
and the appropriate selection of a learning algorithm for
the data. One of the central tasks of classifiers is clas-
sifying instances from some domain of application, i.e.,
determining whether a particular instance belongs to a
specified class, given a description of that instance (clas-
sification). Another is to use the classification model to
predict the response outcome for a new instance (predic-
tion). The wealth and complexity of industrial data lends

itself well to the application of classifiers for prediction
or classification of software projects according to factors
that influence software effort rates [1, 2].

Virtually all research on supervised learning addresses
the task of learning to predict or classify complete domain
instances. However, in some research situations we often
have to classify (or predict) instances given incomplete
or noisy vectors. The frequency of incomplete or noisy
data (poor data quality phenomena) is one of the most
vexing problems for engineering and science researchers,
especially those dealing with software data. In fact, the
quality of the results obtained from a classifier depends
heavily on the quality of the attributes employed to train
the classifier. Incomplete software data could be caused
by administrative error, defective technique, or technol-
ogy failure. Another complication could be project man-
agers who flatly refuse to participate in the study. Some
researchers follow the practice of flagging readings that
are suspect, and these may be converted to missing values
or otherwise excluded from the analysis before proceed-
ing.

Recent research has shown that missing values in ei-
ther the training data or test (unseen) data affect predic-
tion accuracy of learned classifiers [1, 3–18]. The task
of learning an accurate incomplete data classifier from in-
stances raises a number of new issues some of which have
not been properly addressed, especially by software engi-
neers. There are, however, a few published works or em-
pirical studies in software engineering research that have
looked at the incomplete data problem. Some of the stud-
ies have used traditional methods [19–23] while others
have looked at much more advanced supervised learning
methods [1, 24–29]. Other researchers have focussed on
classification of incomplete data in other fields like data
mining or knowledge discovery.

All the above strategies (especially those employed
in empirical software engineering) have failed to make
the best use of both the observed and unobserved values
when in fact an incomplete instance may already contain
enough and, sometimes, valuable information for model
construction.

To make headway as to how incomplete data should be
handled, the proportion of missing data in key variables
becomes critical. This is also directly related to the qual-
ity of statistical inference. However, there is no estab-
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lished cut-off from the literature regarding an acceptable
percentage in a dataset for valid statistical inference [30,
31]. Then, the monotonic and non-monotonic patterns
of missing values become equally important. This could
be univariate, monotone or arbitrary. Basically, missing
data patterns addresses the question as to which values
are missing. Finally, the types of processes that can cause
an instance to have missing attribute values have to be
considered. These include: whether this omission is ran-
domly missing, uninformative, partially informative, or
even misleading. Say, for example, one is modelling soft-
ware development effort per lines of code. There could be
no particular reason why a project manager failed to give
any information regarding lines of code or a software de-
velopment effort report, resulting to missing completely
as random (MCAR) data or software effort information
could be missing due to the number of lines of code; this
type of mechanism is called missing at random (MAR).
Informatively missing (IM) data could be caused by a
project manager deliberately withholding information on
projects with high software development effort rates.

The major contribution of the paper is the develop-
ment and assessment of the robustness of a new decision
tree-based probabilistic strategy that incorporates “miss-
ingness” in attributes 3 (MIA3) in terms of predictive ac-
curacy using ten industrial datasets. The performance
of MIA3 is compared with ten state-of-the-art supervised
learning (SL) methods and two of the original “miss-
ingness” incorporated in attributes strategies (MIA and
MIA2) [8, 13]. Between these SL methods they gener-
ate different model forms: linear models, trees, rules and
networks. We also note that although some of these meth-
ods including C4.5, classification and regression trees
(CART) have their own internal approaches of handling
unknown attribute values; it is not clear how they would
react to external imputation methods. Furthermore, miss-
ing values in data could be missing in either the attribute
variables or class labels or both. For the purposes of this
study, we assume that class labels are non-missing.

The rest of the paper is organised as follows: Section 2
presents details of nine SL methods (which we shall now
refer to as classifiers) that are used in this paper. The
framework of the suggested MIA3 is also introduced and
described in Section 3. Section 4 empirically evaluates the
robustness and accuracy of the nine classifiers found in
the literature in comparison with MIA3 using real-world
industrial datasets. We close with a discussion and con-
clusions, and then highlight directions for future research.

2. Existing Supervised Learning Imputation
Methods

2.1. Algorithm Quasi-Optimal

The AQ15 [32] inductive incremental learning system
is the descendant of the algorithm quasi (AQ) family. It
is based on the logic quasi-optimal solution of the general
covering problem and uses the accuracy of the induced

rule on the training set. Classification of an unknown in-
stance is performed by matching each rule with that par-
ticular instance, and then selecting those that it satisfies.
If there is only one such rule, its class is assigned to the
instance; otherwise a “default rule” is used (i.e., assign-
ing the instance to the class that occurs most frequently in
the entire training set, or among those instances not cov-
ered by any rule). Finally, if more than one rule covers
the example, one strategy is to order rules into a “decision
list”, and select only the first rule that fires. When dealing
with incomplete data, AQ15 incorporates a bias against
missing values into a rule building process; any test of an
attribute whose value is unknown (missing) returns a fail-
ure, so that the learner focuses on completely known (non-
missing) features in selecting rule pre-conditions. The as-
sumption made about the law generating the missing val-
ues when using AQ15 is that the data is MCAR.

2.2. Artificial Neural Network
ANNs have been used for a variety of classification and

regression (prediction) problems including pattern and
speech recognition [33], credit risk prediction [34], and so
on. There are many types of ANNs, but for the purposes
of this paper we shall concentrate on the multi-layer per-
ceptrons also known as backpropagation neural networks.
Backpropagation neural networks perform a hill-climbing
search procedure on the weight space described above or
a (noisy or stochastic) gradient descent numerical method
whereby an error function is minimized. At each itera-
tion, each weight is adjusted proportionally to its effect
on the error. One cycle through the training set and on
each example changes each weight proportionally to its
effect on lowering the error. One may compute the error
gradient using the chain rule and the information propa-
gates backwards through the network through the inter-
connections, which accounts for the procedure’s name.
The final product of this activity is a trained neural net-
work (also known as the ultimate “black box”). ANNs re-
quire complete instances for analysis. Hence, the datasets
containing missing values are processed using the ANN
(data preprocessing) prior to them being supplied to the
learning algorithm. This is based on the assumption of
MCAR.

2.3. C4.5
C4.5 is an algorithm used to generate a decision tree

by Quinlan [35]. Decision trees (DTs) are non-parametric
used for regression and classification. C4.5 uses the con-
cept of information entropy and the pruning rule to cre-
ate a model that predicts the value of a target variable
by learning simple decision rules inferred from data vec-
tors. Quinlan’s probabilistic approach of dealing with in-
complete data involves “fractioning” of cases based on a
priori probability of each value determined from the in-
stances at that node that have specified values. First, the
information gain measure is penalised by the proportion
of unknown instances and then these instances are split
to both subnodes. For classification, Quinlan’s approach
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is to explore all branches below the node in question and
then take into account that some branches are more prob-
able than others. The weights of the instance fragments
classified in different ways at the leaf nodes of the tree are
summed and then the class with the highest probability
or the most probable classification is chosen. Since C4.5
does not consider dependencies among the attributes, we
shall thus assume a MCAR mechanism.

2.4. Classification and Regression Trees (CART)
One other sophisticated but yet refined DT-based su-

pervised learning imputation method worthy of note and
study is the surrogate variable splitting (SVS), which has
been used for the CART system [36]. The whole idea of
SVS is to use surrogate variables to impute the predictor
values that are missing. CART handles missing values in
the database by substituting “surrogate splitters.” Surro-
gate splitters are predictor variables that are not as good
at splitting a group as the primary splitter but which yield
similar splitting results in terms of association or correla-
tion (i.e. how close the variables are related); they mimic
the splits produced by the primary splitter with the high-
est association; the second best, the third best, and so on.
The surrogates are used for tree nodes whenever there are
missing values. When dealing with incomplete data, the
CART system relies heavily on the correlation or asso-
ciations of the attributes, hence, is driven by the MAR
mechanism.

2.5. kkk-Nearest Neighbor (kkk-NN)
k-NN is one of the most venerable algorithms in statisti-

cal estimation and pattern recognition. The way in which
the algorithm decides which of the points from the train-
ing set are similar (in terms of distance functions) enough
to be considered when choosing the class to predict for
a new observation is to pick the k closest data points to
the new observation, and to take the most common class
among these [37–39]. The prediction can be the mode,
average, or some interpolation between the prediction of
these k training instances, perhaps weighting closer in-
stances more than distant instances. For this method to
work, distance metrics such as Euclidean, Manhattan or
Minkowski (for continuous attributes) or Hamming dis-
tance (for categorical attributes) are required that mea-
sures the closeness of two instances. Of late, such an
algorithm has become popular in imputing missing data
whereby instances with similar characteristics to the in-
stance of interest are used to impute missing values [5,
12, 40]. k-NN requires that data are MCAR.

2.6. Linear Discriminant Analysis (LDA)
LDA is a classification method that finds a linear trans-

formation (“discriminant function”) of two predictors,
that yields a new set of transformed values that pro-
vides a more accurate discrimination than either predic-
tor alone [41] LDA tries to optimize class separability
and keeping the variance of all classes roughly constant

by reducing the dimensionality of the data while preserv-
ing as much of the class discriminatory information as
possible. LDA looks for a projection where instances
from the same class are projected very close to each other
and, at the same time the projected means are as further
apart as possible. The Mahalanobis distance between two
groups has been one way of assessing the effectiveness of
the discrimination. When dealing with incomplete data,
LDA uses a mean imputation strategy, i.e. replacing miss-
ing values of an attribute with the mean of the attribute.
This strategy is applicable for continuous data. For dis-
crete data of the corresponding attribute, the most fre-
quent value was utilised. LDA is based on the assumption
that data is MCAR.

2.7. Naı̈ve Bayes Classier (NBC)
The NBC (which is based on Bayes’ theorem) learns

from the training data, the conditional probability of each
attribute (predictor) given the class (target) label [42–46].
The major strong assumption of NBC is that all attributes
are independent given the value of the class (class condi-
tional independence). Classification is therefore done ap-
plying Bayes rule to compute the probability of C given
A1, . . . ,An and then predicting the class with the highest
posterior probability. The posterior probability can be cal-
culated by first, constructing a frequency table for each at-
tribute against the target, then transforming the frequency
tables to likelihood tables, and finally calculate the poste-
rior probability for each class. The assumption of condi-
tional independence of a collection of random variables is
very important for the above result. Otherwise, it would
be impossible to estimate all the parameters without such
an assumption. To perform imputation, we treat each at-
tribute that contains missing values as the class attribute,
then fill each missing values for the selected class attribute
with the class predicted from the conditional probabilities
established during training. The NBC assumes that data
is MCAR due to the independence of the attributes given
the class target.

2.8. Repeated Incremental Pruning to Produce Er-
ror Reduction (RIPPER)

RIPPER by Cohen [47] is a fast and effective rule-
based learning algorithm that builds a set of rules that
identify classes while minimizing the amount of error.
The rule-growing algorithm begins with an empty condi-
tion, and greedily adds conditions until the rule no longer
makes incorrect prediction on the growing set. Here, each
condition represents the amount of software development
effort for a specific project. Next, the learned rule is sim-
plified by deleting conditions so as to improve perfor-
mance of the rule on the pruning set. All samples covered
by the formed rule are then removed from the training set
and a new rule is learned in the same way until all exam-
ples are covered by the rule set. The error is defined by
the number of instances misclassified by the rules. RIP-
PER incorporates a bias against missing values into a rule
building process; any test of an attribute whose value is
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unknown (missing) returns a failure, so that the learner fo-
cuses on completely known (non-missing) features in se-
lecting rule pre-conditions. The assumption made about
the law generating the missing values when using RIP-
PER is that the data is MCAR.

2.9. Support Vector Machine (SVM)
The principal goal of the SVM approach is to fix the

computational problem of predicting with kernels [48].
The main idea is to determine a classifier or regression
machine which minimizes the empirical risk (i.e., the
training set error) and the confidence interval (which cor-
responds to the generalisation or test set error). In other
words, the idea is to fix the empirical risk associated with
architecture and then use a method to minimize the gen-
eralisation error. SVM performs classification by finding
the hyperplane that maximizes the margin between, say,
two classes. The vectors (instances) that define the hy-
perplane are the support vectors. Motivated by statisti-
cal learning theory, SVMs have successfully been applied
to numerical tasks, including regression and classifica-
tion. They can perform both binary classification (pat-
tern recognition) and real valued function approximation
(regression estimation) tasks. The standard formulation
of SVMs does not allow for classification with incom-
plete data. Hence, for the handling of missing values in
SVM classifiers, the maximal variation approach by Pel-
ckmans [49] is followed in this article.

3. New Supervised Learning Imputation
Method

MIA3 introduces a number of extensions (in terms of
the number of splits at each internal node of the deci-
sion tree) from the original MIA [50] and the later revised
MIA2 [51]. The key differences between the three ap-
proaches are explained below.

The MIA3approach is very simple, natural and closely
related to the technique of treating “missing” as a cate-
gory in its own right, generalizing it for use with con-
tinuous as well as categorical variables. It is applicable
to any method of constructing DTs, regardless of that
method’s detailed splitting/stopping/pruning rules. The
two approaches are the same for categorical attributes, but
differ a little in their treatment of continuous attributes:
rather than categorizing continuous variables, we incor-
porate missingness directly in splits of continuous vari-
ables. This approach can also be expected to be partic-
ularly useful when missingness is not random but infor-
mative. Classifying a new individual whose value of a
branching attribute is missing is immediate provided there
was missingness in that attribute in the training set that led
to the decision tree [52]. It utilizes a DT as described be-
low.

An unknown (missing) value is considered an addi-
tional attribute value. Hence, the number of values is in-
creased by one for each attribute that depicts an unknown

Fig. 1. Standard algorithm for feature selection.

value in the training or test set.
If Xn is an ordered or numeric attribute variable with

unknown attribute values, the proposed approach searches
essentially over all possible values of xn for binary splits
of the following form:

1. Split A: (Xn = observed) versus (Xn = missing)

2. Split B: (Xn ≤ xn) versus (Xn>xn or Xn = observed)

3. Split C: (Xn ≤ xn or Xn = observed) versus (Xn>xn)

4. Split 4: (Xn = missing) versus (Xn = observed)

5. Split E: (Xn ≤ xn) versus (Xn>xn or Xn = missing)

6. Split F: (Xn ≤ xn or Xn = missing) versus (Xn>xn)

The idea is to find the best split from the candidate set of
splits given above, with the goodness of split measured by
how much it decreases the impurity of the sub-samples.

If Xn is a nominal attribute variable (i.e., a variable that
takes values in an unordered set), the search is over all
splits of the form:

1. Split A: (Xn = observed) versus (Xn = missing)
where Yn is the splitting subset at node n.

2. Split B: (Xn ∈ Yn) versus (Xn /∈Yn or Xn = observed)

3. Split C: (Xn ∈ Yn or Xn = observed) versus (Xn /∈Yn)

4. Split D: (Xn = missing) versus (Xn = observed)

5. Split E: (Xn ∈ Yn) versus (Xn /∈ Yn or Xn = missing)

6. Split F: (Xn ∈ Yn or Xn = missing) versus (Xn /∈ Yn)

When the training set did not have any missing values
for some attributes, the above reduces to using a stan-
dard DT split for such variables, i.e., Xn ≤ xn versus
Xn > xn (for an ordered attribute variable) or Xn ∈ Y n ver-
sus Xn /∈ Yn (for a categorical attribute variable). So, if
there were ∂ options for splitting a branch without miss-
ingness, there are 2∂ +1 options to be explored with miss-
ingness present.

The standard algorithm for feature selection and the
proposed algorithm for feature selection with unknown
(missing) attribute values when using DTs are displayed
in Figs. 1 and 2, respectively. The algorithm works in the
same way to determine the outcome of the test when clas-
sifying a new instance, and given that at that particular
internal node there are attribute values missing as it was
the case with learning. If the unseen instance is regular
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Fig. 2. New algorithm for feature selection with missing attribute values.

(without any unknown attribute value) then the classifi-
cation is carried out the traditional way. However, if an
instance involves one or more unknown values, then the
algorithm tries in turn all the six binary splits and selects
the best split. The split chosen determines the number of
instances branching on each path at a particular node for
which a value is missing.

The key differences between MIA, MIA2 and MIA3
is in relation to the number of splits as summarized in
Fig. 2; MIA only is based on three splits (1, 2, and 3)
while MIA2 is based on only four splits (1, 2, 3, and 4).
For more details about MIA and MIA2, the reader is re-
ferred to Twala [7, 13, 50].

4. Experiments

4.1. Experimental Setup
In order to empirically evaluate the performance of the

new technique, an experiment is used on ten industrial
datasets [7, 51, 53, 54] in terms of the smoothed error rate
(SER). The SER is used due to its variance reduction ben-
efit. Instead of summing terms that are either zero or
one as in the error-count estimator, the smoothed estima-
tor uses a continuum of values between zero and one in
the terms that are summed. The resulting estimator has
a smaller variance than the error-count estimate (which
is also known to be optimistically biased for most classi-
fiers).

MIA3 is empirically evaluated with eleven base meth-
ods of classifier construction with incomplete data (ANN,
AQ15, C4.5, CART, k-NN, LDA, NBC, RIPPER, SVM,
MIA and MIA2) using the 10 industrial datasets and in
terms of the smoothed error rate. These classifiers were

chosen for a number of reasons. First, each utilizes a
different from of parameter estimation/learning. Second,
between them they generate three different model forms:
linear models, trees and networks. Third, they are prac-
tically applicable within the software engineering indus-
try. For all the existing classifiers (with the exception
of MIA, MIA2 and MIA3), the Waikato environment for
knowledge analysis (WEKA) software (with default pa-
rameters) was utilised as a tool of choice to perform clas-
sification [55]. A MATLAB [56] code was developed for
MIA3.

A brief definition of the SER (based on the available
posterior probability error rate estimates) is given below.

We have a set of n instances in the training sample,
S = {xi,yi| i = 1, . . . ,n}, where x j is a vector containing
d attributes, and y ∈ {1,2, . . . ,m} is a class label given m
classes. Let nt be the number of instances in S in class t.
Further let Rt be a set of instances such that the posterior
probability belonging to class t is the largest, and Rut be
the set of instances from class u such that that the poste-
rior belonging to class t is the largest. The classification
error rate for class t is defined as [57]:

et =
∫

Rt

ft (x)dx

The posterior probability of an instance x for class t can
be written as

p (t |x) =
qt ft (x)

f (x)

where f (x) = ∑
u

qu fu (x) is the estimated unconditional

density of x; qt is the prior probability of as instance x
belonging to class t.

Thus, if you replace ft (x) with p (t |x) f (x)/qt , the
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Table 1. Datasets used for the software engineering problem.

Dataset Instances
Attributes

Class DistributionNumerical Categorical
Kemerer 18 4 2 1 (24.1%); 2 (75.9%)
Bank 18 2 7 1 (84.3%); 2 (15.7%)
Test equipment 16 17 4 1 (43.0%); 2 (57.0%)
DSI 26 5 0 1 (49.9%); 2 (50.1%)
Moser 32 1 1 1 (42.2%); 2 (57.8%)
Desharnais 76 3 6 1 (15.7%); 2(84.3%)
Experience 95 1 5 1 (57.0%); 2 (43.0%)
IBSG-version 7 166 2 7 1 (35.6%); 2 (64.4%)
CCCS 282 8 0 1 (48.2%); 2 (51.8%)
Company X 10434 4 18 1 (33.0%); 2 (29.2%); 3 (37.8%)

smoothed classification error rate is:

et = 1− 1
qt

∫
Rt

p (t |x) f (x)dx

Each dataset, defines a different learning problem as
summarized in Table 1.

To maintain a level of consistency with the proportion
of missing values simulated, only datasets whose percent-
age “missings” came out to be close to the nominal per-
centage missing were simulated. Otherwise, those that
were not close were rejected and not considered in the
analysis. To carry out this task, some form of truncated
binomial distribution was used, i.e., any percentage value
that was outside the original binomial and truncated bi-
nomial distribution regions was rejected. Any value less
than or greater than 0.5% to the specific level of missing-
ness being looked at was not considered in our analysis.

Three suites of data were created corresponding to
MCAR, MAR and IM. For MCAR, the random generator
is used while for MAR and IM, a quintile attribute-pair
approach is utilized. For MAR, the idea is to condition
the generation of missing values based upon the distribu-
tion of the observed values. Attributes of a dataset are
separated into pairs, say, (AX , AY ), where AY is the at-
tribute into which missing values are introduced and AX
is the attribute on the distribution of which missingness
of AY is conditioned. For example, to generate miss-
ingness in half of the attributes for a dataset with, say,
12 attributes (A1, . . . ,A12), the pairs (A1,A2), (A3,A4) and
(A5,A6) could be utilized. We assume that A1 is highly
correlated with A2; A3 highly correlated with A4, and so
on. For the (A1,A2) pairing, A1 is used to generate a miss-
ing value template of zeros and ones utilizing the quintile
approach. The template is then used to “knock off” values
(i.e., generating missingness) in A2, and vice versa.

For conditions with IM data, a procedure identical to
MAR was implemented. However, for IM, the missing
values template was created using the same attribute vari-
able for which values are deleted in different proportions.
Both of these procedures have the same percentage of
missing values as their parameters. These two approaches
were also run to get datasets with four levels of proportion
of missingness p. The experiment consists of having p%

of data missing from only the testing (classification) set.
For each dataset, two missing data patterns (suites)

were created. First, missing values were simulated on half
of the attributes (MCARhal f , MARhal f , and IMhal f ). Sec-
ond, missing values were introduced on all the attribute
variables (MCARall , MARall , and IMall ). For both suites,
the missingness was evenly distributed across all the at-
tributes. To measure the performance of methods, the
training set-test set methodology is employed whereby the
missing values are simulated in both sets. For each run,
each dataset is split randomly into 80% training and 20%
testing, with different percentages of missing data (i.e.,
10%, 15%, 25%, 40%, 55%) in the covariates for testing
set. 5-fold cross validation was used for the experiment.

It was also reasoned that the condition with no miss-
ing data should be used as a baseline and what should
be analyzed is not the error rate itself but the increase or
excess error induced by the combination of conditions un-
der consideration. Therefore, the excess error is the error
achieved by a SL method given that the dataset is incom-
plete less the error exhibited by the SL method given that
dataset is complete.

Analyses of variance, using the general linear model
procedure, were used to examine the significance of the
main effects and their respective interactions. The com-
parison of means was conducted by using the Tukey post
hoc test, and utilizing the MINITAB software [58, 59].
This was done using a 5-way factorial design experiment,
with four fixed effect factors: twelve classifiers; two types
of missing data patterns (i.e. number of attributes with
missing values); five levels of missing data proportions;
three types of missing data mechanisms; and five repli-
cates. The 10 datasets is the only random effect fac-
tor. This makes it a total of 18,000 experiments (i.e.
12× 2× 5× 3× 5× 10). The results were then averaged
across 5 folds of the cross-validation process (replicates)
before carrying out the statistical analysis. The averaging
was done as a reduction in error variance benefit

4.2. Experimental Results

Main Effect
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Table 2. Overall means.

Fixed effects Smoothed error rate
Supervised learning methods:

1. ANN 40.6
2. AQ15 37.4
3. C4.5 27.5
4. CART 37.4
5. k-NN 36.9
6. LDA 33.2
7. MIA 29.3
8. MIA2 28.1
9. MIA3 22.4
10. NBC 41.3
11. RIPPER 47.2
12. SVM 45.1

Missing data proportions:
1. 0% 22.6
2. 10% 23.1
3. 15% 23.5
4. 25% 26.7
5. 40% 31.1
6. 55% 35.9

Missing data patterns:
1. Half 24.6
2. All 29.3

Missing data mechanisms:
1. MCAR 19.3
2. MAR 24.5
3. IM 33.4

Random effects
Ten industrial datasets: (See Table 1)

The mixed-effects of analysis of variance reveals a sig-
nificant difference (p-value = 0.0082) in performance
among supervised learning methods at the 5 % level. The
pairwise comparison test shows that MIA3 (one the one
hand) is significantly higher (p-value = 0.0091) com-
pared to the other eleven methods (on the other hand).
This is the case at the 5% level of significance.

Increases in the proportion of missing values in both
the training and test sets being associated with increases
in error rates are presented in Table 2.

Furthermore, it appears that for all the methods miss-
ing values have a greater effect on software effort pre-
dictive accuracy when they are distributed among all the
attributes compared with when the missing values are in
half of the attributes. The difference in error rate between
the two conditions is about 5%. Lastly, the results show
all the methods performing worse under the IM condition
compared with when data are MCAR or MAR. However,
all the methods appear to deal with MCAR data more ef-
fectively than MAR data with an error rate increase dif-
ference of about 5.2% compared with a much bigger dif-
ference of about 14.1% for the MCAR and IM conditions
in error rates. In fact, the error rate increase when 50%
of values are missing in both the training and test sets is
about one and a half times as big as the error rate increase
when 10% of values are missing on both sets.

Interaction effect

Figure 3 summarises the overall excess error rates for

current and new methods against the proportion of miss-
ing data, the pattern of missing data and the mechanisms
generating the missing values. The smoothed error rates
of each supervised learning method are averaged over 10
datasets. All error rates are increases over complete data
case formed by taking differences. From these experi-
ments the following results are observed.

From Fig. 3 it is clear that when both the training and
testing data is incomplete due to the MCARhal f mecha-
nism, MIA3 performs better than the other methods. This
is the case at all levels of missing values. The overall
worst performance is by RIPPER, which is closely fol-
lowed by k-NN and AQ15, respectively. The differences
in performance are mostly significant at the 5% level of
significance, especially with increases in the proportion
of missing values. For MCARall data, the performance of
all the methods follows a similar pattern to the results ob-
served for the MCARhal f suite. However, the difference
in performances for the former is now much more notice-
able, with C4.5 outperforming MIA3 (at the 40% and 55%
levels of missing values.

The results show MIA3 as a more effective method for
handling MARhal f data, especially at lower levels of miss-
ing values and at the 55% level (Fig. 3). For this kind of
missing mechanism suite, the performance of LDA and
C4.5 improves as the amount of missing values increases.
Experimental results for the twelve methods’ handling of
MARall data, show MIA3 achieving higher accuracy at
three levels of missing values (i.e. 10%, 25% and 55%).
However, the performance of all the methods degrades
when data is MARall , with CART, RIPPER and SVM ex-
hibiting high error rates. Good performance is observed
for AQ15 when dealing with MARall data.

The results in Fig. 3 show IMhal f data as more damag-
ing to SVM than any other method (with the exception of
RIPPER). With 55% of missing values, SVMs error rate
increases from 18.2% (MARhal f ) to 28.4% (IMhal f ). The
best performance is once again by MIA3. At lower lev-
els of missing values, there appears to be no significant
difference in performance between most of the methods.
However, as the amount of missing values increases, the
difference in performances becomes significant at the 5%
level.

It can also be seen from Fig. 3 that results yielded by
methods for IMall data are identical to results achieved
by methods for MARall data. The only difference is the
performance of CART which drops from being the third
best method (for dealing with IMhal f data) to being one of
the worst methods (for dealing with IMall data). This is
the case at the 10% level of missing data. AQ15 appears
to deal with IMall data better than IMhal f data, especially
at higher levels of missing data. The best performance is
by MIA3.

It seems that the overall performance of MIA3 is rather
effective on average compared with the other strategies
including the ones that incorporates “missingness” in at-
tributes (MIA and MIA2). This is the case for all the three
missing data mechanisms. In addition, these three strate-
gies deal with IM data more effectively than any other
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Fig. 3. Impact of missing data proportions, patterns and mechanisms on predictive accuracy.

method in all our experiments. The slightly better perfor-
mance of AQ15 compared with RIPPER is rather surpris-
ing considering that they are both rule-based strategies.

Selected individual datasets

Figure 4 summarizes the error rates exhibited by three
of the best supervised learning methods from our previous
experimental results.

This is only for a selected number of datasets described
in terms of their respective characteristics (i.e., total num-
ber of instances, number of categorical or numerical at-
tributes, number of classes and the class distribution per-
centage). All three methods appear to deal with the Com-
pany X problem better, with MIA3 exhibiting the low-

est error rate across the five datasets. This is the only
datasets with more than 10, 000 instances in our experi-
ments. The performances of all the methods appear to de-
grade with decreases in the number of instances for each
dataset. The differences in performances are significant at
the 5% level. LDA appears to only outperform C4.5 for
the CCCS and company X data problems.

5. Conclusion

Data quality has become a very important component
of supervised learning. Using a simulation-based study
based on software effort data we assessed twelve super-
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Fig. 4. Overall means for three methods (individual datasets).

vised learning methods for handling up to 50% missing
data proportions, patterns, and mechanisms in the con-
text of predictive accuracy. The findings from this simu-
lation study demonstrate that for a software engineering
study assessing the association between proportions, pat-
terns and mechanisms of missing data is an advantage es-
pecially when accommodating “missingness” (making the
best use of both the observed and unobserved values).

The empirical results demonstrated that the proposed
method is better than most supervised imputation meth-
ods in terms of software effort prediction accuracy and
classification error rate. Its performance was more ex-
ceptional when dealing with informatively missing data
(one of the most difficult mechanisms to deal with in
data). We suggest that researchers do not use rule-based
approaches when dealing with missing software effort
data. Also, caution should be taken when using SVM
which achieved very low accuracy rates. Our findings
further demonstrate why taking into account both the ob-
served and non-observed values when dealing with the
incomplete-data problems becomes important especially
for small datasets (which are commonplace in software
engineering research).

In practice it may be difficult to estimate the effects
of missing data and to identify and separate its sources.
Therefore one should take measures against multiple pos-
sible missing data effects. We emphasize the importance
of further research to better understand the proportions,
patterns and mechanisms of missing data in software engi-
neering and to provide statistical guidance to researchers
in the field. We further propose that the proposed strategy
be tested extensively on on-industrial datasets.
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