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We have been constructing a swimming ability im-
provement support system. One of the issues to be
addressed is the automatic classification of swimming
styles (backstroke, breaststroke, butterfly, and front
crawl). The mainstream swimming style classifica-
tion technique of conventional researches is based on
non-ensemble learning; in their classification, breast-
stroke and butterfly are mixed up with each other. To
improve its generalization performance, we need to
use better classifiers and more adaptive feature val-
ues than previously considered. Therefore, this re-
search has introduced (1) random forest technique,
one of ensemble learning techniques, and (2) feature
values specific to breaststroke and butterfly to con-
struct a four-swimming-style classifier that has re-
solved this issue. From subjects with 7 to 20 years
history of swimming races, we have obtained their sen-
sor data during swimming and have divided the data
into learning data and test data. We have also con-
verted them into feature values that represent their
body motions. We have selected from those body-
motion-representing feature values the important data
to classify four swimming styles and feature values
specific to breaststroke and butterfly. We have used
the learning data to construct a swimming style clas-
sifier, and the test data to evaluate its classification
accuracy. The evaluation results show that (1’) the
introduction of ensemble learning has improved the
mean value of F-measure for breaststroke and but-

terfly by 0.053, and (2’) the introduction of feature
values specific to breaststroke and butterfly has im-
proved the mean value of F-measure for breaststroke
and butterfly by 0.121 as compared with (1’). The pro-
posed swimming style classifier has performed a mean
F-measure of 0.981 for the four swimming styles as
well as good classification accuracies for front crawl
and backstroke. Therefore, we have concluded that
the swimming style classifier we have constructed has
resolved the problem of mixing up breaststroke and
butterfly, as well as can properly classify all different
swimming styles.

Keywords: swimming style classification, machine
learning, ensemble learning, random forest, inertial mea-
surement unit

1. Introduction

Swimming is designated by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) as “an
event in which we can expect to win plural medals in-
cluding gold medal (target event A)” [1]. To improve in-
ternational swimming competition abilities, it is crucial to
elevate the beginners and intermediate-level swimmers up
to the top level as well as to develop top-level swimmers.

To improve swimming competition abilities, it is de-
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sirable to evaluate the swimming motion performance in
minute detail. Generally, swimming motion performance
is visually evaluated by a coach. However, the coach can-
not evaluate the minute swimming motion in each stroke.
These difficulties could be addressed to some extent by
using a large-scale installation, such as motion capture,
which is not applicable in general practical environment
except to some limited number of swimmers at the top
level.

In this context, we propose a swimming ability im-
provement support system using a compact sensor (here-
inafter, a sensor) that can measure 3-axial acceleration,
angular velocity and terrestrial magnetism (acceleration
and angular velocity are hereinafter collectively called
sensor data), can be used underwater, and can radio trans-
mit data to a computer [2]. It would be more desirable to
use many sensors to derive minute performance evalua-
tion results, but the proposed system uses only one sensor
so that the sensor installation should not give uncomfort-
able feeling to swimmers and that it could be easily used.

The proposed system aims to derive a swimmer’s speed
per stroke immediately after each stroke and then feed it
back to the swimmer in the race via a receiver-installed
bone conduction earphone or LED on a pair of goggles.
It needs to be able to detect in minute detail the parts of
the sensor data waveforms where the swimmer strokes.
As stroking motions largely differ with swimming styles,
sensor data waveforms when swimmers stroke are also
different. To search with minimal errors the parts of sen-
sor data waveforms that represent swimmers in stroking
motion, it is desirable to use a one-stroke detection al-
gorithm specific to a certain swimming style. This one-
stroke detection algorithm can be used only if the swim-
ming style is known. A swimmer or a coach could man-
ually designate a swimming style. However, swimmers
would find it burdensome to input a swimming style into
a computer during each attempt in an environment where
swimmers practice training without a coach or where they
practice different swimming styles in a day. Therefore, it
is desirable to be able to classify automatically the swim-
ming styles.

The foregoing necessitates the construction of a swim-
ming style classifier that can automatically classify swim-
ming styles (backstroke, breaststroke, butterfly, and front
crawl) from sensor data. The proposed system is aimed at
real time feedbacks during a swimming race and needs to
be able to identify swimming styles in the shortest time
possible after the commencement of a swimming race
rather than after the end of the race.

Many researches [3–6] are available discussing the
classifications of these four swimming styles (see Sec-
tion 2). However, they have the same problem in com-
mon where they mix-up breaststroke and butterfly. There-
fore, to construct a practical swimming style classifier, we
need to reduce the classification errors between breast-
stroke and butterfly.

To improve the classifier’s generalization ability, it
is essential to select better models and feature values
than previously considered. Previous researches [3–6] all

adopt non-ensemble learning techniques and often low-
bias/high-variance models. The introduction of ensemble
learning in the construction of swimming style classifiers
should be able to reduce the model’s variance and its clas-
sification errors accordingly. The introduction of feature
values specific to breaststroke and butterfly could also re-
solve the problem with the previous researches.

Therefore, in this paper, we introduce (1) ensemble
learning and (2) feature values specific to breaststroke and
butterfly in constructing a four-swimming-style classifier
that can properly classify all swimming styles. We ex-
amine the actual contribution of (1) and (2) in reducing
classification errors. We also evaluate through simula-
tion experiments the value of time needed by the proposed
system after the start of swimming strokes to classify its
swimming style.

This paper consists of seven sections and is organized
as follows. Section 2 presents overviews of researches re-
lated to the classification of swimming styles. Section 3
discusses the data acquisition experiments and the tech-
nique for converting the acquired data into feature values,
as well as the results of dividing the acquired data into
learning and test data.

Section 4 presents the results of selecting some impor-
tant feature values from those specified in Section 3 for
the classification of swimming styles. It also reports the
results of selecting some important feature values to clas-
sify breaststroke and butterfly so that the common prob-
lem of mixing up breaststroke and butterfly can be re-
solved. One of the differences between this paper and
the previous researches is that we have selected some im-
portant feature values for the classification of breaststroke
and butterfly and have constructed a space for these se-
lected feature values to resolve the common problem with
the previous researches.

Section 5 refers to the results of constructing
swimming-style classifiers based on non-ensemble learn-
ing and ensemble learning. One of the differences be-
tween this paper and the previous researches is that while
the previous researches have mainly classified swimming
styles on non-ensemble learning, we have adopted ensem-
ble learning to obtain better classification conditions re-
sulting from reduced variances. In this section, we have
verified with test data not involved in learning the con-
tribution of (1) ensemble learning and (2) feature values
specific to breaststroke and butterfly to the improvements
in the classifier’s generalization ability. For the verifica-
tion, we have constructed four kinds of swimming style
classifiers, namely, none of (1) and (2) are introduced; (1)
only is introduced; (2) only is introduced; both (1) and (2)
are introduced.

Section 6 proposes a technique to improve further the
classifier’s accuracy by applying a swimming style classi-
fier with the introduction of (1) and (2). The results of the
verification of the proposed technique’s accuracy are also
presented.
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2. Related Researches

We present an overview of the previous researches on
the construction of swimming style classifiers with a sin-
gle sensor and refer to the differences between this paper
and the previous researches.

Siirtola et al. [7] have attempted to construct a swim-
ming style classifier capable of classifying backstroke,
breaststroke and front crawl on the three-axial accelera-
tion data as obtained from swimmers swimming with a
sensor worn on the wrist or on the back. However, they
have not attempted to classify butterfly.

Kon et al. [3] have attempted to construct a swimming
style classifier on the three-axial acceleration data as ob-
tained from swimmers swimming with a sensor worn on
the waist. Their research used three kinds of feature val-
ues: average, variance and frequency domain entropy.
They have used the Decision Tree (DT) as a model in con-
structing their classifier.

Ohgi et al. [4] have attempted to construct a swimming
style classifier on the three-axial acceleration data as ob-
tained from swimmers swimming with a sensor worn on
the breast. Their research used three kinds of feature val-
ues: average, variance and skewness. They have used DT
and Multiple Neural Network (MNN) as models in con-
structing their classifier.

Choi et al. [5] have attempted to construct a swimming
style classifier on the three-axial acceleration/angular ve-
locity data as obtained from swimmers swimming with a
sensor-installed smartphone worn on the arm. Their re-
search used four kinds of feature values: average, vari-
ance, minimum value and maximum value. They have
used three kinds of models: DT, Support Vector Machine
(SVM) using linear/non-linear kernels and Naive Bayes
(NB) in constructing their classifier.

Jensen et al. [6] have attempted to construct a
swimming style classifier on the three-axial accelera-
tion/angular velocity data as obtained from swimmers
swimming with a sensor worn on the back of the head.
Their research used the following feature values: average,
variance, kurtosis, skewness, minimum value and max-
imum value. They have used Linear Regression Model
(LRM) as a model in constructing their classifier.

Any of these researches has the problem of mixing up
breaststroke and butterfly in classifying swimming styles,
which is probably because breaststroke and butterfly re-
semble each other in their motions. In backstroke, the
swimmer’s back faces to the floor and the stroke is al-
ternately made by one arm after the other, while in front
crawl, the swimmer’s back faces to the ceiling and the
stroke is alternately made by one arm after the other. In
breaststroke and butterfly, the swimmer’s back faces to
the ceiling and the stroke is simultaneously made by both
arms. This shows that there exist distinct differences in
motions in the combination of swimming styles other than
that of breaststroke and butterfly, while the body motions
in the combination of breaststroke and butterfly resem-
ble each other, which could result in obtaining similar
data from their inertial measurement units and mixing up

breaststroke and butterfly in the previous researches.
This paper discusses how to resolve the problem with

many of the previous researches of mixing up breaststroke
and butterfly by introducing (1) ensemble learning and
(2) feature values specific to the classifications of breast-
stroke and butterfly.

Some researches on the classification of swimming
styles with video cameras [8] are also available. The
present research aims to construct an environment where
any developed classifiers can be used as easily as possi-
ble as described in Section 1. We aim to achieve classifi-
cations of swimming styles only by averages of compact
inertial measurement units without using a video camera.

3. Data Acquisition Experiments

Learning data are required for constructing a swimming
style classifier and test data to obtain its generalization
ability. This section describes the experiments to acquire
data necessary for the construction of a swimming style
classifier as well as the processes for constructing learning
and test data.

3.1. Experimental Overview
We conducted experiments with a total of 13 univer-

sity student subjects (9 males and 4 females) who belong
to swimming clubs in the university. The subjects were
19.9 ± 1.7 years of age, 168.8± 6.6 cm in height, and
63.4±5.3 kg in weight and have swimming experience as
long as 14.2± 3.9 years. We conducted the experiments
using a swimming pool of 25 m course and swimming
club members only who have consented to our prior ex-
planation that “the acquired data shall be used only for
research purposes.”

We used a sensor made by Sports Sensing Co., Ltd.
(former Logical Products Co., Ltd.) with the following
specifications: accelerations (±5 G); angular velocities
(±1500 dps); terrestrial magnetism sensors; sampling fre-
quency 100 Hz; weight 20 g; size 67 mm×26 mm×8 mm;
and acquired data stored in a built-in memory (32 MB).
For detailed specifications of the sensor, please refer to the
product catalog [9] (under the official name: Water-Proof
9-Axis Wireless Motion Sensor (5 G/1500 dps), Model
Number: SS-WS1215, Type A.

Figure 1 shows the position where the sensor is fitted
and the axial setting, where Xacc denotes the X-axis accel-
erations and Xang denotes the X-axis angular velocities.
The same applies to Y and Z.

The subjects are instructed before the experiments to
select two of the four swimming styles that they are good
at and to do a lap swim of the 25 m course (50 m in total)
with full force in the selected swimming styles without
jumping into the pool. We have taken movies of their
swimming with a video camera (30 fps) to compare their
swimming motions with the sensor data waveforms. The
video camera we have used is a digital HD video camera
recorder HDR-CX720V made by Sony [10].
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Fig. 1. Position to fit the sensor and axial setting.

3.2. Data Processing
3.2.1. Division into Learning Data and Test Data

Of the 26 swimming trials (13 subjects×2 swimming
styles), the data on five swimming trials are not available
either because of a dead battery of the sensor or the sensor
getting out of the lower back. Therefore, we have used the
data on 21 swimming trials.

The data are broken down into three swims in back-
stroke, four swims in breaststroke, six swims in butterfly,
and eight swims in front crawl. They are divided into data
for the construction of a classifier (learning data) and data
for the verification of its generalization ability (test data)
by ensuring that the learning data and test data should not
retain data on any similar subjects. As a result, the back-
stroke swimming learning data are for two swims and the
test data are for one swim; the breaststroke swimming
learning data are for two swims, and the test data are for
two swims; the butterfly swimming learning data are for
four swims, and the test data are for two swims; the front
crawl swimming learning data are for five swims, and the
test data are for three swims.

Furthermore, we have counted the number of the sub-
jects’ strokes on their movie data to calculate the total sum
of strokes for each swimming style. As a result, the total
number of backstrokes is counted as 52 (32 in learning
data and 20 in test data); 85 for breaststrokes (47 in learn-
ing data and 38 in test data); 111 for butterfly (67 in learn-
ing data and 44 in test data); and 126 for front crawl (73
in learning data and 53 in test data).

3.2.2. Determination of Stroke Periods
In constructing a classifier to determine some motions

on sensor data, we should not use raw data. Instead, we
should convert them into variables that could represent the
features of objects to be determined (hereinafter, feature
values). In determining body motions on sensor data, their
averages and/or variances in a certain length of time are
used as feature values that represent average body swings
or their distributions [11, 12]. The ideal length of time de-
pends on the motions to be determined. Given that swim-
ming race is composed of cyclic repetitions of stroke mo-

Table 1. Average and standard deviation of stroke period
(learning data).

Swimming style k Number of strokes mk [s] pk
Backstroke (Ba) 32 1.254 0.121
Breaststroke (Br) 47 1.148 0.099
Butterfly (Bu) 67 1.060 0.040
Front crawl (Fr) 73 1.175 0.101

tions, we have decided to derive these values from their
stroke periods.

Given that swimming in backstroke, breaststroke, but-
terfly and front crawl largely differs in stroke motions
with each other, the widths of stroke periods must also be
different from each other. Given that this research aims to
construct a classifier capable of automatically classifying
swimming styles, we should not use different stroke peri-
ods that suit different swimming styles. We need to derive
a unique stroke period that could be partly applied to any
kind of swimming styles. This subsection describes how
to derive this unique stroke period.

At first, we have checked the movie data to determine
the ordinary stroke starting point u on the sensor data. We
have measured on the movie data the time each stroke has
taken to calculate its mean value mk [s] and standard de-
viation pk. The results are shown in Table 1, where we
derive a stroke period that would be partly applicable to
any of the four swimming styles. Assuming that the stroke
period r [s] of each swimming style follows a normalized
distribution;

N (r|mk, p2
k) =

1√
2π p2

k

exp
(
− (r−mk)2

2p2
k

)
. . (1)

With k denoting a swimming style, it is expressed as fol-
lows:

k ∈CSwim = {Ba,Br,Bu,Fr}, . . . . . . . (2)

where Ba denotes backstroke, Br, breaststroke, Bu, but-
terfly, and Fr, front crawl. An independent variable that
yields the maximum value of Eq. (1) is considered a rep-
resentative stroke period of the swimming style k. Given
that this research aims to derive the width w of a stroke pe-
riod that could be partly applied to any swimming styles,
we calculate the total sum of the distributions in Eq. (1) to
obtain the following equation:

f (r) = α ∑
k∈CSwim

N (r|mk, p2
k), . . . . . . . (3)

where α denotes a normalization constant where f (r), in-
tegrated by its open interval (−∞,∞), makes an integral
value of 1. Given that we have summed four normal dis-
tributions, it becomes 1/4.

As f (r) is a function composed of the total sum of nor-
mal distributions of the stroke period of all swimming
styles, we assume that its maximum value could be used
as the width w of the stroke period that could be partly
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Fig. 2. Converting sensor data into feature values.

applied to any swimming style: w is defined as follows:

w = argmax
r

f (r). . . . . . . . . . . . . (4)

Then, we obtained w = 1.070 s.

3.2.3. Conversion into Feature Values

This subsection describes the processes to convert sen-
sor data into feature values using the width w of a stroke
period that could be partly applied to any swimming style
as obtained in the previous subsection.

Figure 2 shows the processes for converting sensor
data into feature values. We have derived the feature val-
ues using the sliding window technique proposed by Bao
et al. [11] and Ravi et al. [12].

The time-series data on the accelerations/angular ve-
locities obtained for each swimming style and each sub-
ject are processed into feature values in the range from the
ordinary stroke starting point u to u + w in the first 25 m
swimming. These processed feature values are shown in
Table 2, where Mean denotes mean value; Var, variance;
Skew, skewness; Kurt, kurtosis; Max, maximum value;
Min, minimum value; Ent, frequency domain entropy.
We have calculated these seven kinds of values for the
three-axial accelerations and angular velocities and have
adopted them as feature values a j( j = 1, . . . ,42) by which
to classify swimming styles. We have decided these fea-
ture values by referring to the previous researches [3–6]
on the classification of swimming styles. As averaged an-
gular velocities in any swimming styles tend to become
0, mean angular velocities cannot be used as feature val-
ues by which to classify swimming styles (for example,
a swimmer tries to keep the body horizontal to the wa-
ter surface by turning left after turning right). Therefore,
we have converted angular velocities into absolute values
before calculating their mean values. We have sequen-
tially calculated the mean values in the process by sliding
it by w/2 from the stroke’s starting point u until imme-
diately before turning back. We have applied the same
processes to the strokes in the latter 25 m swimming. We
have used only one graph (Fig. 2) to explain the processes,

Table 2. Adopted feature values aj( j = 1, . . . ,42).

Definition Acceleration Angular Velocity
j k j k

Mean value 1 Xacc 22 Xang
aj = Mean(k) 2 Yacc 23 Yang

3 Zacc 24 Zang
Variance 4 Xacc 25 Xang
aj = Var(k) 5 Yacc 26 Yang

6 Zacc 27 Zang
Skewness 7 Xacc 28 Xang
aj = Skew(k) 8 Yacc 29 Yang

9 Zacc 30 Zang
Kurtosis 10 Xacc 31 Xang
aj = Kurt(k) 11 Yacc 32 Yang

12 Zacc 33 Zang
Maximum value 13 Xacc 34 Xang
aj = Max(k) 14 Yacc 35 Yang

15 Zacc 36 Zang
Minimum value 16 Xacc 37 Xang
aj = Min(k) 17 Yacc 38 Yang

18 Zacc 39 Zang
Frequency domain 19 Xacc 40 Xang
entropy aj = Ent(k) 20 Yacc 41 Yang

21 Zacc 42 Zang
Macc : M-axial acceleration

Mang : M-axial angular velocity

but in practice, there are six graphs in total represent-
ing the combinations of the X/Y/Z axes and accelera-
tions/angular velocities. We have applied the processes
to the sensor data divided into learning data and test data
to obtain learning data L and test data T that retain the
converted feature values. Learning data L and test data
T are labeled to represent swimming styles (backstroke,
breaststroke, butterfly, and front crawl).

The processes using a sampling frequency of 100 Hz
should make the second decimal place of w an even num-
ber. Therefore, with w = 1.070 s, we use 1.080 s.

The processes applied to the sensor data have resulted
in the number of samples NL of the learning data at 412
(breakdown: 60 in backstroke, 90 in breaststroke, 126 in
butterfly, 136 in front crawl). The number of samples NT
of the test data is at 294 (breakdown: 38 in backstroke, 72
in breaststroke, 84 in butterfly, 100 in front crawl). In this
research, we use the learning data L to construct a four-
swimming-style classifier. We also use the test data T to
verify its generalization ability for possible applications
to unknown third parties.

4. Selection of Feature Values

The construction of the classifier with 42 types of fea-
ture values shown in Table 2 will create a 42-dimensional
vast feature-value space. This a high-dimensional vast
feature-value space is not so desirable from the general-
ization point of view that it should be made lower dimen-
sional by calculating the importance of feature values on
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some indices to select the feature values to be used rather
than using all of the 42 kinds of feature values. It is impor-
tant in the problem of multi-class classifications to select
the feature values that can properly classify all classes.
Therefore, we first select feature values that are impor-
tant for the classifications of four swimming styles, and
then we select feature values specific to breaststroke and
butterfly swimming styles, which the previous researches
have often misclassified.

4.1. Random Forest and Decision Tree
Among several available techniques of calculating the

importance of feature values, we have adopted a technique
that applies bootstrap sampling and random forest (RF).
This subsection describes RF and decision tree (DT).

At first, we divide the learning data L generated in Sub-
section 3.2.3 by the bootstrap sampling as follows:

Lsub = {Lsub
i }B

i=1, . . . . . . . . . . . (5)

O = {Oi}B
i=1, . . . . . . . . . . . . (6)

where Lsub denotes the sub-learning data with subsets of L
as components; Lsub

i denotes learning data for construct-
ing i-th weak learner; O denotes out of bag (OOB) dataset
with subsets of L as components. Oi is composed of data
that have not been selected as components of Lsub

i . OOB
dataset O can be used for the parameter-tuning intended
to improve the generalization performance of the weak
learner composed of sub-learning dataset Lsub and for cal-
culating the importance of feature values. B denotes the
number of weak learner to be constructed. Next, we con-
struct a weak learner using Lsub composed by the boot-
strap sampling as follows:

Tr = {Tr(i)}B
i=1, . . . . . . . . . . . . (7)

where Tr denotes weak learner set. Its component Tr(i)
denotes weak learner constructed with i-th sub-learning
data Lsub

i . In this research, we have decided to set the
weak learner model as DT and the classifier as RF that
decides its final classifications on the majority of DTs.

DT is a technique of representing classification stan-
dard by a binary tree structure and is constructed as fol-
lows. Ordinary DT is processed with learning data L and
DT as weak learner of RF, with sub-learning data Lsub

i .
First, the information entropy of samples in the undivided
conditions is calculated:

Ipre = − ∑
k∈CSwim

p(k) log p(k), . . . . . . . (8)

where p(k) denotes the percentage of swimming style k.
Then, divide the samples into two branches, namely, a j ≥
s, a j < s, using a feature-value a j. Nodes generated in
the process are denoted by N1 and N2, and the numbers of
samples by n1 and n2 samples. The information entropy
with each of the divided nodes is calculated and averaged
as follows:

I
a j ,s
post = −

2

∑
b=1

nb

n1 +n2
∑

k∈CSwim

p(k|Nb) log p(k|Nb). (9)

This equation represents the fuzziness of each swimming
style in each of the nodes divided by a j ≥ s, a j < s. Then,
the information gains are calculated as follows:

G(Ipre, I
a j ,s
post) = Ipre − Ia j,s

post. . . . . . . . . (10)

This equation serves as an index to measure how much
fuzziness has been reduced before and after dividing the
samples by a j ≥ s, a j < s. Swimming styles are classi-
fied by seeking feature values a j with high information
gains and their branching criteria s. Feature values amax

j
and branching criteria smax, which can best classify swim-
ming styles after being divided into two branches, can be
obtained by solving the following optimization problem:

(amax
j ,smax) = argmax

a j ,s
G(Ipre, I

a j,s
post). . . . . . (11)

A binary tree is generated by recursively executing the
processes. If a binary tree is made deeper under the said
conditions, it will continue to be branched until one sam-
ple is generated, causing overfitting. Therefore, the fol-
lowing constraint conditions are imposed on the number
of samples n1 and n2 after they are divided into two:

subject to d ≤ n1,n2. . . . . . . . . . . (12)

Setting these constraint conditions enable the construction
of DTs that can restrain overfitting. If a classifier is to
be constructed with a single DT only, d needs to be set
with a not too small value. If DT is to be used as a weak
learner of RF, it is recommended to set d = 1 to improve
the individual weak learner’s variance [13].

If these processes are executed with B sub-learning
datasets, B-DTs are generated when feature values are in-
put, and B classification results are output, which we call
RF.

In constructing DTs as weak learners of RF, if you
treat all feature values as solution candidates for the op-
timization problem in Eq. (11), the B weak learners gen-
erated will resemble each other. Majority decisions of re-
sembling DTs would not help improve the generalization
performance, which is derived from reduced variances.
Therefore, in constructing DTs as weak learners of RF, we
should search solutions from randomly selected γ feature
values rather than all feature values. Thus, we can con-
struct RF where weak learners have less similarity with
each other. The recommended value of γ is the square
root of the total number of feature values [13].

4.2. Principle for Importance Calculation
We next describe the principle for calculating the im-

portance of feature values by applying the constructed
classifier. We use OOB data that have not been used as
sub-learning data. OOB data Oi is classified by weak
learner Tr(i). Classification errors acquired in the pro-
cess, due to data unconcerned with learning, may cor-
respond to the classifier’s pseudo generalization perfor-
mance. We call these classification errors as OOB Errors,
where we can calculate the importance of feature values.

In one of the techniques for calculating the importance
of feature values [13], increments in the classification er-
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Fig. 3. Important feature values for the classification of four swimming styles (learning data).

rors when feature values a j of OOB dataset O are ran-
domly changed are taken as the importance I j of a j. The
specific processes for deriving I j are described below.
First, randomly change the feature values a j of the OOB
data Oi that have not been used for the construction of
weak learner Tr(i). Then, obtain the weak learner Tr(i)
to classify the OOB data Oi and define any variations ΔEi

j
of the OOB Errors before and after the random changes
of feature values as follows:

ΔEi
j = Ei

j −Ei, . . . . . . . . . . . . . (13)

where Ei
j denotes the OOB Errors of the weak learner

Tr(i) when feature values a j are randomly changed in Oi;
Ei denotes OOB Errors of the weak learner Tr(i). Next,
calculate the average and variance of ΔEi

j in all weak
learner:

ΔE j =
1
B

B

∑
i=1

ΔEi
j, . . . . . . . . . . . (14)

σ2
j =

1
B

B

∑
i=1

(ΔEi
j −ΔE j)2. . . . . . . . . (15)

Then, we define as the importance of feature values a j:

I j =
ΔE j

σ j
. . . . . . . . . . . . . . . . (16)

This value becomes larger as the average ΔE j of incre-
ments in the classification errors of all weak learner is
larger or as its standard deviation σ j is smaller. Specif-
ically, the larger and more uniform increments in the er-
rors of each weak learner denote more important feature
values.

4.3. Important Feature Values for the Classification
of Four Swimming Syles: FV1

Using the technique described in Subsection 4.2, we
have derived the feature values that are important for
the classification of four swimming styles. Specifically,
from learning data L, we have generated 100 sub-learning

datasets Lsub = {Lsub
i }100

i=1 by bootstrap sampling. In solv-
ing the optimization problem in Eq. (11), the number of
feature values γ as solution candidates is the square root
of the total number of feature values as recommended
by [13] (γ =

√
42 = 6.48 � 6). We have also calculated

the importance of feature values by applying the OOB
dataset O = {Oi}100

i=1 that have been generated incidental
to the sub-learning dataset Lsub.

The results are shown in Fig. 3. The axis of the or-
dinate indicates the importance I j of feature values, and
the axis of the abscissa denotes each feature-value a j.
In this paper, we take feature values a j with I j ≥ 0.5
as important feature values for the classification of four
swimming styles. As a result, we have selected nine
kinds of feature values: a3 = Mean(Zacc), a4 = Var(Xacc),
a6 = Var(Zacc), a9 = Skew(Zacc), a15 = Max(Zacc), a18 =
Min(Zacc), a21 = Ent(Zacc), a23 = Mean(Yang), a40 =
Ent(Xang). These feature values are hereinafter called
FV1.

4.4. Important Feature Values for the Classification
of Breaststroke and Butterfly: FV2

Previous researches on the classification of swimming
styles have the problem of misclassifying breaststroke and
butterfly. This problem could be solved by searching for
feature values that are useful for classifying breaststroke
and butterfly and by constructing a classifier based on
these feature values. Therefore, in this research, besides
FV1 described in Subsection 4.3, we select feature values
specific to the classification of breaststroke and butterfly
by first extracting just breaststroke and butterfly from the
learning data L and then excluding feature values FV1.
Then, we calculate the importance of the selected feature
values in the same procedure as in Subsection 4.3.

The results are shown in Fig. 4, which highlights the
importance of feature values just for classification of
breaststroke and butterfly.

Too many feature values could make the feature-value
space for classification of breaststroke and butterfly too
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Fig. 4. Important feature values for the classification of breaststroke and butterfly (learning data).

broad, possibly increasing the classification errors for
backstroke and front crawl. Therefore, in this paper, we
have decided to adopt the top three kinds of feature values
and have consequently selected the following three fea-
ture values: a2 = Mean(Yacc), a28 = Skew(Xang), a37 =
Min(Xang). These feature values are hereinafter called
FV2.

We have checked with the feature-value space as to
whether or not the FV2 we have selected is effective for
the classification of breaststroke and butterfly. We have
used the learning data only. The results are shown in
Fig. 5, where breaststroke is red circle and butterfly is
purple box; butterfly on the upper and right side of the
space and breaststroke on the lower and left side. Breast-
stroke and butterfly are comparatively clearly separated
from each other, while breaststroke and butterfly are plot-
ted close to each other. The use of FV2 alone may not
be able to classify the two swimming styles with high ac-
curacy, but a combined use of FV1, which is important
for the classification of four swimming styles with FV2,
should be able to improve the generalization performance
for breaststroke and butterfly.

5. Construction of Swimming Style Classifier
and its Evaluation

This research aims to solve the problem with the pre-
vious researches of mixing up breaststroke and butterfly
in their classification by introducing (1) ensemble learn-
ing and (2) feature values specific to the classification of
breaststroke and butterfly as well as constructing a swim-
ming style classifier that can properly classify four swim-
ming styles. To verify how effectively the introduction of
(1) and (2) could solve this problem with the previous re-
searches, we have constructed different swimming style
classifiers where ensemble learning is applied or not ap-
plied and feature values specific to breaststroke and but-
terfly are applied or not applied and have compared their
generalization performance. We have decided to take the
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Fig. 5. Feature-value space of FV2 (Learning data).

classifier model with no ensemble learning as DT that is
used by many of the previous researches on the classifica-
tion of swimming styles [3–5]. The classifier model with
ensemble learning as RF with DT is a weak learner.

5.1. Construction of Classifiers
The classifiers constructed in this research and their pa-

rameters are shown in Table 3. C1 and C2 are classifiers
with DT. C1 has introduced the feature values FV1, which
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Table 3. Constructed classifiers and their parameters.

ID Model Feature value d γ B
C1 DT FV1 30 - -
C2 DT FV1, FV2 30 - -
C3 RF FV1 1 3 41
C4 RF FV1, FV2 1 3 136

C4 is proposed method.

Table 4. Structures of classifiers C1 and C2.

ID IF THEN
C1 a4 ≥ 17.042∧a3 ≥ 1.493 Fr

a4 ≥ 17.042∧a3 < 1.493 Ba
a4 < 17.042∧a21 ≥ 2.149 Br
a4 < 17.042∧a21 < 2.149 Bu

C2 a4 ≥ 17.042∧a2 ≥ 1.043 Ba
a4 ≥ 17.042∧a2 < 1.043 Fr
a4 < 17.042∧a21 ≥ 2.149 Br
a4 < 17.042∧a21 < 2.149 Bu

are important for classifying four swimming styles, while
C2 has introduced feature values FV2 specific to breast-
stroke and butterfly in addition to FV1. The constraint d
defined by Eq. (12) is 30, which is half of the 60 samples
for backstroke, the smallest in the learning data, so that
each swimming style can be allowed to have two sub-
spaces on the feature-value space. Parameters γ and B
are left blank because they are only applicable to RF. The
classification criteria of DT are shown in Table 4.

C1 is branched into (butterfly/breaststroke) and (back-
stroke/front crawl) by a4 = Var(Xacc). Swimmers make
bilaterally symmetrical strokes in (butterfly/breaststroke)
and bilaterally asymmetrical strokes in (backstroke/front
crawl). As the X-axial direction indicates lateral mo-
tions, the size of horizontal directional variance seems to
have worked effectively to classify bilaterally symmetri-
cal and asymmetrical swimming styles. Backstroke and
front crawl are divided by a3 = Mean(Zacc). The swim-
mer’s whole body faces the floor in front crawl and the
ceiling in backstroke. Therefore, the gravitational acceler-
ation sign given in the Z-axial direction is reversed. These
differences seem to be reflected in a3. Breaststroke and
butterfly are divided by a21 = Ent(Zacc). The stroke wave-
forms of each swimming style, when represented by fre-
quency domain, show differences in the size of fuzziness.

For C2, its classification criteria are almost the same as
for C1. However, backstroke and front crawl are classified
by a2 = Mean(Yacc). This suggests that accelerations in
the direction of motion are different between backstroke
and front crawl.

C3 and C4 are classifiers constructed by means of RF.
C3 introduces feature values FV1 that are important for
classifying four swimming styles, while C4 introduces
feature values FV2 specific to the classification of breast-
stroke and butterfly in addition to FV1. For the constraint
conditions d and the number of feature values γ to be

Fig. 6. Relation between the number of weak learners B and
OOB Errors.

Table 5. Classification accuracies of learning data.

Classifiers C1 and C2
Measured Evaluated

k Ba Br Bu Fr Ak Pk Rk Fk
Ba 60 0 0 0 1 1 1 1

Estimated Br 0 89 9 0 .976 .908 .989 .947
results Bu 0 1 117 0 .976 .992 .929 .959

Fr 0 0 0 136 1 1 1 1
Classifiers C3 and C4

Measured Evaluated
k Ba Br Bu Fr Ak Pk Rk Fk

Ba 60 0 0 0 1 1 1 1
Estimated Br 0 90 0 0 1 1 1 1

results Bu 0 0 126 0 1 1 1 1
Fr 0 0 0 136 1 1 1 1

Remarks: Classification results of C1 and C2
are same with each other and those of C3 and

C4 are also same with each other.

randomly selected in solving the optimization problem,
we have adopted the recommended values [13]: 1 for d
and the square root of the total number of feature val-
ues for γ . As FV1 consists of nine feature values, we
have adopted γ =

√
9 = 3 for C3. As the total number

of feature values of FV1 and FV2 is 12, we have adopted
γ =

√
12 = 3.46 � 3 for C4. For the total number of weak

learners B, we have varied it between 1 and 200 to adopt
a value where OOB Errors get converged. The results are
shown in Fig. 6. As C3, OOB Errors get converged when
B ≥ 41. we have adopted 41 as B for C3. As C4, OOB
Errors get converged when B ≥ 136, we have adopted 136
as B for C4.

5.2. Comparison of Classification Accuracies
5.2.1. Classification Accuracies of Learning Data

Table 5 shows the classification results of learning data
by the four classifiers constructed in Subsection 5.1. As
C1 and C2 had the same classification results of learning
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data, the classification accuracies of C1 and C2 are given
together, similar with those of C3 and C4. The diagonal
lines in table represent the number of correctly classified
swimming styles, and the other represent the number of
erroneously classified swimming styles. TPk denotes the
number of correct classifications of the swimming style k
as swimming style k. T Nk denotes the number of correct
classifications of swimming styles other than swimming
style k as other than swimming style k. FPk denotes the
number of erroneous classifications of swimming styles
other than swimming style k as swimming style k. FNk
denotes the number of erroneous classifications of swim-
ming style k as swimming styles other than swimming
style k. We have calculated the accuracy Ak, precision
Pk, recall Rk, and F-measure Fk for the classifications of
the swimming style k as follows:

Ak =
T Pk +T Nk

TPk +TNk +FPk +FNk
, . . . . . . (17)

Pk =
T Pk

TPk +FPk
, . . . . . . . . . . . . (18)

Rk =
T Pk

TPk +FNk
, . . . . . . . . . . . . (19)

Fk =
2PkRk

Pk +Rk
. . . . . . . . . . . . . . (20)

The evaluation results show that for DT, almost all
swimming styles have been correctly classified except for
a few wrong answers about breaststroke and butterfly. For
RT, all swimming styles have been correctly classified.
They just represent classification accuracies of learning
data and do not guarantee classification accuracies of un-
known data. Therefore, we verify in the following subsec-
tion the classifier’s generalization performance for data
that are not involved in learning.

5.2.2. Classification Accuracies of Test Data
The classifier we construct in this research is aimed

at being able to correctly classify unknown third party’s
swimming styles rather than learning data. In this sub-
section, we measure the classifier’s generalization perfor-
mance from this perspective.

In general machine learning, the available techniques to
measure generalization performance include n-hold Cross
Validation (n-CV) and Leave One Out Cross Validation
(LOO-CV) [13]. In the n-CV, generalization performance
is measured by dividing all feature-value vectors into n
datasets: n− 1 datasets as learning data and one dataset
as test data. Then, alter the dataset to be assigned as test
data in n times and calculate the mean value of general-
ization performance. In the COO-CV, extract one feature-
value vector out of all feature-value vectors as test data,
where generalization performance is measured. Alter the
feature-value vector to be extracted as test data for all of
the feature-value vectors, and calculate the mean value of
generalization performance.

These techniques of measuring generalization perfor-
mance are particularly recommended in the situations

Table 6. Classification accuracies for test data.

Classifier C1 (DT/FV1)
Measured Evaluated

k Ba Br Bu Fr Ak Pk Rk Fk
Ba 31 0 0 0 .976 1 .816 .899

Estimated Br 7 49 6 0 .878 .790 .681 .731
results Bu 0 23 78 0 .901 .772 .929 .843

Fr 0 0 0 100 1 1 1 1
Classifier C2 (DT/FV1+FV2)

Measured Evaluated
k Ba Br Bu Fr Ak Pk Rk Fk

Ba 31 0 0 5 .959 .861 .816 .838
Estimated Br 7 49 6 0 .878 .790 .681 .731

results Bu 0 23 78 0 .901 .772 .929 .843
Fr 0 0 0 95 .983 1 .950 .974

Classifier C3 (RF/FV1)
Measured Evaluated

k Ba Br Bu Fr Ak Pk Rk Fk
Ba 38 0 0 0 1 1 1 1

Estimated Br 0 66 19 0 .915 .776 .917 .841
results Bu 0 6 65 0 .915 .915 .774 .839

Fr 0 0 0 100 1 1 1 1
Classifier C4 (RF/FV1+FV2), proposed method

Measured Evaluated
k Ba Br Bu Fr Ak Pk Rk Fk

Ba 38 0 0 0 1 1 1 1
Estimated Br 0 67 1 0 .980 .985 .931 .957

results Bu 0 5 83 0 .980 .943 .988 .965
Fr 0 0 0 100 1 1 1 1

where the number of available data is not sufficiently
large [13]. If we adopt these techniques in this research,
it could result in too high generalization performance. In
this research, we calculate the generalization performance
by the sliding window technique, where feature-value
vectors overlap each other. Feature-value vectors calcu-
lated at certain points in the sensor data waveforms should
partially retain numerical information on the feature-value
vectors calculated before and after the said points. If
we apply the n-CV or LOO-CV to such structured data,
feature-value vectors not completely independent of each
other should be assigned to learning data and test data,
which would make the n-CV or LOO-CV generate un-
intentionally higher generalization performance. In the
n-CV or LOO-CV, which acquires the feature-value vec-
tors for one subject’s strokes, the feature-value vectors of
the same subject would be divided into learning data and
test data. As both learning data and test data refer to the
same subject, the generalization performance measured
on these data cannot be applied to unknown third parties.
We have decided to not use n-CV or LOO-CV, but to mea-
sure the generalization performance of the four classifiers
constructed in Subsection 5.1 on the test data of a subject
other than the ones for learning data.

The classification results of the test data are shown in
Table 6. We first refer to classifiers C1 and C2 with DT.
Their classification results for backstroke and front crawl
are good, while they have mixed up breaststroke and but-
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terfly similar to the previous researches. Table 4 shows
that feature values specific to breaststroke and butterfly
(FV2) are not applied to classifier C2 particularly for the
classification of breaststroke and butterfly, which seems
to have resulted in the failure of classifier C2 in resolv-
ing the mixed-up classification of breaststroke and butter-
fly despite the introduction of feature values FV2, which
are effective for the classification of breaststroke and but-
terfly. Furthermore, the comparison in Fk of backstroke
and front crawl between C1 and C2 confirms that C2 with
feature values specific to breaststroke and butterfly FV2
introduced has lower values than C1. We review this mat-
ter on the branch structures of C1 and C2 shown in Ta-
ble 6. The difference between C1 and C2 only lies in
that C1 uses feature values a3 to classify backstroke and
front crawl and C2 uses the feature value a2, which repre-
sents feature values specific to breaststroke and butterfly
(Fig. 4), to classify backstroke and front crawl. This im-
proper use of feature values seems to have reduced C2’s
F-measure of test data. The DT construction algorithm
elects feature values effective for classification by apply-
ing the optimization problem expressed by Eq. (11) to
learning data. Specifically, it interprets feature values to
classify learning data most accurately as important fea-
ture values. The classification accuracies of learning data
by C1 and C2 (Table 5) shows that both of them have
correctly classified backstroke and front crawl. Feature
values a2 should be extremely important feature values
from the viewpoint of maximizing the classification accu-
racy of learning data, so that feature values a2, which are
important for the classification of breaststroke and butter-
fly, seem to have been used for the classification of back-
stroke and front crawl. As learning data and test data are
concerned with different subjects, their results plotted on
the feature-value space are different from each other. The
use of a2 or a3 has correctly classified all learning data,
but it is only C2, which uses a2, that has mixed up the
test data on backstroke and front crawl. The feature-value
selection algorithm introduced in DT, which aims to clas-
sify correctly all learning data, seems to have caused the
results of C2.

In the process of constructing C1 and C2, the low-
dimensional algorithm introduced in DT has searched for
effective feature values to the feature values selected by
the feature-value importance in Figs. 3 and 4. Specifi-
cally, C1 and C2 each have two feature-value selection
processes. In the former process, learning data have
pseudo test data (OOB data) and interpreted as important
feature values those feature values that are more likely to
have some effects on errors. The process introduced in DT
is interpreted as important feature values for feature val-
ues that maximize the classification accuracies of learn-
ing data themselves. With this difference in the way of
thinking about the “quality of feature values,” it is possi-
ble that feature values that had been treated as having high
generalization performance in the former process would
be rejected in the latter process. This scenario would ex-
plain why some feature values important for the classifica-
tion of four swimming styles (for example, a9 and a18) in

Fig. 3 were not used in the classifiers C1 and C2. Among
the numerous classifier construction techniques, this is a
phenomenon that could only occur in DT, which classifies
feature values of learning data on minimum necessary fea-
ture values. Although classifiers with RF are also based
on DT as described below, they divide learning data into
countless sub-learning datasets or treat the data as solu-
tion candidates for γ feature values that are randomly se-
lected in solving the optimization problem expressed by
Eq. (11). Therefore, they can use not just the minimum
necessary, but as many other feature values as possible.

Next, we refer to classifier C3 with RF and FV1 as well.
Table 6 shows the improved classification results of back-
stroke and front crawl. It slightly mixes up breaststroke
and butterfly, but much less than C1 and C2. This seems
to suggest that the introduction of ensemble learning is
effective to improve the classifier’s generalization perfor-
mance for all swimming styles.

Lastly, we refer to classifier C4 with RF and FV1 + FV2
as well. Ensemble learning as well as feature values spe-
cific to breaststroke and butterfly are introduced into C4.
This is a new swimming-style classifier that we propose
in this paper. Table 6 shows that C4 has least mixed up
with breaststroke and butterfly among all classifiers or has
properly classified the swimming styles. Feature values
FV2 are specific to the classification of breaststroke and
butterfly and are not so important for the classification of
backstroke and front crawl. We are at first concerned that
its expanded feature-value space may increase its wrong
answer rates for backstroke and front crawl, but its actual
classification results are found similar with classifier C3
with no FV2 introduced yet. This seems to suggest that
feature values specific to the classification of breaststroke
and butterfly (FV2) do not affect the classification of other
swimming styles in RF; therefore, it would rather be ef-
fective to eliminate mixing up breaststroke and butterfly.
F-measure for all swimming styles are ≥ 0.950, proving
that it has high generalization performance.

5.2.3. Effects of Ensemble Learning and Proposed Fea-
ture Values

We quantitatively evaluate how much (1) ensemble
learning and (2) feature values specific to the classifi-
cation of breaststroke and butterfly, which we have in-
troduced in this research, have actually contributed to
improvements in classification accuracies. We use F-
measure Fk as evaluation criteria. F-measure of each
classifier for test data are shown in Table 7, where F-
measure for four swimming styles, their mean values
(Mean(ALL)), and mean values for breaststroke and but-
terfly (Mean(Br, Bu)) are shown.

We first refer to the effects of the introduction of en-
semble learning. We have acquired these effects by de-
ducting the F-measure of classifier C1 from the F-measure
of classifier C3. The effects acquired in that way show an
improvement of +0.052 in the mean value for all swim-
ming styles and an improvement of +0.053 in Mean(Br,
Bu).
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Table 7. Comparison of F-measure of classifiers (test data).

Classifier Model Feature value Ba Br Bu Fr Mean(ALL) Mean(Br, Bu)
C1 DT FV1 .899 .731 .843 1 .868 .787
C2 DT FV1+FV2 .838 .731 .843 .974 .847 .787
C3 RF FV1 1 .841 .839 1 .920 .840
C4 (proposed method) RF FV1+FV2 1 .957 .965 1 .981 .961

Next, we refer to the effects of the introduction of fea-
ture values specific to breaststroke and butterfly (FV2).
We have acquired these effects by deducting F-measure
of classifier C3 from the F-measure of classifier C4. The
effects acquired in that way show an improvement of
+0.121 in Mean(Br, Bu).

Lastly, we refer to the comprehensive effects of the in-
troductions of ensemble learning and FV2. We have ac-
quired the said effects by deducting F-measure of classi-
fier C1 from F-measure of classifier C4. The comprehen-
sive effects acquired in that way show an improvement of
+0.174 in Mean(Br, Bu).

These results prove that the introductions of (1) ensem-
ble learning and (2) feature values specific to breaststroke
and butterfly (FV2) in this paper are found to be effective
in resolving the problem with the previous researches of
mixing up breaststroke and butterfly.

5.2.4. Dimensional Effects of FV2

We have confirmed in the discussions that the introduc-
tion of feature values specific to breaststroke and butter-
fly (FV2) has reduced erroneous classifications of breast-
stroke and butterfly. These improvements in classification
accuracies could be attributed to higher dimension of the
feature value space as classifier C4 with FV2 introduced
is 12-dimension, while classifier C3 is 9-dimension. To
check in detail whether or not FV2 is really important for
the classification of breaststroke and butterfly, we need to
construct a classifier in the same dimensions with C3 on
the feature value space where FV2 is introduced and to
compare their classification accuracies with each other.

First, we have eliminated three feature values
(a6,a15,a40) of lowest importance from among nine fea-
ture values important for the classification of four swim-
ming styles. We have then added three feature values im-
portant for the classification of breaststroke and butterfly
(FV2) to make a total of nine feature values, which we
call FV3.

Next, we have constructed a four-swimming-style clas-
sifier with RF using FV3, which we call C5. We have
evaluated classifier C5’s classification accuracies with
learning data and test data. The evaluation results are
shown in Table 8. Classifier C5 has correctly classified
all the swimming styles in learning data similar to C3 and
C4. However, it has 13 cases of misclassifying breast-
stroke for butterfly with test data. As it has no other mis-
classifications, it has generally good classification accura-
cies.

To check the effects of FV2 and higher dimension,

Table 8. Classification accuracies of classifier C5.

Learning data
Measured Evaluated

k Ba Br Bu Fr Ak Pk Rk Fk
Ba 60 0 0 0 1 1 1 1

Estimated Br 0 90 0 0 1 1 1 1
results Bu 0 0 126 0 1 1 1 1

Fr 0 0 0 136 1 1 1 1
Test data

Measured Measured
k Ba Br Bu Fr Ak Pk Rk Fk

Ba 38 0 0 0 1 1 1 1
Estimated Br 0 59 0 0 .956 1 .819 .901

results Bu 0 13 84 0 .956 .866 1 .928
Fr 0 0 0 100 1 1 1 1

we have compared the C5’s classification results with F-
measure of C3 and C4 as similar models constructed with
RF. The comparison results are shown in Table 9. Com-
parison of mean F-measure of breaststroke and butterfly
(Mean(Br, Bu)) between C3 and C5 shows a difference of
+0.074. FV3 represents these feature values, where three
feature values are first eliminated from FV1 and then FV2
is added instead. Given that C3 and C5 have the same
dimensional feature value spaces, the improvement may
be attributed to FV2. On the other hand, comparison of
Mean(Br, Bu) between C4 and C5 shows a difference of
+0.047. Both C4 and C5 have FV2 introduced in and
the only difference between them lies in the dimensions
of their feature value spaces. Therefore, the improvement
may be attributed to an increase in the number of dimen-
sions.

In summary of the discussions, classifier C4’s high gen-
eralization performance of Mean(Br, Bu) = 0.961 may be
attributed to the combined effects (+0.074) of the intro-
duction of feature values specific to breaststroke and but-
terfly FV2 and the effects (+0.047) of higher dimension
of the feature value space. The results seem to suggest
that any even higher dimension of the feature value space
will not lower the classifier’s generalization performance.
Therefore, we need to search for optimum dimensions of
the feature value space to achieve higher generalization
performance.
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Table 9. Generalization performance for breaststroke and
butterfly in RF.

Classifier Feature Value Model Dimensions Mean(Br, Bu)
C3 FV1 RF 9 .840
C4 FV1+FV2 RF 12 .961
C5 FV3 RF 9 .914

6. Evaluation Experiments by Simulations

6.1. Overview and Purpose
The discussions in Section 5 suggest that classifier

C4 constructed in this research can properly classify all
swimming styles of unknown third parties. However,
the minimum value of classifier C4’s precision rate Pk is
0.943, which indicates that C4 could misclassify swim-
ming style once in twenty times. From the pattern recog-
nition point of view, the precision rate should be deter-
mined as good result. From the user’s point of view, how-
ever, we should aim to achieve much higher accuracies.

One of the possible techniques to achieve much higher
accuracies would be to take a majority. In the process of
converting feature values described in Subsection 3.2.3,
data necessary to convert the first feature value is stored
1.08 s after the start of strokes. Then, data convertible
into feature values are acquired every 0.54 s. Specifically,
the data necessary for the first classification of swimming
styles is collected 1.08 s after the start of strokes and
then the data necessary for the subsequent classifications
of swimming styles are sequentially accumulated every
0.54 s. This enables us to take a majority of classification
results and adopt it to achieve much higher classification
accuracies.

As mentioned at the first part of Section 1, the sys-
tem [2] to be constructed in this research aims at feeding
back swimmer’s performance in real time to swimmers in
a race. As high-speed classifications of swimming styles
are required in the step prior to performance derivation,
the system under development needs to be able to specify
swimming styles at the early stage of a swimming race. If
we want to specify swimming styles by a majority of clas-
sifier C4’s classification results, the more classification re-
sults subject to a majority decision, the slower speeds to
classify swimming styles. Therefore, the swimming-style
classification should better be made by a majority with
few classification results as possible.

In this section, therefore, we estimate by simulations
on how many seconds after the start of strokes the system
can classify swimming styles with high accuracy.

6.2. Preparation of Datasets
First, we prepare datasets for the simulation evalua-

tions. We calculate that mean values and standard de-
viations of the feature values as acquired from test data
on each swimming style and create a normal distribution
of feature values for each swimming style. We generate

Fig. 7. Swimming style classification accuracies at elapsed time.

from its normal random numbers 200 swims per swim-
ming style (800 swims in total). Feature values of ten
classifications for each swimming style are stored in data.
Classifier C4 classifies swimming styles on such data to
acquire ten classification results per swim. The first clas-
sification of swimming styles is made at 1.08 s after the
start of strokes and then subsequent classifications are se-
quentially made every 0.54 s.

6.3. Results and Discussions
We have verified the classification accuracies by a ma-

jority of individual swimming-style classification results.
The results are shown in Fig. 7. It shows the swimming-
style classification accuracies as decided by a majority:
the first one at 1.08 s after the start of strokes, the second
one at 0.54 s later or at 1.62 s after the start of strokes,
and subsequent classifications in the same way. Colored
broken lines indicate the mean value of individual four
swimming styles and a black solid line shows the mean
values of four swimming styles.

For backstroke and front crawl, even if normal ran-
dom numbers are added to test data that are not involved
in learning, it shows they are all correctly classified (in
Fig. 7, the axis of ordinate overlaps the accuracy line of
1.00). It tells that classifier C4 has very robust generaliza-
tion performance for front crawl and backstroke.

For breaststroke and butterfly, the classification accura-
cies tend to converge at 100% as time elapses. This seems
to be attributable to the decision by a majority of clas-
sifications where a few misclassifications if any would
become negligible because of far more correct classifi-
cations. Mean classification accuracy for all swimming
styles are 99.0% at 2.16 s after the start of strokes, 99.6%
at 3.24 s, and 99.9% at 4.32 s and get better as time
elapses, so that using the feature values to be acquired
in the period of 5.4 s, it has obtained the correct answer
rates of 100% for all of 800 swims. These results suggest
that use of classifier C4 should enable us to collect data on
which to classify properly swimming styles from 2.16 s to
5.4 s after the start of strokes. It also shows that the clas-
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sification accuracies have dropped at 1.62 s after the start
of strokes, probably because of the decision by a majority
of the two classifications of swimming styles, where if the
two classifications are not correct, their majority decision
will turn out to be incorrect classifications as well.

The data on which we have derived the results are based
on the test data that are not involved in the construction of
classifiers. We have generated the data according to the
normal random numbers of the feature values as acquired
from the test data so that the data contain a few feature
values that are apart by two standard deviations and three
standard deviations. Classifier C4, which we have con-
structed in this study, has properly classified swimming
styles even on such data, which seems to prove that the
technique to classify swimming styles by a majority of
classifier C4’s classifications should have extremely ro-
bust and high generalization performance.

7. Conclusion

We have been engaged in the researches with a final
goal of constructing a swimming competitive ability im-
provement support system using sensors [2]. To achieve
the goal, swimming styles need to be automatically clas-
sified at a high speed and with accuracy after the start of
a swimming competition. There are several previous re-
searches available on automatic classifications of swim-
ming styles. They are mainly based on non-ensemble
learning and have a common problem of mixing up breast-
stroke and butterfly [3–6]. To resolve this problem, we
have constructed a four-swimming-style classifier by in-
troducing (1) ensemble learning and (2) feature values
specific to breaststroke and butterfly.

Then, we have examined on test data how much the in-
troductions of (1) and (2) above have really contributed to
the improvements of the classifier’s generalization perfor-
mance. The examination results show that the introduc-
tion of (1) ensemble learning has improved the F-measure
of classifications for all swimming styles by +0.052 and
the F-measure of classifications for breaststroke and but-
terfly by +0.053. The introduction of feature values spe-
cific to breaststroke and butterfly has improved the F-
measure of classifications for breaststroke and butterfly
by +0.121. With F-measure for all swimming styles be-
ing ≥ 0.950, classifier C4, which we have constructed in
this research, has proven to have high generalization per-
formance.

Finally, we have conducted evaluation experiments by
simulations to check how many seconds after the start of
strokes it can classify swimming styles with as few errors
as possible. We have found from the experiments that the
use of data acquired from 2.16 s to 5.40 s after the start
of strokes enables it to classify swimming styles with an
accuracy of 99.0% to 100%.

The swimming style classification technique described
in this paper has following three issues to be addressed in
the future.

First Issue: to determine the width w of the more proper

stroke period. In this paper, we have determined w by the
function of the total sum of normal distributions of stroke
period in the four swimming styles, which has resulted
in adopting w that is biased to the stroke period of but-
terfly probably because the standard deviations of stroke
period of butterfly are smaller than those of other swim-
ming styles. Nevertheless, this does not pose a big prob-
lem to the swimming style classifier we have proposed in
this paper, which has high generalization performance. To
achieve much higher generalization performance, how-
ever, we may need to adopt w that is not biased to any
particular swimming style by, for example, adopting mean
stroke period of all swimming styles as w.

Second Issue: to use a proper number of feature values.
In this paper, we have calculated the importance of feature
values I j for all feature values. We have defined that as for
FV1, this feature values that have an importance≥ 0.5 are
important for the classifications of four swimming styles,
and that as for FV2, top three feature values are important
for the classifications of breaststroke and butterfly. These
criteria for adopting feature values are in no event con-
sidered objective. To achieve much higher generalization
performance, we should vary the criteria, observe how the
generalization performance would change, and then de-
termine the optimum criteria for adopting feature values
accordingly.

Third Issue: to use as much data as possible. In this
paper, we have conducted analyses using the data from
13 subjects. Use of test data prepared in this paper
has achieved high-accuracy classifications of swimming
styles. However, we cannot strongly claim that the same
accuracy could be secured in classifications of unknown
third parties’ swimming styles. Therefore, we will need
to collect as many learning data and test data as possible
in the future.

As soon as these issues are resolved, we intend to detect
the timing to start swimming to automatically detect the
timing to start classifications of swimming styles. Then,
we intend to promote solutions to issues required of the
envisaged system [2] such as the construction of a per-
stroke performance quantification technique.
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