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Magnetic bearing systems have attracted extensive at-
tention in the fields of high speed, spotless area, vac-
uum space, etc. System performance depends largely
on the control link, and it has become a research fo-
cus to improve controller performance to ensure high
precision stable suspension and high anti-interference
capability. This paper considers optimized, sliding
mode, robust, fuzzy, and neural network control sys-
tems and assesses their research status and limitations
for magnetic bearing systems. Algorithms for pro-
posed vibration and high speed flexible rotor controls
are illustrated. Finally, development trends for control
technology of magnetic bearing systems are discussed.
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1. Introduction

Magnetic bearings are new high performance non-
contact levitation support bearings, widely used in high
speed lathes, turbines, compressors, flywheel energy stor-
age, turbo molecular pumps, artificial heart pumps, and
other equipment due to superior qualities, such as high
rotational speed, non-lubrication, wear free, easy main-
tenance, long life, low power consumption, and flexible
control. These properties make magnetic bearings com-
petitive in aeronautics, astronautics, transportation, nu-
clear energy, and life sciences applications where high
speed drives are required [1–4]. The controller design
for magnetic bearing systems is critical to realize these
advantages and ensure high precision stable suspension
of the rotor and high anti-interference capability. Thus,
selection of suitable control methods becomes a core re-
search problem for magnetic bearing systems.

Magnetic bearings are nonlinear systems and mod-
elling accuracy will be decreased due to the cross cou-

pling between magnetic poles, noise, data delay, and other
factors. Therefore, it is difficult to design an optimal mag-
netic bearing controller. Shi et al. [5] summarized control
method types, along with their applications and limita-
tions. However, the summary only considers the control
method, and ignores the research direction and control tar-
gets, so is of limited relevance. To better understand and
promote development of magnetic bearing system control
technology, this paper summarizes and classifies existing
literature, providing an overview of control algorithm de-
sign, and vibration and high speed flexible rotor control.

2. The Design of Control Algorithm

The magnetic bearing system is a nonlinear and open
loop unstable system, Thus, effectively improving con-
troller performance and ensuring its stable operation is
key to magnetic bearing control. Control algorithm design
not only plays a key role in stabilizing the suspension of
the rotor, but also has influences dynamic and static sys-
tem performance. Traditional PID control, which is the
earliest and most common control algorithm for magnetic
bearing control systems, has advantages of easy parame-
ter setting, good stability, and easy implementation [6–8].
However, traditional PID controllers are unable to achieve
perfect control for high speed, high frequency, and high
precision applications. To ensure magnetic bearing sys-
tems have better stability, robustness, and anti-jamming
performance, more advanced control theories and algo-
rithms have been applied, such as optimal, sliding mode,
robust, fuzzy, neural network, etc. controllers.

2.1. Optimal Control
Optimal control is a strategy maximizing or minimizing

a system performance index under constraints. Depend-
ing on the chosen performance index, optimal control is
divided into frequency shaping and quadratic types [9].
For magnetic bearing control systems, optimal control is
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the only control algorithm that considers energy in the
analysis and design phases [5].

For a radical four degree of freedom active magnetic
bearing system, Zhu [10] used LQ optimal control the-
ory to design a centralized and decentralized parameters
control system. Simulation showed that the decentralized
controller met system requirements at 60,000 rpm. Con-
sidered the gyroscopic effect, Barbaraci [11] utilized the
minimum energy consumption condition to derive a speed
varying optimal control for rotating active magnetic bear-
ing systems. A second order polynomial matrix of the
control matrix used the angular speed as a variable, which
reduced the computational burden for controller imple-
mentation. For the magnetic bearing system of flywheel
energy storage system, Zhu [12] proposed an LQG opti-
mal control method based on minimizing a performance
index that included synchronization errors in the radial di-
rection. The proposed method was effective to suppress
gyroscopic effort caused by disturbances and model un-
certainties. Jastrzebski [13] discussed a centralized opti-
mal position control for active magnetic bearing system,
and proposed a genetic algorithm for different controller
structures, the simulation and the experimental results are
good agreement. Barbaraci [14] dealt with a compari-
son of three types of sub-optimal control law to use in
speed-varying simulations in the angular speed of rigid
shaft. Chen [15] used LQ method of optimal control the-
ory to design a centralized and decentralized parameter
controller for five degree of freedom AC hybrid magnetic
bearing systems, the results have shown that the decen-
tralized controller has better effect when the speed of the
rotor runs under 30000 rpm.

Although the optimal control algorithm for magnetic
bearing systems has been widely studied, it remains too
sensitive to random disturbance and has poor robustness,
which limits its application. The optimal control is based
on a precise mathematical model, and the flexible rotor of
a high speed magnetic bearing is difficult to fit into the
model.

2.2. Sliding Mode Control
Sliding mode control is a special nonlinear control,

with the nonlinearity mainly manifested in control discon-
tinuity. The difference between sliding mode and other
control methods is that the control system structure is
not fixed, but changes dynamically according to the cur-
rent system state, such as deviation and derivatives, etc.,
forcing the system to move according to a predetermined
sliding mode trajectory. The sliding mode can be de-
signed independently of the object parameters and ex-
ternal disturbances, providing the advantages of fast re-
sponse speed, good robustness to system parameter per-
turbation and external disturbances, and simple physical
implementation [16, 17]. Therefore, sliding mode con-
trol has become one of the most effective control methods
for magnetic bearing systems.

For the uncertainty problem in the active magnetic
bearing of a flywheel rotor system, Liu [18, 19] designed

a sliding mode controller and fast terminal sliding mode
controller separately, realizing robust system control. Un-
der the condition of multiple disturbance sources, such
as micro gravity and moving frames, Xu [20] designed
an integral sliding mode controller based on exponential
approximation, introduced an integral sliding mode plane
relating to current and position, and adopted exponen-
tial approximation and saturation to suppress chattering.
The method provided better control for dynamic perfor-
mance and robustness. Shen [21] designed a backstep-
ping controller for the mathematical model of an active
magnetic bearing, and a sliding mode controller to com-
pensate for uncertainty. The robust backstepping sliding
mode control was realized, and effectively extended the
stability region of the system. Chen [22] presented a ro-
bust nonsingular terminal sliding mode control method to
achieve tracking control for the rotor position of a thrust
active magnetic bearing, the method made it unnecessary
to know the bound of the lumped uncertainty of the mag-
netic bearing in advance. Lin [23] used intelligent double
integral sliding mode to design magnetic bearing control
systems, and combined adaptive control method and neu-
ral network method, the control gains can be adjusted on-
line and the uncertainty can also be observed simultane-
ously.

However, the disadvantage of this method is chatter-
ing when the state trajectory reaches the sliding surface.
Chattering can be reduced, but only at the expense of sys-
tem dynamic performance, and a single sliding mode con-
trol algorithm is difficult to achieve optimal system per-
formance.

2.3. Robust Control
Robust control is a research method for magnetic bear-

ing control systems. It can maintain system performance
and enhance robustness in the presence of certain param-
eter perturbations, and the accuracy requirement of the
controlled object mathematical model is low.

Meng [24] designed a robust decoupling controller for
a radial 4 degree of freedom magnetic bearing based on an
H∞ loop shaping approach. System robustness and speed
were achieved, and good control quality was obtained un-
der perturbation. Liu [8] designed an H∞ controller for
a 5 degree of freedom hybrid magnetic bearing using a
weighting function derived from the singular value graph,
which had advantages in terms of stability and disturbance
rejection. Noshadi [25] designed an H∞ controller for an
active magnetic bearing system, selecting weighting func-
tions independent of the model order to reflect the tradeoff
between robustness and performance.

However, robust control is not effective for vibration
suppression at high speed and high frequency, and inertial
coupling and gyroscopic effects are neglected when de-
coupling the model. Thus, the robust controller requires
further improvement.
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2.4. Fuzzy Control
Fuzzy control is a digital control technology based on

fuzzy set theory, fuzzy linguistic variables, and fuzzy
logic inference [26]. It has been widely studied for mag-
netic bearing systems because it does not require a precise
mathematical model of the controlled object and provides
strong control system robustness.

Hong [27] proposed a fuzzy model based on nonlinear
fuzzy control. The model overcame position dependent
nonlinearity of magnetic bearing systems, and stability
analysis was performed using the LMI method. The pro-
posed fuzzy controller yielded not only maximized sta-
bility boundary but also better performance. Hong [28]
designed a fuzzy logic control strategy, to overcome dis-
placement sensitivity and position dependent nonlinearity
of an active magnetic bearing. The proposed controller
provided robustness against uncertainties. Reddy [29] de-
signed an optimized fuzzy logic controller for contact-
less active magnetic bearing systems, where the controller
membership functions were tuned by a genetic algorithm
based optimization process, achieving superior control ef-
fect. Chen [30] designed a fuzzy state feedback con-
troller for magnetic bearing systems using the parallel dis-
tributed compensation principle and solved the convex op-
timization problem using the LMI method. The proposed
controller improved system stability.

Although fuzzy control has been widely studied for
magnetic bearing systems, the control accuracy remains
relatively low, and it requires significant fuzzy processing
experience. Therefore, fuzzy control needs to be com-
bined with other control strategies.

2.5. Neural Network Control
Neural network is an intelligent control method to deal

with multi-variable complex uncertain systems. It has
strong adaptability, fault tolerance, and robustness; high
parallel implementation ability; and can approximate any
complicated nonlinear function. Therefore, it has good
application prospects for magnetic bearing systems.

To solve the problem that the order of H∞ controller is
higher and practical implementation of the controller is
difficult, Liu [31] designed a controller for the magnetic
bearing of a high speed magnetic levitated switched re-
luctance motor using a BP neural network. The proposed
controller had good disturbance rejection and robustness.
Jeng [32] applied a Chebyshev polynomial based uni-
fied mode neural network to control a magnetic bearing
system, and proposed an inverse system method incor-
porating offline and online structures. The proposed ar-
chitecture provided superior flexibility and performance.
Chen [33] proposed a hidden layer BP neural network
controller for a flywheel magnetic bearing system. The
back propagated algorithm for updating network weights
was derived based on linear model and trained online. Sta-
ble flywheel suspension was achieved.

Although neural networks have been studied for mag-
netic bearing systems, they require significant data to sup-
port the neural network, and the information is easily lost.

Therefore, neural networks require further study for ap-
plication to magnetic bearing systems.

Other control strategies studied for magnetic bearing
systems include feedback linearization [34, 35], adaptive
methods [36, 37], and application of various control algo-
rithms [38–40] aimed at improving stability, robustness,
and anti-interference capability.

3. Vibration Control

The inertia center shaft of the magnetic bearing is not
completely coincident with the geometric center axis.
Therefore, vibrations are easily generated when the ro-
tor rotates at high speed, which seriously affects sta-
bility and safety of the magnetic bearing system. As
early as 1983, Burrows [41] studied reducing rotor vi-
bration of magnetic bearing systems. Matsumura [42],
Kang [43], and Long [44] studied vibration control based
on the H∞ robust controller, developing methods that ef-
fectively reduced rotor vibration amplitude and improved
robustness. Durali [45] estimated system nonlinear cou-
pled equations using sliding mode control and a neural
network algorithm, and realized vibration control of the
magnetic bearing rigid rotor. Han [46] proposed an ac-
tive control method based on a sliding mode disturbance
observer. The method could observe and compensate
for unbalanced vibration, and effectively reduce vibra-
tion. Shi [47] and Huang [48] studied unbalanced vi-
bration of magnetic bearings using fuzzy control, achiev-
ing satisfactory control. However, the common disad-
vantages of the these methods are that the algorithms are
complex; difficult to implement; and have large compu-
tation cost, which delays calculation and affects system
stability at high speed. Zheng [49] and Herzog [50] stud-
ied unbalanced synchronous and nonsynchronous vibra-
tion control for magnetic bearings based on the notch fil-
ter method, respectively. Although vibration suppression
was significant, the main disadvantage of this method is
that the closed loop transfer function is changed, and se-
riously affects system stability near the critical frequency.
Knospe [51] effectively suppressed rotor unbalanced vi-
bration based on the adaptive method, but the computa-
tional cost was significantly larger.

Michio Nakano proposed a repetitive control method
that had good suppression for periodic disturbances [52,
53]. The method achieved high precision tracking con-
trol for periodic signals based on the internal model
principle and reduced control difficulty. The core algo-
rithm was simple and provided good performance stabil-
ity. Zhang [54], Han [55], and Nakamura [56] introduced
repetitive control methods to study vibration suppression
of magnetic bearing systems, and achieved superior ef-
fects. However, aperiodic vibration usually contains dif-
ferent frequencies or the dynamic characteristics are un-
known. Since the delay constant in the repetitive control
is generally chosen to be the same as the period of the in-
put signal, it is difficult to suppress aperiodic vibrations at
the same time. The disturbance observer is a common vi-
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bration suppression method for repetitive control systems
with uncertainties [57]. However, it needs to establish two
sets of power systems (state and disturbance observers) to
achieve the estimation of the disturbance, hence the de-
sign of the low-pass filter is complicated. The adaptive
repetitive controller [58] also needs to design a frequency
observer, making stability analysis of the control system
significantly more complicated. Robust high order repet-
itive controllers [59] optimize the compromise index of
periodic and aperiodic control performance, but sacrifice
suppression one of the vibrations. Other models, such
as sliding mode repetitive controller [60], etc., have also
been studied. She [61] proposed a control method based
on equivalent input disturbance compensation, with 2 de-
gree of freedom. The proposed method can effectively
reject periodic and aperiodic disturbances without requir-
ing inverse dynamics of the plant or a priori information
about the disturbances. This method exhibited high per-
formance disturbance suppression for motor and power
control systems, but it has not been applied to magnetic
bearing systems.

4. High Speed Flexible Rotor Control

Active magnetic bearings can support high speed ro-
tors, but cause the rotor to flex at high speeds, and produce
multiple critical areas in the working speed range. When
the flexible rotor encounters the critical speed, the bearing
needs to provide sufficient support stiffness and damping,
and treating the magnetic rotor as rigid inevitably pro-
duces large errors, which greatly increases the controller
design difficulty.

Modern control theory to improve system dynamic per-
formance has good flexibility, and many studies have in-
vestigated it use for control of flexible rotors. Gu [62]
designed a controller for a magnetic bearing flexible rotor
system based on linear quadratic Gaussian theory. The
rotor passed through the first flexible critical rotational
speed and rotated stably for a long period at this speed.
Fujiwara [63] and Ito [64] realized smooth rotation of
flexible rotors with magnetic bearing systems across the
second and third order bending critical speed by modal
control, respectively. Nonami [65, 66] solved the prob-
lem of modal spillover for flexible rotor control using ro-
bust H∞ control strategy, and improved the stiffness of the
flexible rotor by using μ controller. Xie [67] proposed a
variable parameter PID control method based on rotation
speed for a flexible rotor system. The proposed system
stably passed the second order bending critical speed and
provided good dynamic performance across the whole
speed range. To satisfy the requirements for a system op-
erating at low and high frequency, Zhuang [68] designed
an adaptive PID controller based on a single neuron with
varying learning rates. The method effectively reduced
rotor vibration at critical speeds and helped the magnetic
bearing system operate stably. Defoy [69] proposed a
fuzzy controller based on inputs expressed in polar co-
ordinates that effectively improved stability and robust-

ness of the active magnetic bearing flexible rotor system.
Liu [70] proposed a variable structure controller based on
a reduced order model. The method was robust to error
in the flexible rotor model and maintained good system
dynamic performance with external disturbance.

5. Summary and Prospect

Magnetic bearings are typical nonlinear unstable sys-
tems, and are affected by noise, and periodic and ape-
riodic vibration in operation, as well as high speed ro-
tor flexibility and other factors, which all reduce system
control accuracy. Therefore, high performance controller
design has become an important research direction for
magnetic bearing systems. This paper describes mag-
netic bearing system control algorithms in detail, and in-
troduces vibration and flexible control systems. Although
magnetic bearing system control has made considerable
progress in theory and application, many problems re-
main:

(1) Accurate mathematical models are required for high
precision control. The influence of nonlinearity and
coupling should be considered when the system is
modeled and supplemented with model identification
method, which will provide the basis for controller
design. Therefore, we consider the adaptive state
identification and multidimensional complex control
technology, and introduce the optimal load distribu-
tion function and the optimal dispatching function of
the control law to solve the problem of stiffness and
damping identification of the magnetic rotor system.

(2) External uncertainties cause aperiodic vibrations in
magnetic bearing systems. A single control algorithm
for a given vibration cannot provide high precision
control. Therefore, periodic vibration and aperiodic
vibration should be considered simultaneously. To
resolve the issue of eccentricity vibration, we focus
on the eccentricity property which is periodic in the
rotating angle, and introduce a transformation from
time domain description of the control object to space
domain description so as to do the eccentricity vibra-
tion compensation in the space domain via repetitive
control method. Meanwhile, we are trying to com-
pensate the nonlinear characteristics and system un-
certainties by the equivalent input disturbance method
into the system to guarantee the performance of the
system transient process.

(3) High speed rotor control requires consideration of low
and high frequency characteristics of the flexible rotor
system. System stability should be considered when
the rotor passes the critical bending speed range(s).
A new and powerful robust control theory has re-
cently been developed which uses the phase informa-
tion of resonance modes. This theory will be applied
to achieve high bandwidth and energy saving simulta-
neously. We intend to introduce this theory to expand
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the bandwidth of the system to solve the problem.
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