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In the field of lightning current waveform acquisi-
tion, since the lightning stroke signal contains con-
tinuous current whose change is relatively flat, sam-
pling with a fixed frequency is a waste of memory
resources, and may even increase system design dif-
ficulty and cost. The multirate sampled method has
been proposed to acquire lightning current waveforms
based on the short-time Fourier transform (STFT) to
counter this problem and cubic Hermite interpolation
has been used to optimize sampled data. The results
of simulation and lightning experiments have shown
that the multirate sampled method reduces memory
resource consumption by at least 70% and ensures
high accuracy. The feasibility and effectiveness of the
multirate sampled method have also been confirmed.
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1. Introduction

Lightning, a high-intensity electromagnetic pulse phe-
nomenon seen frequently in nature, has attracted ex-
tensive attentions among those working in meteorology,
aerospace, electricity and electronics, petroleum, etc. [1].
The grid, which uses a geometry of up to thousands of
kilometers and features wide-area distribution, is easily
struck by lightning [2], so nations world-wide have taken
numerous measures to avoid lightning strikes on substa-
tions and transmission lines. Due to transmission line
flashovers caused by lightning strikes, however, power
grid failures remain frequent [3, 4]. Lightning disasters
has become one of the three severest threats to safe power
system operation, together with natural disasters and ex-
ternal damage [5]. Lightning current waveform and am-
plitudes of great importance to protection against light-
ning, remain a major threat to grid protection against
lightning, as does a full understanding of lightning cur-
rent on transmission lines [6]. This makes obtaining the
precise amplitude and waveform of lightning current a key

technique in lightning protection.
The mainstream method of collecting lightning current

amplitude and waveform is high-speed sampling at a fixed
frequency using the Rogowski coil and high-speed A/D
converters [6–8]. Depending on lightning’s characteris-
tics, regardless of the existence of high-frequency com-
ponents, most current signals inside the wave change rel-
atively smooth [9, 10]. To get full information, frequen-
cies exceeding twice the highest lightning signal for sam-
pling should be used based on the Nyquist theory [11].
This, however, creates large amounts of redundant data
and wastes cache memory resources, even as it increases
system design difficulty and cost [11]. It thus becomes
necessary to reduce data redundancy while obtaining full
information on lightning signals as precisely as possible.

In the sections that follow, we present a multirate sam-
pled method based on short-time Fourier transforms. We
began by analyzing the frequency distribution of typical
lightning current signals by using the short-time Fourier
transform and a multirate sampled method for sampling
lightning stroke signals has been proposed based on the
analysis results. Next, we completed the computer algo-
rithm code. Then we used cubic Hermite interpolation to
optimize sampled data. These efforts resulted in a flex-
ible sample rate and a significant reduction in memory
resource waste.

2. The Short-Time Fourier Transform and
Piecewise Cubic Hermite Interpolation

2.1. Short-Time Fourier Transform
The Fourier transform is the bridge linking the time and

frequency domains opening the door to frequency domain
analysis. The discrete Fourier transform (DFT) and the
inverse discrete Fourier transform (IDFT) are as follows:

X [k] =
N−1

∑
n=0

x (n)e− j 2π
N kn, k ∈ [0 N −1] . . (1)

x [n] =
1
N

N−1

∑
k=0

X [k]e j 2π
N kn, n ∈ [0 N −1] . . (2)

Vol.21 No.1, 2017 Journal of Advanced Computational Intelligence 159
and Intelligent Informatics

https://doi.org/10.20965/jaciii.2017.p0159

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of 
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/


Jin, X., et al.

The DFT was developed from the continuous Fourier
transform (CFT) for further processing by the computer.
As Eq. (1) shows, the Fourier transform only reflects the
general signal characteristics of a signal in the whole time
domain, and does not provide information on frequency
in a partial time. In other words, it does not provide time
orientation. This in turn implies that it is unfavorable for
analyzing nonstationary signals. Gabor thus proposed the
short-time Fourier transform in 1946, which assumes that
the nonstationary signal is stationary in a short time. By
transforming waveforms with the DFT, we learn local fre-
quency information on the signal, which is intercepted by
a sliding window function.

STFTx(t,Ω) =
〈

x(τ),g(τ − t)e jΩτ
〉

=
∫

x(τ)g∗(τ − t)e− jΩτdτ . . . (3)

STFTx(t,Ω) =
1

2π

〈
X(ν),G(ν −Ω)e j(ν−Ω)t

〉

=
1

2π

∫
X(ν)G∗(ν −Ω)e j(ν−Ω)tdν

. . . . . . . . . . . . . (4)

The short-time Fourier transform is explained as fol-
lows: First, change time variable t of function x (t) and
g (t) into τ . Next, intercept function x (τ) with win-
dow function g (τ) in a time domain, then use the DFT
to get the intercepted signal frequency at time t. Move
the center of window function g (τ) constantly and pro-
cess the intercepted signal with the Fourier transform to
get all of the frequencies of these intercepted signals.
STFTx (t,Ω) shown in Eq. (3), consists of these frequen-
cies. Intercepting x (τ) with window function g (τ − t)
in the time domain is equivalent to intercepting X (ν)
with window function G(ν −Ω) in the frequency domain,
so STFTx (t,Ω) may be rewritten as shown in Eq. (4).
STFTx (t,Ω) is thus a 2-D function of variables (t,Ω) [12,
13].

2.2. Piecewise Cubic Hermite Interpolation
Assuming that the values of function f (x) are y0,y1 at

x0,x1 and that the values of their first derivative are y′0,y
′
1,

the cubic Hermite interpolation is written as

H3 = y0α0 (x)+ y1α1 (x)+ y′0β0 (x)+ y′1β1 (x) (5)

where

α0 (x) =
(

1+2
x− x0

x1− x0

)(
x− x1

x0 − x1

)2

α1 (x) =
(

1+2
x− x1

x0− x1

)(
x− x0

x1 − x0

)2

β0 (x) = (x− x0)
(

x− x1

x0 − x1

)2

β1 (x) = (x− x1)
(

x− x0

x1 − x0

)2

Fig. 1. Typical lightning strike waveform.

Table 1. Statistics of lightning currents.

Parameter Typical Value Range
Peak current I [KA] 20 2∼200
Average steepness I/T1 10 1∼80
[KA/μs]
Front time T1 [μs] 2 1∼30
Time to half value T2 [μs] 40 10∼250

When function f (4) (x) exists and is continuous at
[x0 x], the error of the interpolation is written in the form
of

R3 =
f (4) (ε)

4!
(x− x0)2 (x− x1)2 , x0 ≤ ε ≤ x1 . (6)

As polynomial interpolation, cubic interpolation is high-
order. The Runge phenomenon may occur as the order of
interpolation rises, so for higher order interpolation, it is
preferable to use piecewise cubic Hermite interpolation,
which refers to interpolation between each two adjacent
points with cubic Hermite interpolation [14].

3. Theoretical Analysis of System

3.1. Analysis of the Lightning Strike Signal
Based on the IEC standard, standard lightning-strike

waveforms are of two types: the exponential wave and the
square wave. Exponential waves are used to simulate a
lightning strike in the laboratory [15]. Fig. 1 shows a typ-
ical exponential lightning strike waveform used in tests. I
is peak current, T1 is front time, and T2 is the time to the
half value of the lightning current. As shown in Fig. 1, the
lightning strike waveform consists of a wave front that is
increasingly monotonous and whose wave tail decreases
monotonously, and where wave front duration is signifi-
cantly shorter less than that of the wave tail.

At present, lightning current parameters are not uni-
form, and most parameters have only a value range and
statistics. Table 1 shows statistics of lightning currents.
Most lightning strikes have negative polarity and account
for over 90% of the amount of lightning strikes. The peak
current of about 95% of all strikes exceeds 80 KA. About
95% of strikes have a front time within 18 μs, and about
95% have a time to half value that is within 200 μs. Each
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Fig. 2. Lightning current waves and their corresponding
frequency spectra.

strike contains 2 or 3 return strikes and each pair of return
strikes has a time interval ranging from 0.6 ms to 0.8 s.
Most lightning strikes are within 800 ms [16–19].

3.2. Spectral Analysis of the Lightning Current
To facilitate theoretical forecasts and lightning cur-

rent research, the IEC proposed an analytical exponential
wave formula in 1995 [15, 20]:

i(t) =
I0

h

(
t

τ1

)10

1+
(

t
τ1

)10 e−
t

τ2 . . . . . . . . (7)

I0 is the lightning current peak, h is the peak current
correction coefficient, τ1 is the wave front time constant,
and τ2 is the wave tail time constant. Common impulse
current waves include 1.2/50 μs, 8/20 μs and 10/350 μs.
Waves of 10/350 μs are specified as standard impulse
currents used in protecting buildings against lightning.
A value of 1.2/50 μs is the lightning current waveform
recommended and specified by the IEC, and waves of
8/20 μs are used in testing that is stipulated by standards
in China [5, 6]. The following details against the first
2 types of IEC’s lightning waveforms to analyze their fre-
quency spectrum.

Analyzing original sampling signals with the DFT
shown in Eq. (1) yields the signal frequency spectrum.
The original sampling signals and their corresponding fre-
quency spectra are shown in Fig. 2. Note that lightning
current frequencies are mainly distributed between 0 and
1 MHz, and most of their energy is concentrated between
0 and 500 KHz. Spectrum wave changes in exponent at-
tenuation and signal amplitudes exceeding 1 MHz are far
below the resolutions of most A/D converters.

To obtain lightning frequency spectrum distributions in
individual periods, the signal should be transformed for
its short-time Fourier transform using Eq. (3), the results

Fig. 3. Time-frequency distribution of lightning current
waveforms.

of which are shown in Fig. 3. It can be inferred that
low frequency components are basically throughout the
whole time domain, and their energy change is relatively
smooth. However, the great change has appeared in high
frequency components with time. In the initial stage, am-
plitude rises in a concave curve. High-frequency compo-
nents increase gradually and peak at the point of inflexion
on a curve. The rising speed of amplitude then slows and
the curve rises in a convex curve. High-frequency com-
ponents then start to decrease and a blank space appears
at the wave crest. The amplitude then gradually declines.
The changing trends in high-frequency components are
similar to that described previously, only at a much lower
maximum frequency.

Time-frequency analysis shows that changing trends
in high-frequency components are similar to those of
the signal derivative of the lightning signal. There are
more high-frequency components when the derivative is
larger, and vice versa. Nevertheless, unlike with high
frequencies, low-frequency components change relatively
smoothly. If the sampling rate adaptively tracks the
derivative of the lightning signal, the highest frequency
in current sampling can be tracked, so we can find the
most appropriate current sampling rate for reducing the
number of sampling points, thus achieving the objective
of decreasing data size.

3.3. The Design of Algorithm Code of Multirate
Sampled Method

Sampling rates of the multirate sampled method are di-
vided into 4 to 8 frequencies. For further computer pro-
cessing and the optimum sampling results, multiple re-
lationships among sampling rates should be of integral
powers of 2. To change sampling rates not changed by
adjusting A/D converter operating frequency, we used a
high-speed complex programmable logic device (CPLD)
to calculate the derivative of the lightning signal and de-
termined whether to store current-sampled data base on
the results.
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Fig. 4. Work flow chart of the multirate sampled method.

Using the sampling flowchart in Fig. 4, start by sam-
pling original data. Section 3.2 in this paper presents
time-frequency analysis of lightning signals. The valu-
able frequency components of signals are known to com-
monly be below 1 MHz. Based on the Nyquist theory,
lightning currents should be sampled at a sampling rate
of more than twice the maximum frequency of the signal.
In engineering applications, this rate is generally set at 4
to 16 times higher. Because an excessive rate would in-
crease system costs, however, it is appropriate to sample
lightning signals at 6 MHz. Furthermore, the CPLD cal-
culates the difference between adjacent data sampled by
the A/D converter as the derivative of the lightning sig-
nal at that moment. The processor determines whether to
store current sampled data based on the derivative. The
peak current of lightning signals varies over a wide range
and does not change the frequency distribution inside the
waveform, the criterion for choosing the sampling rate
should be determined by the maximum derivative of the
whole signal, which appears at the wave front based on
the time-frequency distribution shown in Section 3.2, to
eliminate the influence of peak current on the algorithm.
The processor then stores data in the cache as a valid sam-
pling point, when 6 MHz is used, to be the sampling rate
at this moment.

In contrast, sampled data is not valid when a lower sam-
pling rate is used, so the processor temporarily stores data
for the next calculation. To simplify computing, a weight-
ing summation should be the crux of the algorithm.

Algorithm sequences are as follows: First, define a
variable and initialize it at 0. Next, add the value of this
variable and a weighted value determined by the result
after each calculation for the difference. The sum will
be stored back to replace the original variable. When the
value of the new variable equals or exceeds the threshold,
the processor stores sampling data and clears the variable
to complete sampling. For example, assume that we de-
fine the threshold as 4. When the sampling rate is chosen
to be 6 MHz, value of the variable increases 4.

When the value equals the threshold, the processor

Fig. 5. Comparison of cubic Hermite interpolation and cu-
bic spline fractal interpolation.

completes one sampling and clears the variable. When
the sampling rate is 3 MHz, for example, value of the vari-
able increases 2. But if the value is less than the thresh-
old, the processor waits for the next processing cycle. The
weighted value should be defined as an integral power of 2
to meet the requirements of the sampling rates mentioned
ahead.

3.4. Interpolation
Sequences sampled by using the multirate sampled

method are nonuniform. Most methods in frequency spec-
trum analysis and transformation are mainly for uniform
sequences. In contrast, nonuniform sequences have un-
continuity in the time domain, so they will cause high
side lobes in the frequency domain if sequences are trans-
formed directly by using the IDFT [21], so they contain
many shortcomings in application and may even be harm-
ful to signal processing system’s performance. Recon-
struction algorithms for nonuniform sequences, for exam-
ple, are complex, specific and sensitive to noise [22, 23],
so transforming nonuniform sequences into uniform se-
quences is necessary. Here we use piecewise cubic Her-
mite interpolation to complete this transformation.

The aim of piecewise cubic Hermite interpolation is
to transform sequences sampled at a low sampling rate
into sequences sampled at a higher sampling rate. Inter-
polated sequences are uniform. Because sampling agrees
with the Nyquist theory, frequency aliasing does not arise.
From Eq. (4), we inferred that interpolation performance
is good and has high precision, satisfying most sampling
requirements.

In addition, the cubic spline fractal interpolation is an-
other common interpolation [24]. Compared with the
piecewise cubic Hermite interpolation, cubic spline frac-
tal interpolation has third-order derivative continuity, so
it has more oscillations. Fig. 5 shows that the results of
interpolating with cubic Hermit interpolation is closer to
the source signal than that with cubic spline fractal in-
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Fig. 6. Simulation test of 1.2/50.

Fig. 7. Simulation test of 8/20.

terpolation, and that cubic spline fractal interpolation has
more oscillations and suffers great distortion. This makes
it preferable to use piecewise cubic Hermite interpolation.

4. Practical Testing and Simulation

4.1. Simulation

Using MATLAB, we simulated multirate sampling
tests of 1.2/50 and 8/20. We first generated typical light-
ning current waves of 1.2/50 or 8/20 by using the formula
in Eq. (7), then simulated sampling of the lightning sig-
nal with 6 MHz to get the original lightning sequences.
We next applied the multirate sampling method to obtain
multirate sampled data. Then we interpolated sampled
sequences with cubic Hermite interpolation to get inter-
polated sequences. Last, we compared interpolated se-
quences to original data, and calculated the difference be-
tween them to get error sequences. To verify the effective-
ness of the multirate sampled method, we used the ratio of
multirate sampled data to original data to estimate the re-
duction of redundancy; mean absolute error and variance

of absolute error sequences are used to estimate accuracy.
Simulations results are shown in Figs. 6 and 7.

In the simulation test of 1.2/50, we got the original se-
quences, whose peak current was 100, by sampling the
signal with 6 MHz, containing 500 points. Multirate sam-
pled sequences contain 43 sampling points, reducing the
amount of data to about 8.6% of what it originally was.
The maximum absolute error of interpolated sequences
was 3.9024, the mean absolute error was 0.0231, and vari-
ance of absolute error sequences was 0.0633. In the simu-
lation test of 8/20, we also got original sequences, whose
peak current was 100, by sampling the signal with 6 MHz,
containing 500 points. Multirate sampled sequences con-
tain 110 sampling points, reducing the amount of data to
about 22% of the original. The maximum absolute er-
ror of interpolated sequences was 0.9994 and the mean
absolute error was 0.0181 and variance of absolute error
sequences variance was 0.0120.

We simulated these two types of signals by using differ-
ent amplitudes; test results are shown in Table 2, where
Ip is the peak current. Note that the redundancy and ac-
curacy of this method are independent of the signal am-
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Table 2. Simulation results.

Signal Reduction Mean Variance
Ip = 100, 1.2/50 8.6% 0.0231 0.0633
Ip =500, 1.2/50 8.6% 0.1163 1.5999
Ip = 1000, 1.2/50 8.6% 0.2313 6.3293
Ip = 100, 8/20 22% 0.0181 0.0120
Ip = 500, 8/20 22% 0.0907 0.2994
Ip = 1000, 8/20 22% 0.1814 1.1977

Fig. 8. Results of practical tests.

plitude, but the more rapidly the signal changes, the more
that redundancy is reduced. But probably, the precision
is decreasing simultaneously. Even so, all results show
that the multirate sampled method reduced redundancy by
about 70%, with lower mean and variance of absolute er-
rors. This means that there is little difference between
actual and sampled data.

4.2. Practical Tests
For further verification, we used the impulse current

waveform of 1.2/50 for practical tests. Fig. 8 shows test
results. The oscilloscope shows the original wave. Note
that the peak current of this original wave is 760 mV. Mul-
tirate sampled sequences contain 165 sampling points, re-
ducing the amount of data to about 26.4% of the original.
Interpolated sequences, whose peak current is 749 mV,
contain 625 points. The maximum absolute error is
11 mV and the waveform rebuilt by the transform coin-
cides with the waveform of the original signal.

5. Conclusions

We have analyzed the frequency distribution of stan-
dard lightning signals with the DFT and STFT, and
deduced the theoretical basis of the multirate sampled
method for lightning current. We found a sampling al-
gorithm and completed piecewise cubic Hermite interpo-

lation by MATLAB to optimize sampled data. Simulation
and practical test results have shown that the multirate
sampled method effectively reduces redundancy while
providing high accuracy. By changing the sampling rate
based on variation of the lightning waveform, we could
adjust the number of data adaptively to prevent redundant
storage. In other words, a higher sampling rate is chosen
to assure the integrity of sampling when the lightning sig-
nal changes quickly. Otherwise, we would choose a lower
sampling rate to reduce redundancy. The size of the data
amount no longer need depend on signal sampling time
but, instead, on information content, enabling us to use
less memory space to store more signals.

In conclusion, the multirate sampled method greatly re-
duces the consumption of memory resources, i.e., by at
least 70%, while helping ensure high accuracy.
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