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Sparse signal reconstruction (SSR) problems based on
compressive sensing (CS) arise in a broad range of ap-
plication fields. Among these are the so-called “block-
structured” or “block sparse” signals with nonzero
atoms occurring in clusters that occur frequently in
natural signals. To make block-structured sparsity
use more explicit, many block-structure-based SSR
algorithms, such as convex optimization and greedy
pursuit, have been developed. Convex optimization
algorithms usually pose a heavy computational bur-
den, while greedy pursuit algorithms are overly sen-
sitive to ambient interferences, so these two types
of block-structure-based SSR algorithms may not be
suited for solving large-scale problems in strong in-
terference scenarios. Sparse adaptive filtering algo-
rithms have recently been shown to solve large-scale
CS problems effectively for conventional vector sparse
signals. Encouraged by these facts, we propose two
novel block-structure-based sparse adaptive filtering
algorithms, i.e., the “block zero attracting least mean
square” (BZA-LMS) algorithm and the “block ���0-
norm LMS” (BL0-LMS) algorithm, to exploit their
potential performance gain. Experimental results pre-
sented demonstrate the validity and applicability of
these proposed algorithms.

Keywords: compressive sensing, sparse signal recon-
struction, block-structured sparsity, least mean square,
sparse constraint

1. Introduction

Compressive sensing (CS) theory has been applied in
such engineering fields as signal processing, wireless
communications, and large-scale system analysis [1, 2].
One of the main issues in CS theory is how to reconstruct
sparse signals via a compressive sampling method [3],
i.e., original sparse signal sss in N-dimension domain with
K nonzero atoms (K � N) can be pre-transformed to a
down-sampling signal yyy in M-dimension domain (K ≤
M � N) utilizing a suitable sensing matrix AAA (M ×N) in

Fig. 1. Vector sparse signal vs. block sparse signals.

transmitter, which yields the following underdetermined
linear equation

yyy = AAAsss. . . . . . . . . . . . . . . . (1)

In the receiver after transmission, sss is reconstructed effec-
tively from underdetermined Eq. (1) using sparse signal
reconstruction (SSR) algorithms.

In the sections that follow, we present a type of sparse
signal with a special structure termed a block sparse sig-
nal, i.e., nonzero atoms in the original signal exist as clus-
ters rather than being spread arbitrarily throughout the un-
known signal [4]. The difference between conventional
vector sparse signals and block sparse signals is shown
visibly in Fig. 1. Specifically, original block sparse signal
sss can be expressed as below,

sss =

⎡
⎢⎣s1, . . . ,sd,︸ ︷︷ ︸

sssT [1]

sd+1, . . . ,s2d,︸ ︷︷ ︸
sssT [2]

. . . ,sN−d+1, . . . ,sN ,︸ ︷︷ ︸
sssT [m]

⎤
⎥⎦

T

, (2)

N = m ·d, d denotes the blocked length, and m denotes the
number of separated blocks. Based on Eq. (2), sss is termed
block K-sparse where K ∈ {1,2, . . . ,m}, when sss has at
most K blocks involving nonzero atoms. It is formulized
in Eq. (3) [4],

K ≥ ‖sss‖2,0 =
m

∑
i=1

I (‖sss [i]‖2 > 0), . . . . . . (3)
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where I (·) denotes indicator function [4], defined as

I (‖sss [i]‖2 > 0) =

{
1, ‖sss [i]‖2 > 0

0, elsewhere
. . . . (4)

This special type of sparse signal usually arises in prac-
tical applications of multi-band signals [5–8] or of gene
expression level measurement [9]. Network topology
identification [10, 11], source localization in sensor net-
works [12, 13], MIMO channel equalization [12, 13], us-
ing block sparsity gives us better reconstruction properties
than simply treating signals as sparse in the conventional
sense [4].

Algorithms in block versions proposed for implement-
ing block sparse signal reconstruction fall mainly into two
basic classes, i.e., convex relaxation and greedy pursuit.
For the convex relaxation class, the basis pursuit (BP) al-
gorithm based on linear programming (LP) has been prop-
erly generalized into a mixed �2/�1-norm minimization
recovery algorithm [4, 14]. For the greedy pursuit class,
extension versions of the compressive sampling matching
pursuit (CoSaMP) algorithm and the iterative hard thresh-
olding (IHT) algorithm for block sparse signal recon-
struction have been presented in [12]. Block versions of
the matching pursuit (MP), orthogonal MP (OMP) [15],
and stagewise OMP (StOMP) algorithms [16] are termed
BMP, BOMP [4], and BStOMP [17].

The BStOMP algorithm in particular obtains excellent
reconstruction performance when the ambient noise level
is moderate. As pointed out in [17, 18], however, convex
optimization algorithms generally require a high compu-
tational burden due to their high complexity, preventing
them from being practicable in large-scale applications.
For greedy pursuit algorithms, deteriorating reconstruc-
tion performance under strong noise interference is con-
siderable.

These unsuitable scenarios inspired us to propose more
practical, efficient block versions of SSR algorithms to
solve block sparse signals reconstruction problems. Our
purpose here is thus to clearly improve performance in a
variety of scenarios.

Stochastic gradient-based sparse adaptive filtering al-
gorithms have proven to be effective SSR algorithms [18],
e.g., the �0-norm least mean square (�0-LMS) algo-
rithm and the �0-norm exponentially forgetting window
LMS (�0-EFWLMS) algorithm. These algorithms pro-
vide moderate computational complexity and improved
robustness against ambient strong interference. Specifi-
cally, their reconstruction performance is superior to other
classes of algorithms. State-of-the-art sparse adaptive fil-
tering algorithms reconstruct vector sparse signals in the
conventional sense, without accounting for more general
cases for block sparse signals. We therefore extend con-
ventional sparse adaptive filtering algorithms to block ver-
sions, proposing two novel algorithms – the block zero
attracting LMS (BZA-LMS) and the block �0-norm LMS
(BL0-LMS) – both of which have the inherent advantages
of conventional sparse adaptive filtering algorithms also
sense and exploit the potential levels of sparsity of block-

Table 1. Corresponding variables between CS problem and
adaptive framework.

CS Problem Adaptive Framework
aaaj , j ∈ {1,2, . . . ,M} xxxT (n)

sss(n) hhh(n)
y j = aaa jsss+ v j d(n) = xxxT (n)hhh+ z(n)

structured sparse signals, thus improving performance.
Section 2 of this paper reviews conventional sparse

adaptive filtering algorithms. Sections 3 systematically
describes the proposed algorithms and Section 4 provides
simulation results in different scenarios. Section 5 lists
our conclusions.

2. Sparse Adaptive Filtering Algorithms:
A Review

This section reviews the SSR method based on an adap-
tive filtering framework and the sparse constraint adopted
in recursion updates.

2.1. Adaptive Filtering Framework for Sparse
Signal Reconstruction

Based on the CS problem, we reconstruct sparse signal
sss from the underdetermined Eq. (1). Suppose that

sss = [s1,s2, . . . ,sN ]T , . . . . . . . . . . . (5)

aaa j = [a j1,a j2, . . . ,a jN], j ∈ {1,2, . . . ,M}, . . (6)

AAA = [aaaT
1 ,aaaT

2 , . . . ,aaaT
M]T , . . . . . . . . . . (7)

yyy = [y1,y2, . . . ,yM]T , . . . . . . . . . . (8)

vvv = [v1,v2, . . . ,vM]T . . . . . . . . . . . (9)

Given that in realistic transmission, harmful ambient
additive interference is unavoidable, we take Gaussian
distribution-based noise interference vvv into consideration.
The updated underdetermined equation is as follows:

yyy = AAAsss+ vvv. . . . . . . . . . . . . . . (10)

Adaptive filtering algorithms [19] are fairly practical
algorithms with simple structures, a certain noise cancela-
tion capability, and outstanding signal reconstruction per-
formance. Recursion error constructing the cost function
of adaptive algorithms is as follows:

e(n) = d(n)− xxxT (n)hhh(n), . . . . . . . . (11)

d(n) denotes the desired signal contaminated by additive
noise z(n), xxx(n) = [x(n),x(n−1), . . .,x(n−N +1)]T and
hhh(n) = [h1(n),h2(n), . . . ,hN(n)]T denote the input signal
and the iterative reconstruction signal. The iteration run is
denoted by n. Through iteratively minimizing e(n), hhh(n)
is reconstructed increasingly accurately. The CS prob-
lem was solved in the adaptive framework based on the
corresponding variables listed in Table 1 [18], row vec-
tors aaa j in sensing matrix AAA are used as training sequences
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original signaltraining sequence 
additive noise 

+ + desired signal 
+-reconstruction signal

adaptive algorithm error + +-

SSR algorithms difference
Fig. 2. Solve CS problem by adaptive framework.

Table 2. Adaptive filtering framework.

i. Initialize sss(0) = 000, n =1;

ii. Input data aaaj and y j to adaptive filter, where

j = mod (n,M), . . . . . . . . (12)

the operator mod (•) denotes modulo operation
which finds the remainder after division;

iii. Impose adaptive algorithms to reconstruct sss(n);

iv. Termination condition justification,

‖sss(n)− sss(n−1)‖2 < ε or n > C, . (13)

where positive number ε is a given error tolerance
and C denotes the maximum number of iteration
runs;

v. When termination condition is unsatisfied, n in-
creases by one then return to Step ii. to continue
recursion loop; Otherwise, output sss(n) and exit.

xxxT (n), and each component y j of down-sampling signal is
viewed as obtained desired signal d (n), in the reconstruc-
tion process, aaa j and y j are used circularly. The CS prob-
lem is solved by using an adaptive framework as shown
in Fig. 2. The specific reconstruction procedure is shown
in Table 2.

2.2. Sparse Constraint upon Recursion Update
Note that standard adaptive filtering algorithms cannot

obtain sufficient performance gain because no use is made
of signal sparsity. In fact, many effective sparse adaptive
filtering algorithms based on the widely used LMS algo-
rithm [18, 20–25] involve sparse constraint restriction in
their cost function, e.g., typical convex zero attracting and
the optimal nonconvex �0-norm. Specifically, in [18], the
�0-LMS algorithm has been shown to stably and markedly
improve performance in solving the CS problem. The up-
dating of the ZA-LMS and �0-LMS algorithms is shown
at left in Fig. 3.

3. Proposed Block-Sparse Algorithms

Conventional sparse adaptive filtering algorithms focus
on reconstructing vector sparse signals and thus, in each
iteration, implement uniform or reweighted sparse penal-

sparse solution space: 
adaptive update: LMS

sparse penalty: BZA/BL0

sparse solution space: 

Updating procedure in 3-D domain

sparse penalty: ZA/
adaptive update: LMS

Fig. 3. Updating procedures between conventional sparse
vs. block-sparse adaptive filtering algorithms.

AREPA:

Fig. 4. Adaptive regularization parameter series.

ties for all components of recursion updated reconstruc-
tion signal sss(n). However, in the case for block sparse
signals reconstruction, the differences of sparsity degree
in different segments of original signal are fairly evident,
which means that the block-structured sparsity informa-
tion may not be sufficiently exploited, making it neces-
sary to impose characterized sparse adaptive filtering al-
gorithms to effectively exploit block-structured sparsity.

3.1. Adaptive Regularization Parameter Series

Regularization parameter (REPA) λ is a quite critical
parameter, which plays an important role in balancing re-
cursion update term and sparsity exploitation term [26].
Adaptive REPA (AREPA) parameter λN is applied more
effectively in scenarios as shown in [27]. In our paper, two
novel block versions of algorithms are proposed, i.e., the
BZA-LMS algorithm and the BL0-LMS algorithm, which
introduce a series of AREPA λi (n), i ∈ {1,2, . . . ,m} in
their cost function, to more accurately sense sparsity
information via blocked transaction for original block
sparse signals, as shown in Fig. 4. The next 2 sections
detail a description of the proposed algorithms.

3.2. BZA-LMS Algorithm

We define the BZA-LMS algorithm cost function as

GZA(n) = e2(n)+λi (n)‖sss [i] (n)‖1 , . . . . (14)

where i ∈ {1,2, . . . ,m}. In Eq. (14), each AREPA is
responsible for adaptively regularizing sparse penalty
strength for each block of reconstruction signals, where
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the AREPA series formula is defined as

λi(n) = λ

(
δ +‖sss[i](n)‖2

2

)
·σ2 ·d

‖sss [i] (n)‖2
2

, . . . . . (15)

λ is redefined as an initial REPA parameter and adaptive
regulation for the AREPA series is determined by the fol-
lowing four variables:

• ‖sss [i] (n)‖2
2 : Average power of reconstruction sig-

nal in blocks. This plays an important role in
adaptive regulation against sparsity levels, which is
the inverse ratio to AREPA, appropriately reducing
sparse penalty strength when blocked signal power
becomes high so that no redundant sparse penalty is
applied.

• δ : Threshold of AREPA. This guarantees the appli-
cation stability of AREPA.

• σ2 : Variance of noise interferences. AREPA regu-
lates its value adaptively based on different noise lev-
els by using σ2. This is a direct ratio to AREPA, ap-
propriately increasing sparse penalty strength when
noise strength is strong, improving the weight of
sparsity exploitation.

• d : Blocked length. This is a direct ratio to
AREPA. Assuming that the number of separated
blocks increases, then ‖sss [i] (n)‖2

2 will decrease cor-
respondingly, resulting in an unexpected decrease
of AREPA. To offset the decrease in sparse penalty
strength, d is imported into the AREPA series.

The update recursion equation derived from the cost
function Eq. (14) is as follows:

sss(n+1) = sss(n)+ μe(n)xxx(n)− γi (n)sgn(sss [i] (n)) , (16)

γi (n) = μλi (n) denotes an adaptive zero attraction series.
The specific reconstruction procedure for the BZA-LMS
algorithm is shown in Table 3.

3.3. BL0-LMS Algorithm
Similar to the proposed BZA-LMS algorithm, the BL0-

LMS algorithm involving the AREPA series produces an
excellent effect when combined with the optimal �0-norm
sparse constraint. �0-norm is a non-deterministic poly-
nomial time (NP) hard problem, however, so here it is
approximated by a continuous function [28]. The initial
cost function of the BL0-LMS algorithm is defined as

G�0(n) = e2(n)+λi (n)‖sss [i] (n)‖0 , . . . . . (17)

The advantages of the widely used approximation
method in [28] stand out, e.g., in computational simplic-
ity and robustness. The new cost function after �0-norm
approximation is as follows:

G�0(n) = e2(n)+λi (n)
d

∑
l=1

(
1− e−α|sl [i](n)|

)
, . (18)

Table 3. BZA-LMS algorithm.

i. Initialize sss(0) = 0, n = 1, set suitable μ , λ , δ , d by
trial and error method;

ii. While termination condition Eq. (13) is unsatisfied;

iii. Select training sequence x(n), and desired signal
d(n) contaminated by additive noise z(n),
j = mod (n,M),xxxT (n) = aaaj,d(n) = y j,z(n) = v j;

iv. Calculate recursion error,
e(n) = d(n)− xxxT (n)sss(n);

v. Recursion update by LMS,
sss(n+1) = sss(n)+ μe(n)xxx(n);

vi. Design AREPA series λi (n), and zero attraction pa-
rameter γi (n),

λi(n) = λ

(
δ +‖sss[i](n)‖2

2

)
·σ2 ·d

‖sss [i] (n)‖2
2

,

γi (n) = μλi (n);

vii. Implement sparse penalty by BZA,
sss(n+1) = sss(n+1)− γi (n)sgn(sss [i] (n));

viii. The number of iteration increases by one,
n = n+1;

ix. End while.

By minimizing Eq. (18), the corresponding recursion
update equation is derived as

sl [i] (n+1) = sl [i] (n)+ μe(n)x [i] (n+1− l)

−γi (n)αsgn(sl [i] (n))e−α|sl [i](n)|,(19)

where l ∈ {1,2, . . . ,d}. To decrease the computational
complexity of Eq. (19), which mainly comes from the
sparse penalty term, first-order Taylor series expansion of
exponential function is replaced by

e−α|sl [i](n)| ≈
⎧⎨
⎩1−α |sl [i] (n)| , |sl [i] (n)| ≤ 1

α
0, elsewhere

. (20)

To simplify Eq. (19), we impose the following approx-
imation equation

g (sl [i] (n))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α +α2sl [i] (n), sl [i] (n) ∈
[
− 1

α
,0

)
α −α2sl [i] (n), sl [i] (n) ∈

(
0,

1
α

]
0, elsewhere

, . (21)

and the final update recursion equation becomes

sl [i] (n+1) = sl [i] (n)+ μe(n)x [i] (n+1− l)
−γi (n)g (sl [i] (n)) . . . . . . (22)

The BL0-LMS algorithm is specifically reconstructed
similar to Table 3 contents, except for implementing
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stronger �0-norm sparse constraint strength. The BZA-
LMS and BL0-LMS algorithms are updated as shown
at right in Fig. 3. The sparse constraint strength of the
�0-norm is much beyond the zero attracting �1-norm, so
the BL0-LMS algorithm outperforms the BZA-LMS al-
gorithm in SSR accuracy, as shown in simulation results
below.

4. Simulation Results

We evaluated signal reconstruction performance and
robustness against ambient interference by mean square
deviation (MSD), and measured computational complex-
ity by running time. For global parameters, block sparse
signal sss is modeled according to [17]: signal length is
N = 400, down-sampling dimension is M = 100, the
size of nonzero atoms in sss is S ∈ {20,40,60}, block
sparsity is K ∈ {2,4,6} accordingly, and the location
distribution of nonzero blocks and nonzero coefficients
within each block yields discrete uniform. The mag-
nitude of nonzero coefficients yields standard Gaussian
distribution C N (0,1), each entry of sensing matrix AAA
is independently generated from Gaussian distribution
N (0,1/M). Note that sss is normalized in our exper-
iments, and additive noise vvv is simulated by Gaussian
noise s.t. N (0,1/σ2), where standard deviation is σ ∈{

5.5×10−3,0.9×10−2, . . . ,9.5×10−2
}

, and the signal-
to-noise ratio (SNR) is defined as 10 log10(‖AAAsss‖2

2 /σ2),
so the SNR is set as {0 dB,5 dB, . . . ,25 dB} in experi-
ments. Monte-Carlo trials are set at 1000 times. For pri-
vate parameters, step-size μ is set as 0.05, tolerance er-
ror ε = 1× 10−4, and iteration upper limit C = 1× 106

for all sparse and block-sparse adaptive algorithms. The
approximation equation parameter is α = 10 for �0-LMS
and BL0-LMS algorithms. For the proposed two block-
sparse algorithms BZA-LMS and BL0-LMS, threshold δ
of AREPA is set to 0.8, and the blocked length is designed
as 20.

In the three experiments that follow, reference algo-
rithms are chosen as greedy pursuit algorithms and their
MSD results, generated in each stage within an inner
loop, are shown. Exp. (1) verifies that greedy pursuit
algorithms reach steady-state within 20 iteration runs.
Experiment results show marked performance improve-
ment using our two proposed algorithms, i.e., BZA-LMS
and BL0-LMS. MSD performance comparisons are ver-
sus different block sparsity and noise interference levels
in Experiments (1) and (2), and rigorous algorithms com-
plexity is measured in Exp. (3).

Experiment (1): Reconstruction performance of our
two proposed block-sparse adaptive filtering algorithms
BZA-LMS and BL0-LMS, are verified and compared to
four greedy pursuit algorithms under different block spar-
sity. In Fig. 5, the total number of nonzero components
S = 20, the number of blocks of nonzero components
K = 2 in original signal, SNR in communication environ-
ment is set as 15 dB. It is evident to find that sparse adap-

Fig. 5. MSD comparisons vs. block sparsity (S = 20, K = 2).

Fig. 6. MSD comparisons vs. block sparsity (S = 40, K = 4).

Fig. 7. MSD comparisons vs. block sparsity (S = 60, K = 6).

tive filtering algorithms ZA-LMS and �0-LMS much out-
perform greedy pursuit algorithms in reconstruction ac-
curacy, which is consistent with the conclusion in [18].
Based on the effective use of block-structured sparsity, the
MSD performance of the proposed algorithms is further
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Fig. 8. Reconstruction MSD vs. SNR.

clearly improved without sacrificing convergence itera-
tions. In Figs. 6 and 7, block-sparsity is extended higher,
i.e., S = 40,K = 4, and S = 60,K = 6, respectively, one
can find that reference algorithms can hardly obtain con-
tributive MSD performances. In contrast, sparse adap-
tive filtering algorithms ZA-LMS and �0-LMS exhibit su-
perior performance in high block-sparsity scenarios, and
the proposed BZA-LMS and BL0-LMS algorithms obtain
even further performance gains.

Experiment (2): Compared to other SSR algorithm
classes, the reconstruction stability of sparse adaptive fil-
tering algorithms stands out under strong interference.
In this experiment, we focus on the robustness prop-
erty of both the proposed block versions of sparse adap-
tive algorithms, where the SNR bound is extended to
{0 dB,5 dB, . . . ,25 dB} in Fig. 8. When SNR increases
from 15 dB to 20 dB–25 dB, conventional sparse adap-
tive algorithms ZA-LMS and �0-LMS show superior per-
formance properties, and the proposed BZA-LMS and
BL0-LMS algorithms obtain higher reconstruction accu-
racy. When ambient noise interference increases, how-
ever, SNR results decrease to 0 dB–10 dB, and the perfor-
mance of block versions of greedy algorithms BOMP and
BStOMP clearly deteriorate. In contrast, sparse adaptive
algorithms ZA-LMS and �0-LMS still obtain reliable per-
formance gains, consistent with the conclusion in [18].
The proposed BZA-LMS and BL0-LMS algorithms im-
prove performance slightly, verifying their outstanding
noise elimination in robustly solving the CS problem.

Experiment (3): Although the block version of greedy
pursuit algorithms BOMP and BStOMP can indeed recon-
struct unknown block sparse signals quickly [17], their
reconstruction is generally regarded as a type of approxi-
mate estimation. In this experiment, we evaluate the com-
putational complexities of the proposed BZA-LMS and
BL0-LMS algorithms by comparing them to the BOMP
and BStOMP algorithms and to conventional sparse adap-
tive algorithms ZA-LMS and �0-LMS. In Fig. 9, the run-
ning time is measured by the Matlab (R2013a) program
running on a Core i5-4120U 64-bit processor, and Win-
dows 10 environment. In various block K-sparsity, i.e.

Fig. 9. Running time comparisons (unit: sec.).

S ∈ {10,20, . . .,80} and K ∈ {1,2, . . . ,8}, the BOMP and
BStOMP algorithms complete block sparse signals recon-
struction within 0.02s running time. The ZA-LMS and
�0-LMS algorithms merely cost 5–6 times the time con-
sumption of moderate complexity. The computational
complexities of the proposed BZA-LMS and BL0-LMS
algorithms remain basically on the same level as that of
conventional sparse adaptive algorithms.

5. Conclusions

Based on the fact that evident limitations arise for ex-
isting block versions of convex optimization and greedy
pursuit algorithms in solving large-scale problem or as-
suming strong interference. We have extended two sparse
adaptive filtering algorithms to block versions, i.e., BZA-
LMS and BL0-LMS. In numerical simulation experi-
ments, the effectiveness of the proposed algorithms has
been demonstrated for a variety of scenarios.

We concluded that performance has been markedly im-
proved under a variety of block sparsity without sacrific-
ing evident convergence speed. The reliable robustness
against strong interference has been investigated and we
have shown that our proposed algorithms completely re-
construct block sparse signal while consuming only mod-
erate running time.
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