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The distribution of water pollution is often assessed by
remote sensing. In this study, we develop a fuzzy mul-
tiple regression model and analyze water quality using
data collected by the Advanced Visible and Near In-
frared Radiometer type-2 (AVNIR-2) of the Advanced
Land Observing Satellite at different time points. We
conduct a fuzzy multiple regression analysis of the
AVNIR-2 data and direct measurements of the local
water quality of Lake Hachiroko in Japan. The rela-
tionship between the AVNIR-2 and water quality data
are analyzed by solving both min and max problems.
We compare the estimated water quality maps with
the actual distributions in the study area, and deter-
mine that the proposed method enables us to derive
water quality conditions effectively from the AVNIR-2
data. Furthermore, by comparing maps created us-
ing AVNIR-2 data collected at different times, we ob-
tain results revealing temporal changes in water qual-
ity. In addition, we compare maps created using the
fuzzy multiple regression and fuzzy regression mod-
els. We demonstrate that the former offers a greater
number of solutions and provides more details about
water quality.

Keywords: remote sensing, ALOS, AVNIR-2, fuzzy
multiple regression analysis, water quality

1. Introduction

The water quality of rivers and lakes is often checked to
monitor the level of water pollution. A typical investiga-
tion involves extracting water samples directly from sev-
eral locations. Although this type of method is well suited
to the collection of water quality data for a relatively small
area, difficulties exist in applying it to the monitoring of
water quality over a large area.

Therefore, remote sensing has been used to analyze wa-
ter quality. This method is especially useful given its abil-
ity to obtain measurements instantaneously, its wide-area
coverage, and its periodicity [1–9]. For example, studies

of the water quality of Lake Garda in Italy were previ-
ously undertaken using Hyperion [6], and Lake Kasumi-
gaura in Japan, was studied using Landsat thematic map-
per (TM) data [7]. In addition, temporal changes in wa-
ter quality, such as at Lake Chilka in India, have been
studied using three sets of IRS-IA satellite data [8], and
in the northwestern part of the Baltic Sea using MERIS
data [9]. An algorithm that employs a neural network has
been used to monitor water quality based on remote sens-
ing data [10, 11]. The aforementioned studies prove the
usefulness of a neural network in studying water quality.

However, analysis of water quality using remote sens-
ing data by means of conventional methods involves cer-
tain problems. First, extensive observation data are re-
quired. For example, in one study [12], observation data
were taken from 138 locations at Taihu Lake in China.
When a neural network is used, many training samples
are required to build models [11]. In one study [11], 55
samples of observation data were collected, and in an-
other [10], 136 samples were required. In addition, ob-
taining good water quality analysis results is difficult be-
cause of the effect of specific disturbances and uncertain-
ties (e.g., atmospheric, surface, and water-wave effects, as
well as noise in the measurement system) on remote sens-
ing data [5]. Moreover, an increasing number of studies
have included water quality measurements of chlorophyll-
a (Chl a) and total suspended solid (TSS) [9, 12–14] than
other measurements. Although these studies have con-
firmed that Chl a and TSS are useful in analyzing water
quality, developing methods of analysis based on water
quality parameters other than Chl a and TSS, and creating
water quality estimate maps are necessary. To overcome
these problems, new water quality analysis methods using
remote sensing data must be developed.

In our study, in order to estimate the water quality of
Lake Hachiroko in Japan based on surface information
used as point information (such as that related to low wa-
ter quality), and to estimate quality while considering any
uncertainties in the data, we applied a fuzzy regression
model to analyze the water quality of Lake Hachiroko
based on Landsat TM data [5]. Although conventional
methods used to determine water quality distribution typ-
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Fig. 1. Overview of Lake Hachiroko and the water quality measurement sites (St. 1 to 5).

ically employ water quality measurements obtained from
many observation points (> 20), we considered the apply-
ing fuzzy regression analysis to such water quality moni-
toring data obtained from only five locations. The results
showed that a water quality distribution map can be cre-
ated using only a smattering of water quality data.

Analyses using remote sensing data present the chal-
lenge of constructing maps to estimate water quality when
data are obtained under less-than-optimal conditions such
as in the presence of cloud cover, and given the re-
gression period of remote sensing data [2, 15]. Meth-
ods have been proposed to estimate water quality us-
ing data obtained from the active sensor on the Japanese
Earth Resources Satellite-1 Synthetic Aperture Radar
(SAR) [15] and the Advanced Land Observing Satellite
(ALOS) Phased Array type L-band Synthetic Aperture
Radar (PALSAR) [16]. All of these can obtain data with-
out being constrained by weather conditions such as cloud
cover. The results have clearly shown that the textures
computed from these data can be applied to water qual-
ity analysis. To extrapolate water quality conditions over
periods in which TM data cannot be obtained, numerical
simulations were performed [2].

Data collected by the Advanced Visible and Near In-
frared Radiometer type-2 (AVNIR-2) of the ALOS can
also be used for water quality analysis [17]. Because the
ground resolution of AVNIR-2 data is higher than that of
TM data (30 m), AVNIR-2 data can be used for detailed
analysis of water quality that was previously not possible
because of the insufficient resolution of TM data. This
method yields more solutions and provides detailed water
quality results than possible with TM data [17]. In other
words, the results of analysis show that the fuzzy regres-
sion model is useful for estimating water quality.

However, because fuzzy regression analysis considers
only one of the features of remote sensing data, analyz-
ing specific bands and water quality data is difficult. To

solve this problem, we applied a method that uses a fuzzy
multiple regression model. Because the fuzzy multiple re-
gression model considers two types of data, namely, band
and water quality data, we believe that obtaining more de-
tailed water quality conditions is possible than with the
simpler fuzzy regression analysis.

In this study, we applied a fuzzy multiple regression
model developed using both water quality data (obtained
from five locations) and AVNIR-2 data, to analyze the wa-
ter quality in Lake Hachiroko. In addition, we compared
the solutions with the actual local water quality condi-
tions.

2. Study Area and Materials

2.1. Study Site Description
Lake Hachiroko, also known as Hachirogata, is located

approximately 20 km north of Akita and is a brackish-
water lake with a center latitude of 40◦N and a longitude
of 140◦E. Until 1956, it extended 12 km east–west and
27 km north–south, and had a total area of 22,024 ha. The
average depth was approximately 4 m, and even the deep-
est parts of the lake did not exceed 4.5 m. Based on a
reclamation plan, parts of the lake were drained in 1956,
and by May 1966, these parts had dried sufficiently to al-
low agriculture and settlement. In all, 17,239 ha, that is,
78.3% of the initial area of Hachirogata, was reclaimed.

Currently, Hachirogata has a surface area of only
4565 ha and consists of an east waterway, west water-
way, and adjustment pond. Agricultural water for Ogata
passes through 19 gates, and after it irrigates farmlands,
the water is discharged into the lake through the main wa-
terway and two drain pump sites at the north and south
ends. Water from the lake is released into the Sea of
Japan intermittently through floodgates located at the end
of the adjustment pond. Fig. 1 provides an overview of
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Lake Hachiroko and the water quality measurement sites:
Ogata Bridge, east of the adjustment pond, west of the
adjustment pond, the floodgate, and the center of the site.
These sites are designated St. 1 to 5, respectively.

2.2. Pollution and Water Quality Situations
More than 20 rivers, such as the Mitanegawa and

Babamegawa, flow into Lake Hachiroko. Recent years
have witnessed many water quality problems, such as
blooms of green algae [18].

Given its increased levels of water pollution, Lake
Hachiroko was listed as a “designated lake” under the
“Act on Special Measures Concerning Conservation of
Lake Water Quality” [19] in 2007. Therefore, understand-
ing the details of the lake’s surface water quality and the
effect of seasons on its quality is necessary.

In addition, a water quality expert has expressed the
following salient points regarding the study area [5]:

1) Murky water containing agricultural and domestic
wastewater flows from the southern and northern
drain pump sites.

2) An increase in pollution has occurred in the eastern
part of Lake Hachiroko and near the floodgate, where
contaminants accumulate because of poor water cir-
culation.

3) Murky water containing domestic wastewater flows
from the Babamegawa River, as well as from the
drain pump site to the east of Lake Hachiroko.

4) Pollution in the west waterway, including the Noishi
Bridge, is worsening because of poor water circula-
tion.

5) Little movement of the lake water has occurred, ex-
cept for a certain amount caused by wind.

Points 2) and 3) are particularly relevant to the target
area of this study.

2.3. AVNIR-2 Data for Analysis
AVNIR-2 data are obtained from Bands 1 to 4, which

lie in the visible and near-infrared regions. The wave-
lengths of these bands are 0.42 to 0.50 μm (visible blue),
0.52 to 0.60 μm (visible green), 0.61 to 0.69 μm (vis-
ible red), and 0.76 to 0.89 μm (near-infrared), respec-
tively. ALOS was finished in 2011, and because the re-
gression period of ALOS was 46 days [20] but water qual-
ity measurements were recorded only once a month, in
this study, data collected on 26 August 2006 (hereafter,
“August data”), and September 20 (hereafter, “September
data”), were used in the analysis, as shown in Fig. 2.

2.4. Water Quality Measurements
Life environment parameters are constantly reviewed

by the Akita Prefectural Government. From these, we se-
lected six water quality parameters that can be used in

 
(a) August data. 

 

 
(b) September data. 

Fig. 2. AVNIR-2 data used (RGB; Bands 3, 2, and 1) and
water quality measurement sites (St. 1 to 5).

our analysis to indicate levels of water pollution [18]:
hydrogen-ion indicator (pH), dissolved oxygen (DO),
chemical oxygen demand (COD), suspended solids (SS),
total nitrogen (T-N), and total phosphorus (T-P). The re-
sults suggested that these water quality parameters reflect
the overall water quality conditions. These water quality
parameters were used both individually and in combina-
tion with the AVNIR-2 band data and applied to our fuzzy
multiple regression analysis.

We selected water quality measurements recorded on
23 August 2006 and 26 September 2006, as listed in Ta-
ble 1. Measurements were recorded at the water surface,
and no rainfall occurred in the study area on the dates
of the observations. The wind speed on both dates was
recorded as approximately 1 m/s by the Japan Meteoro-
logical Agency [18].

3. Methods

The aim of this study is to clarify the relationship be-
tween AVNIR-2 data and the directly measured water
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Table 1. Water quality measurements recorded by the Akita Prefectural Government [18].
 

Measurement site 
Water quality parameters 

pH DO 
(mg/ℓ) 

COD 
(mg/ℓ) 

SS 
(mg/ℓ) 

T-N 
(mg/ℓ) 

T-P 
(mg/ℓ) 

Ogata Bridge (St.1) 9.0 
8.7 

9.1 
11.0 

19 
12 

29 
23 

0.79 
0.40 

0.22 
0.13 

East of adjustment pond (St.2) 9.1 
8.8 

11.0 
11.0 

14 
10 

28 
16 

0.49 
0.41 

0.24 
0.12 

West of adjustment pond (St.3) 9.6 
8.7 

13.0 
9.9 

15 
11 

26 
18 

0.54 
0.49 

0.18 
0.20 

Floodgate (St.4) 9.2 
9.1 

10.0 
12.0 

12 
15 

4 
42 

0.40 
0.54 

0.18 
0.28 

Centre of the site (St.5) 9.4 
8.8 

13.0 
10.0 

16 
11 

24 
12 

0.59 
0.43 

0.19 
0.15 

Upper figure: measurements recorded on 23 August 2006.
Lower figure: measurements recorded on 26 September 2006.

 
Fig. 3. Flow of water quality analysis.

quality data, as well as to analyze water quality conditions
using a fuzzy multiple regression model. Fig. 3 shows the
process of water quality analysis using AVNIR-2 and wa-
ter quality data.

3.1. Preprocessing
In general, remote sensing data acquired by satellites

are distorted by factors such as slight variations in the
satellite’s attitude, the rotation of the Earth, and the cur-
vature of the Earth’s surface. Stretching of the remote
sensing data to match the criteria image is referred to
as “geometric correction,” in that it applies corrections
to the distortions previously described. In our study, 20
ground control points were selected and geometrically

corrected using a secondorder conformal transformation.
Resampling was performed by cubic convolution interpo-
lation [21]. The target water area was then extracted using
mask processing. Fig. 4 shows the results from mask pro-
cessing the AVNIR-2 data.

3.2. Fuzzy Multiple Regression Model
Because of the ground resolution of the sensors used

to acquire remote sensing data, compensating for vari-
ous disturbances and uncertainties in the remote sensing
data [5] was necessary. The fuzzy set theory provides use-
ful concepts and tools for addressing uncertainties. The
fuzzy multiple regression model, which was developed
based on fuzzy set theory, assumes that any difference be-
tween observation data and a model prediction indicates
system fuzziness, thus revealing the relationship between
input and output [22]. Remote sensing data include ex-
ternal disturbance components and sensing system noise.
Therefore, we must consider fuzziness when processing
data. We specified monitoring sites for AVNIR-2 data and
assumed that the digital number (DN) of the pixels around
them is a fuzzy number.

The fuzzy multiple regression model is based on the
fuzzy regression model and computed using the following
equations [5]:

Y (Xp) = A0 +A1Xp1 + · · ·+AnXpn . . . . (1)
= (a(Xp),e(Xp))L . . . . . . . . (2)

However, the fuzzy multiple regression model (with its
two inputs and one output) as applied in this study can be
given as follows:

Y (Xp) = A0 +A1Xp1 +A2Xp2 . . . . . . . (3)
= (a0,e0)L +(a1,e1)LXp1 +(a2,e2)LXp2 (4)

where Y (Xp) is an estimate (fuzzy number) that denotes
the estimated fuzzy output interval; Xp is the output vec-
tor; and Xp1 and Xp2 are input vectors. Regression vari-
able Ai(i = 0,1,2) is a triangular fuzzy number. To cal-
culate interval Y (Xp) from Eqs. (3) and (4), Ai(i = 0,1,2)
must be known. In fact, the problem of fuzzy multiple re-
gression analysis involves obtaining the fuzzy coefficient
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(a) August data, band 1. 

 

 
 (b) September data, band 1. 

22110 +)(•+=)( ppp XaXaaaXa

Fig. 4. Results of mask processing.

Ai(i = 0,1,2) in a fuzzy multiple regression model [21].
Because Ai(i = 0,1,2) is a triangular fuzzy number, ai(i =
0,1,2) is assumed to be the center of each Ai(i =,1,2),
and ei(i = 0,1,2) is assumed to be the width of each
Ai(i = 0,1,2). In other words, the main objective of fuzzy
multiple regression analysis is to obtain six variables (a0,
e0, a1, e1, a2, e2).

In this study, the variables (a0, e0, a1, e1, a2, e2) were
calculated using the output vector Xp and the input vectors
Xp1 and Xp2 by means of the following equations [22]:

a(Xp) = a0 +a1 ·a(Xp1)+a2Xp2 . . . . . . (5)
e(Xp) = e0 + e1 · |e(Xp1)|+ e2|Xp2| . . . . . (6)

where Xp is derived from any band of the AVNIR-2 data;
Xp1 is taken from the AVNIR-2 data for Bands 1 to 4,
with the exception of the Xp band; and Xp2 is the set of
measured water quality data. Because Xp and Xp1 are as-
sumed to be triangular fuzzy numbers, a(Xp) is the center
of Xp, and e(Xp) is the width of Xp, which is calculated as
the mean DN and twice the standard deviation (ó) of 25
pixels around each water quality measurement site. Fur-
thermore, a(Xp1) and e(Xp1) can be obtained in a simi-

  (a) Measured value.       (b) Triangular fuzzy number. 
Fig. 5. Measured value and triangular fuzzy number of DN.

lar manner. Fig. 5 shows an example of the manner in
which the triangular fuzzy number is determined from the
measured value. In addition, our preliminary experiments
confirmed that the classification results obtained using the
triangular membership were better than those obtained us-
ing the normal distribution membership functions.

In fuzzy multiple regression models, linear program-
ming problems known as “min” and “max” problems can
be formulated using interval data [22]. Here, the formula-
tion of the min problem requires the use of a linear regres-
sion model with a minimum width that includes all inter-
val data. Conversely, the formulation of the max problem
requires the use of a linear regression model with a maxi-
mum width that is included within all interval data. In this
study, we assigned the output vector Xp and the input vec-
tors Xp1 and Xp2 to Eqs. (5) and (6). Thus, we calculated
six variables (a0, e0, a1, e1, a2, e2) from the min and max
problems. Fig. 6 shows an example of a fuzzy multiple
regression model and reflects the relationships between
input and output vectors in the min and max problems.

One processing run of the fuzzy multiple regression
model uses a combination of the DN for band data and
the values of one type of water quality measurement for
five sites. For example, for our analysis using a combina-
tion of Band 2 data as Xp, Band 4 data as Xp1, and TN as
Xp2, the DNs for Band 2 and 4 data are listed in Table 2,
and the TN measurements are listed in Table 1. We sub-
stituted these values into Eqs. (5) and (6). In other words,
we set the mean DN and twice the standard deviation of
Band 2 as a(Xp) and e(Xp); the mean DN and twice the
standard deviation of Band 4 as a(Xp1) and e(Xp1); and
the TN measurements as Xp2. Thereafter, we calculated
the coefficients by solving the min problem. The val-
ues a0, e0, a1, e1, a2, and e2 were found to be 81.566,
6.917, 0.211, 0.000, 0.000, and 0.000, respectively. Fur-
thermore, ai(i = 0,1,2), and ei(i = 0,1,2) are not simple
numbers but rather the coordinates of the center and the
width of the triangular fuzzy number in the fuzzy multiple
regression model, respectively.

3.3. Fuzzy Level-Slice Processing
The fuzzy output interval obtained using the fuzzy mul-

tiple regression model shows that the DN corresponds to
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(a) Min problem. 

(b) Max problem. 
Fig. 6. Example of a fuzzy multiple regression model.

the forecast range obtained by measuring the water qual-
ity parameters and the AVNIR-2 band data. It has been
demonstrated that water quality estimate maps generated
using fuzzy levelslice processing can yield intermediate
levels of water quality that are comparable to those ob-
tained by conventional levelslice processing [5]. To in-
vestigate the water quality in greater detail, estimate maps
were created by fuzzy levelslice processing in this study.
This technique employs simplified fuzzy reasoning [23].

We assumed that the DN could correspond to specific
water quality conditions set in an optional range. The pro-
duction rule for estimating water quality for a given pixel
is as follows:

Rule 1 : Y1 → Z1

Rule n : Yn → Zn

Input : S

Out put : Z0 . . . . . . . . . . . . . . (7)

where Yi(i = 1, . . . ,n) represents an estimated fuzzy set of
the DN in proportion to the slice level. Zi(i = 1, . . . ,n)
represents the regression variables in each rule, which are
calculated from the attributes of both the band data and

Table 2. DNs of 25 pixels around each water quality mea-
surement site from the August data.

Measurement site DN of band data
1 2 3 4

Ogata Bridge 125.640 90.640 52.360 55.840
(2.545) (2.106) (2.256) (4.326)

East of adjustment 126.880 89.120 54.880 22.920
pond (2.445) (2.099) (1.677) (1.132)
West of 124.040 83.280 51.200 20.960
adjustment pond (2.424) (2.105) (1.597) (1.117)

Floodgate 125.200 87.560 54.520 24.280
(2.443) (2.038) (1.741) (1.178)

Centre of the site 125.560 86.720 52.600 23.120
(2.413) (2.177) (1.589) (1.075)

Upper figure: mean DN.
Lower figure: standard deviation.

(a) Fuzzy regression model. 

 (b) Fuzzy set. 

Fig. 7. Example of a fuzzy regression model and fuzzy set.

water quality data in the proposed model. In addition, the
values of the slice levels in the band data are calculated
from the DN of each band data, and the values of the slice
levels in the water quality data are set according to the
environmental standard values for lakes recorded by the
Akita Prefectural Government. S is the input for the DN.
Z is the output, and is given as follows:

Z0 =

n

∑
i=1

hiZi

n

∑
i=1

hi

. . . . . . . . . . . . . (8)

When the input S is known, hi is the ratio for obtaining
Zi. The rule number corresponds to the slice number. In
this study, we used six slices. Fig. 7 shows an example
of a fuzzy regression model and fuzzy set. For example,
we assume six rules of DN that correspond to each water
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Table 3. Results of water quality analysis obtained using
August data.

Fuzzy 
output 1 2 3 4 

Band data 2 3 4 1 3 4 1 2 4 1 2 3 

W
at

er
 q

ua
lit

y 

pH × 
× 

× 
× 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

DO × 
× 

× 
○ 

× 
\ 

× 
○ 

○ 
○ 

○ 
\ 

× 
× 

○ 
× 

× 
\ 

× 
\ 

○ 
\ 

○ 
\ 

COD × 
× 

× 
× 

× 
\ 

○ 
× 

× 
× 

○ 
\ 

× 
× 

○ 
○ 

× 
\ 

× 
\ 

× 
\ 

○ 
\ 

SS ○ 
× 

○ 
× 

× 
\ 

○ 
× 

○ 
○ 

○ 
\ 

× 
× 

× 
○ 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

T-N ○ 
× 

○ 
× 

× 
\ 

○ 
× 

○ 
× 

○ 
\ 

× 
× 

× 
× 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

T-P ○ 
× 

○ 
× 

× 
\ 

× 
× 

× 
○ 

○ 
\ 

○ 
× 

○ 
○ 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

©: A normal solution.
×: A solution with negative DN and that cannot be used for water

quality analysis.
\: A solution cannot be obtained or used.
Upper row: results of the min problem.
Lower row: results of the max problem.

Table 4. Results of water quality analysis obtained using
September data.

Fuzzy output 1 2 3 4 

Band data 2 3 4 1 3 4 1 2 4 1 2 3 

W
at

er
 q

ua
lit

y 

pH × 
× 

× 
× 

× 
\ 

× 
× 

○ 
○ 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

DO × 
× 

× 
× 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

COD ○ 
× 

○ 
× 

× 
\ 

○ 
○ 

○ 
○ 

○ 
\ 

○ 
○ 

○ 
○ 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

SS ○ 
○ 

○ 
× 

× 
\ 

○ 
○ 

○ 
○ 

× 
\ 

○ 
○ 

× 
○ 

× 
\ 

○ 
\ 

× 
\ 

○ 
\ 

T-N ○ 
× 

× 
× 

× 
\ 

○ 
× 

× 
× 

× 
\ 

○ 
× 

○ 
× 

× 
\ 

× 
\ 

○ 
\ 

× 
\ 

T-P ○ 
× 

× 
× 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
× 

× 
× 

× 
\ 

× 
\ 

× 
\ 

× 
\ 

©: A normal solution.
×: A solution with negative DN and that cannot be used for water

quality analysis.
\: A solution cannot be obtained or used.
Upper row: results of min problem.
Lower row: results of max problem.

quality measurement. In Eq. (7), Yi is DN, and Zi corre-
sponds to the water quality measurements. The relation
of the rules is shown in Fig. 7(a). When the input S is
known, we can calculate the ratio hi for each rule n, as
shown in Fig. 7(b). We assign the values of hi and Zi in
Eq. (8), and calculate the output Z0 for the input S.

4. Results

4.1. Selection of Solution
The DN value of the ALOS AVNIR-2 data should be

between and 255. In our study, when the slope of the
fuzzy multiple regression model was determined to be
negative, or when the interval was negative, the solution
was not used for analysis. In particular, if a water qual-

Fig. 8. Water quality estimated with min problem using the
August Band 1 and 3 data, and T-N.

ity estimate map was obtained when the coefficient was
negative, a solution could not be obtained or used; this
situation is indicated by “\” in the result tables. If a wa-
ter quality estimate map was obtained but contained pix-
els with negative DNs, the solution could not be used for
analysis; this situation is indicated by “×.” For all events
other than those marked “\” and “×,” water quality esti-
mate maps could be obtained and used for water quality
analysis; these situations are indicated by “◦.”

Tables 3 and 4 list the results obtained in this study
based on data from two bands. In these tables, the first
row, “Fuzzy output,” lists the band of the fuzzy output in-
terval estimate, corresponding to Y (Xp) in Eq. (5). The
second row, “Band data,” lists the band of the regression
variable, which corresponds to Xp1 in Eq. (5). Thus, the
second column, “Water quality,” is the regression vari-
able, corresponding to Xp2 in Eq. (5). For example, in
Table 3, the results obtained from a combination of Band
1, Band 2, and pH, in the min problem, is marked “×.”

In addition, to explain the relationships between the
estimated maps and regression variables, we present the
slice levels of the regression variables in the figures. The
estimate map in Fig. 8 reflects the slice levels of the DNs
in Band 1 data. The slice levels in Band 3 data and water
quality parameter TN are shown on the right side of this
figure.

In this study, to evaluate the proposed method, we first
calculated the solutions and then verified the effectiveness
of the proposed method by comparing the calculated so-
lutions with the local water quality data and actual water
quality situations. Finally, we confirmed the consistency
of the calculated results with the local water quality data.

4.2. Results of Water Auality Analysis for Each
Level of Water Quality

Tables 3 and 4 list the results of the water quality anal-
ysis for each water quality measurement and the data for
each band for the min and max problems. We found that
when we used August data, the DO, COD, SS, TN, and TP
values could be used to draw estimated maps with 32 pat-
terns (indicated in Table 3 by “◦”), and when we used the
September data, the pH, COD, SS, TN, and TP could be
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used to draw estimated maps with 31 patterns (indicated
in Table 4 by “◦”).

5. Discussion

5.1. Discussion of Water Quality Estimate Maps
Figure 8 shows an example of a water quality estimate

map obtained using August Band 1 data as an estimate,
as well as Band 3 data and total nitrogen (TN) measure-
ments as regression variables for the min problem. Near
the Ogata Bridge, the T-N level of the water quality data,
measured locally, was 0.79 mg/L, and in the estimate map,
several pixels are classified as LEVEL 5 (red: T-N = 0.6
to 1.0 mg/L). This map is in good agreement with the
measured water quality data. Near the floodgate, many
pixels are classified as LEVEL 3 (yellow: T-N = 0.2 to
0.4 mg/L) and LEVEL 4 (orange: T-N = 0.4 to 0.6 mg/L),
indicating that the water pollution was worse in this loca-
tion than at the west end of the adjustment pond. This
result is in agreement with Points 2) and 3) of the actual
water quality situations, as detailed in Section 2.2.

Figure 9(a) shows an example of a water quality esti-
mate map obtained using September Band 2 data as an
estimate, as well as Band 3 data and chemical oxygen
demand (COD) measurement as regression variables for
the max problem. Near the Ogata Bridge, the COD from
the water quality data, measured locally, was 12.0 mg/L,
and on the estimate map, several pixels are classified as
LEVEL 6 (white: COD > 12.0 mg/L). This map is in
good agreement with the measured water quality data.
Near the floodgate, many pixels are classified as LEVEL
5 (red: COD = 8.0 to 12.0 mg/L) and LEVEL 6 (white:
COD > 12.0 mg/L), indicating that the water pollution
there was worse than elsewhere in the lake. This result
is in agreement with Points 2) and 3) of the actual water
quality situations (Section 2.2).

Thus, not only are the results shown in Figs. 8 and 9
in good agreement with the actual water quality situations
described in Points 2) and 3), but the other valid results
(indicated in Tables 3 and 4 by “◦”) are as well. This in-
dicates the efficacy of the proposed method. Some of the
results are shown in Fig. 9. However, because the pro-
portion of valid solutions was not very high (22.2% of the
August data, and 21.5% of the September data), improv-
ing the efficiency of analysis by considering factors such
as additional features of remote sensing data is necessary
in a future study.

5.2. Comparison with Classification Results
Obtained Using the Fuzzy Regression Model

In this study, we used data acquired from ALOS
AVNIR-2 and estimated the water quality of Lake Hachi-
roko using fuzzy multiple regression analysis. Wang et al.
applied a fuzzy regression model to water quality analy-
sis using the same AVNIR-2 data [17]. To determine the
effectiveness of the proposed method, we compared the

 
(a) Estimate map of water quality with the max problem using 

September band 2 data, band 3 data, and COD. 
 

 
(b) Estimate map of water quality with the min problem using 

August band 2 and 4 data and DO. 
 

 
(c) Estimate map of water quality with the min problem using 

September band 2 and 3 data and pH. 
 

 
(d) Estimate map of water quality with the max problem using 

August band 3 and 2 data and T-P. 
Fig. 9. Some results obtained by the proposed method.

results obtained by the proposed method with those ob-
tained using methods detailed in previous studies.

Vol.20 No.6, 2016 Journal of Advanced Computational Intelligence 999
and Intelligent Informatics



Wang, D. et al.

 
(a) Fuzzy regression model using AVNIR-2 band 2 data and SS. 

 

 
(b) Fuzzy multiple regression model using AVNIR-2 band 2 data, 

band 4 data, and SS. 
Fig. 10. Maps of water quality estimated using August data.

Regarding the August data, we compared 13 patterns
obtained from the solutions generated using the fuzzy re-
gression model and 32 from those generated using the
fuzzy multiple regression model. Regarding the Septem-
ber data, we compared eight patterns obtained from the
solutions generated using the fuzzy regression model and
31 from those generated using the fuzzy multiple regres-
sion model. Furthermore, as shown in Fig. 10, for the
same AVNIR-2 data and water quality measurements, the
fuzzy regression model yielded two classification levels,
whereas the fuzzy multiple regression model yielded five
classification levels.

Although obtaining results for all the band data and
water quality data is impossible, a comparison of our re-
sults with those obtained using the fuzzy regression model
shows that our method yields more solutions and provides
more details about water quality. In addition, the study
of [17] used 24 combinations for analysis when employ-
ing the fuzzy regression model, whereas our study used
144 when employing the fuzzy multiple regression model.
Therefore, because of the increased number of combina-
tions, generating an increased number of useful solutions
is possible and can thus further develop our analysis. Con-
sidering that we plan to develop this method to obtain wa-
ter quality information for those periods for which data
are not available and to improve the temporal resolution,
having a greater number of solutions and detailed water
quality conditions available will be useful.

 

(a) August data. 

(b) September data 
Fig. 11. Maps of water quality estimated using Band 2 and
4 data, and COD.

5.3. Temporal Changes in Water Quality

The results obtained using the ALOS AVNIR-2 data
were found to be in good agreement with the measured
water quality conditions for each period. However, the
difference between the results obtained using the August
and September data indicate temporal changes in water
quality.

Temporal changes in the water quality of Lake Hachi-
roko were investigated by comparing the results obtained
in this study with those obtained by using the fuzzy re-
gression model [17]. We selected results that reflect
the water quality conditions from both the August and
September data sets within the same band and the same
water quality measurements. The comparison showed that
our results are similar to those of [17] and presented some
new points. First, in the study of [17], the wavelength re-
gion of band 4 (0.76 to 0.89 μm) had a low reflectance at
the water surface [24]. Therefore, only the AVNIR-2 data
from Bands 1 to 3 were used for the analysis. In our study,
we considered more features than those in the case involv-
ing fuzzy regression analysis and added an analysis of the
water quality using AVNIR-2 Band 4 data, as shown in
Fig. 11. We compared the temporal changes determined
using data from AVNIR-2 Bands 1 to 4. Band 4 data pro-
vided more information on the temporal changes in water
quality, suggesting that a wider scope of application was
necessary to determine temporal changes in water quality.

Second, application of the fuzzy multiple regression
model led to an increase in the number of solutions that
can be used for comparison. Thus, the previously use-
less water quality parameter became useful. For example,
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(a) August data. 

 
(b) September data 

Fig. 12. Classification results obtained by the k-means method.

in the study of [17], T-N could not reflect the temporal
changes in water quality, but in this study, the T-N data
were used. The results showed that we can compare the
temporal changes in water quality by using a greater num-
ber of groups of ANVIR-2 band data and water quality
measurements.

Furthermore, in the study of [17], only four sets of re-
sults were used to compare temporal changes in water
quality. In this study, 13 sets (indicated in Tables 3 and 4
by “◦”) were used. Because in both studies the same data
(remote sensing data and water quality measurements)
were used, a greater number of solutions means that more
detailed information embedded in the remote sensing data
can be estimated. Thus, the greater number of solutions
reflects the high efficiency of the analysis. In addition, al-
though measurements were few, expert knowledge [5] and
the results of numerical simulations [2] reveal that gradual
changes can reflect the actual situation.

We noticed some plume patterns in Fig. 11(b). We plan
to determine the reason for this phenomenon in a future
study.

5.4. Comparison of our Results with those
Obtained by the Conventional Method

In this study, August and September data were used
to estimate the water quality of Lake Hachiroko by em-
ploying the fuzzy multiple regression model. To deter-
mine the effectiveness of the method, the k-means method
was used for classification [21]. We also used the August
and September data and set k = 6, a value determined to
match the number of slice levels. Fig. 12 shows the results
classified by the k-means method. Considerable noise ap-
peared in the results of the k-means method, and the re-
lation between the classification results and water quality
conditions was not immediately clear.

Conventional methods such as the k-means method,
uses data from many bands simply and cannot yield a
good classification result. By contrast, the proposed
method considers the features of each band and uses the
fuzzy multiple regression model. Thus, the proposed
method is particularly useful for analyzing water quality
conditions.

6. Conclusion

In this study, water quality conditions were analyzed by
applying a fuzzy multiple regression model to the ALOS
AVNIR-2 data. We reached the following conclusions:

1) The method proposed in this study, namely, the fuzzy
multiple regression model, can accurately estimate
the water quality in Lake Hachiroko, Japan.

2) Given that the estimated maps obtained using the
fuzzy multiple regression model were more detailed,
we suggest that detailed water quality conditions can
be obtained by combining data from multiple bands.

3) The proposed method is useful for monitoring tem-
poral changes in water quality.

The results obtained using the proposed method are in
good agreement with the water quality measurements and
actual water quality situations, thus confirming the effec-
tiveness of our method.

In the future, we plan to increase the amount of data
analyzed and examine the overall applicability of the pro-
posed method.
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