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Computation tree logic (CTL) is known to be one
of the most useful temporal logics for verifying
concurrent systems by model checking technolo-
gies. However, CTL is not sufficient for handling
inconsistency-tolerant and probabilistic accounts of
concurrent systems. In this paper, a paraconsistent (or
inconsistency-tolerant) probabilistic computation tree
logic (PpCTL) is derived from an existing probabilis-
tic computation tree logic (pCTL) by adding a para-
consistent negation connective. A theorem for embed-
ding PpCTL into pCTL is proven, thereby indicating
that we can reuse existing pCTL-based model check-
ing algorithms. A relative decidability theorem for
PpCTL, wherein the decidability of pCTL implies that
of PpCTL, is proven using this embedding theorem.
Some illustrative examples involving the use of PpCTL
are also presented.

Keywords: computation tree logic, paraconsistent
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1. Introduction

1.1. Motivations of this Paper

The verification of open, large, randomized, and
stochastic concurrent systems is gaining increasing im-
portance in the fields of computer science and engineer-
ing. On the one hand, verifying open and large concur-
rent systems, such as web application systems, requires
the use of inconsistency-tolerant (or paraconsistent) rea-
soning because inconsistencies often appear and are in-
evitable in such systems [1]. On the other hand, verify-
ing randomized and stochastic concurrent systems, such
as fault-tolerant communication systems over unreliable
channels, requires the use of probabilistic reasoning be-
cause useful notions of reliability for such systems require
probabilistic characterization [2]. Thus, the ability to ac-
commodate both inconsistency-tolerant and probabilistic

reasoning by an appropriate logic is a requirement for ver-
ifying such complex concurrent systems.

Computation tree logic (CTL) [3] is widely accepted
as one of the most useful temporal logics for verify-
ing concurrent systems by model checking technologies
[4]. CTL-based model checking algorithms are known to
be more efficient than model-checking algorithms based
on other temporal logics such as linear-time temporal
logic (LTL) [5]. However, CTL is not sufficient for han-
dling paraconsistent and probabilistic accounts of concur-
rent systems because it has no operators that can repre-
sent paraconsistency and probability. Thus, the aim of
this paper is to construct a paraconsistent and probabilis-
tic extension of CTL. To achieve this aim, a new logic,
paraconsistent probabilistic CTL (PpCTL), is introduced.
PpCTL is constructed by combining the existing useful
CTL-variants, namely paraconsistent CTL (PCTL) [6, 7]
and probabilistic CTL (pCTL) [2, 8] on the basis of a the-
orem for embedding PpCTL into pCTL. Some illustrative
examples describing an SQL injection attack detection al-
gorithm [9], which involves the use of PpCTL are also
presented in this paper to highlight the virtues of combin-
ing paraconsistency (in PCTL) and probability (in pCTL).

Integrating useful reasoning mechanisms is regarded as
combining and extending some useful non-classical log-
ics such as modal logics. Combining and extending useful
non-classical logics are also known to be a very important
issue in mathematical logic (see e.g., [10]). The research
presented in this paper is thus also intended to overcome
this issue and to provide a solution, by combining and ex-
tending the following useful non-classical logics: tempo-
ral logic, paraconsistent (or inconsistency-tolerant) logic
and probabilistic (or probability) logic. Although the pro-
posed embedding-based method is not technically that in-
novative, it provides a new simple and useful combination
of mechanisms for these logics. The combination and ex-
tension of these logics enable us to integrate the exist-
ing two application areas concerning PCTL and pCTL,
respectively.
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1.2. Paraconsistent CTL
PCTL, which was introduced and studied by Kamide

and Kaneiwa in [6, 7], is a paraconsistent extension of
CTL. To appropriately formalize inconsistency-tolerant
reasoning, PCTL is based on Nelson’s four-valued para-
consistent logic N4 [11, 12], which includes a paracon-
sistent negation connective. The paraconsistent negation
connective in PCTL entails the property of paraconsis-
tency. Roughly, a satisfaction relation |= is considered to
be paraconsistent with respect to a negation connective ∼
if the following condition holds:

∃α ,β [M,s �|= (α ∧∼α)→β ],

where s is the state of a Kripke structure M. In contrast to
PCTL, classical logic has no paraconsistency because the
formula of the form

(α ∧∼α)→β

is valid in classical logic.
Paraconsistent logics, including PCTL, are known to

be more appropriate for inconsistency-tolerant and un-
certain reasoning than other non-classical logics [13–19].
For example, the following scenario is undesirable:

(s(x)∧∼s(x))→d(x)

is valid for any symptom s and disease d, where ∼s(x)
implies that “a person x does not have a symptom s” and
d(x) implies that “a person x suffers from a disease d.” An
inconsistent scenario expressed as

melancholia( john)∧∼melancholia( john)

will inevitably occur because melancholia is an uncertain
concept and the fact ”John has melancholia” may be de-
termined to be true or false by different pathologists with
different perspectives. In this case, the undesirable for-
mula

(melancholia( john)∧
∼melancholia( john))→cancer( john)

is valid in classical logic (i.e., an inconsistency has an un-
desirable consequence), whereas it is not valid in para-
consistent logics (i.e., these logics are inconsistency-
tolerant).

We now give a detailed explanation about the useful-
ness of paraconsistent reasoning. We assume a large med-
ical database MDB of symptoms and diseases. We can
also assume that MDB is inconsistent in the sense that
there is a symptom predicate s(x) such that ∼s(x),s(x) ∈
MDB. This assumption is regarded as very realistic, be-
cause symptom is an uncertain concept, which is difficult
to determine by any diagnosis. It may be determined to
be true or false by different doctors with different per-
spectives. Then, the database MDB does not derive arbi-
trary disease d(x), which means “a person x suffers from
a disease d,” since paraconsistent logics ensures the fact
that for some formulas α and β , the formula ∼α ∧α→β
is not valid. The paraconsistent logic-based large MDB

is thus inconsistency-tolerant. In the classical logic, the
formula ∼s(x)∧ s(x)→d(x) is valid for any disease d,
and hence the non-paraconsistent formulation based on
classical logic is regarded as inappropriate for applica-
tion to this medical database. Apart from such a medical
database, large and open concurrent systems also require
the handling of paraconsistent scenarios because inconsis-
tencies often appear and are inevitable in these systems.
This is the reason why we need to combine PCTL and
pCTL.

1.3. Probabilistic CTL
pCTL, which was introduced and studied by Aziz et al.

in [8] and Bianco and de Alfaro in [2], is a probabilis-
tic extension of CTL. To appropriately formalize proba-
bilistic reasoning, pCTL uses a probabilistic or probabil-
ity operator P≥x, where the formula of the form P≥xα is
intended to read “the probability of α holding in the fu-
ture evolution of the system is at least x.” In [2], pCTL
and its extension, pCTL∗, were introduced for verifying
the properties of reliability and the performance of the
systems modeled by discrete Markov chains. pCTL and
pCTL∗ can appropriately express quantitative bounds on
the probability of system evolutions. In addition, in [2],
the complexities of model-checking algorithms for pCTL
and pCTL∗ were clarified. In [8], model-checking algo-
rithms for the extensions of the abovementioned settings
of pCTL and pCTL∗ were proposed for verifying prob-
abilistic nondeterministic concurrent systems, in which
the probabilistic behavior coexists with nondeterminism.
These algorithms were also shown to exhibit polynomial-
time complexity depending on the size of the systems.

The main difference between the pCTL settings by
Aziz et al. [8] and Bianco and de Alfaro [2] is the
setting of the probability measures in the probabilistic
Kripke structures of pCTL. In the present paper, PpCTL
is constructed on the basis of a “probability-measure-
independent” translation of PpCTL into pCTL. By this
translation, a theorem for embedding PpCTL into pCTL is
proven, which entails the relative decidability of PpCTL
with respect to pCTL, i.e., the decidability of pCTL im-
plies that of PpCTL. This fact indicates that we can reuse
the existing pCTL-based verification algorithms by Aziz
et al. [8] and Bianco and de Alfaro [2]

The structure of this paper is then summarized as fol-
lows.

In Section 2, the new logic PpCTL, which is an exten-
sion of both PCTL and pCTL, is introduced on the basis of
a paraconsistent probabilistic Kripke structure with two
types of satisfaction relations. Some remarks on PpCTL
are also provided in this section.

In Section 3, a theorem for embedding PpCTL into
pCTL is proven using a new translation function. As a
corollary of this embedding theorem, a relative decidabil-
ity theorem for PpCTL, wherein the decidability of pCTL
implies that of PpCTL, is obtained. Note that the pro-
posed translation is regarded as a modified extension of
the existing translation, which was used by Gurevich [20],
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Rautenberg [21], and Vorob’ev [22] to embed Nelson’s
three-valued constructive logic [11, 12] into positive intu-
itionistic logic.

In Section 4, some translation examples are presented.
In Section 5, a bisimulation theorem which is known to

be useful for abstraction in model checking is shown for
PpCTL.

In Section 6, some illustrative examples for describing
the SQL injection attack detection algorithm proposed by
Sonoda et al. [9] are presented on the basis of the use
of PpCTL-formulas. SQL injection is one of malicious
attack methods to exploit security vulnerabilities on SQL
database servers.

In Section 7, some remarks on an extension of PpCTL
by adding a location operator are addressed.

In Section 8, this paper is concluded and some related
works are addressed.

Finally in this section, we remark that this paper in-
cludes content that was presented at a conference [23].

2. Logics

Formulas of PpCTL are constructed from countably
many atomic formulas, → (implication) ∧ (conjunction),
∨ (disjunction), ¬ (classical negation), ∼ (paraconsis-
tent negation), P≤x (less than or equal probability), P≥x
(greater than or equal probability), P<x (less than proba-
bility), P>x (greater than probability), X (next), G (glob-
ally), F (eventually), U (until), R (release), A (all compu-
tation paths) and E (some computation path). The sym-
bols X, G, F, U and R are called temporal operators, and
the symbols A and E are called path quantifiers. The sym-
bols P≤x, P≥x, P<x and P>x are called probabilistic opera-
tors or probability operators. A formula P≤xα is intended
to read “the probability of α is at least x.” The symbol
ATOM is used to denote the set of atomic formulas. An
expression A ≡ B is used to denote the syntactical identity
between A and B.

Definition 2.1: Formulas α are defined by the follow-
ing grammar, assuming p ∈ ATOM and x ∈ [0,1]:

α ::= p | α→α | α ∧α | α ∨α | ¬α | ∼α |
P≤xα | P≥xα | P<xα | P>xα | AXα |
EXα | AGα | EGα | AFα | EFα |
A(αUα) | E(αUα) | A(αRα) | E(αRα).

Note that pairs of symbols like AG and EU are indivis-
ible, and that the symbols X,G,F,U and R cannot occur
without being preceded by an A or an E. Similarly, every
A or E must have one of X, G, F, U and R to accompany
it. It is remarked that all the connectives displayed above
are required to obtain a theorem for embedding PpCTL
into pCTL.

Definition 2.2: A paraconsistent probabilistic Kripke
structure (ppk-structure for short) is a structure 〈S,S0, R,
μs, L+,L−〉 such that

1. S is the set of states,

2. S0 is a set of initial states and S0 ⊆ S,

3. R is a binary relation on S which satisfies the condi-
tion: ∀s ∈ S ∃s′ ∈ S [(s,s′) ∈ R],

4. μs is a certain probability measure (or probability
distribution) concerning s ∈ S: a set of paths begin-
ning at s is mapped into a real number in [0,1],

5. L+ and L− are mappings from S to the power set of
a nonempty subset AT of ATOM.

A path in a ppk-structure is an infinite sequence of
states, π = s0,s1,s2, ... such that ∀i ≥ 0 [(si,si+1) ∈ R].
The symbol Ωs is used to denote the set of all paths be-
ginning at s.

Some remarks on the ppk-structure defined above are
given as follows.

1. The logic PpCTL will be defined as a ppk-structure
with two satisfaction relations |=+ and |=−.

2. The definition of μs is not precisely and explicitly
given in this paper since the proposed translation
from PpCTL into pCTL is independent of the setting
of μs.

3. There are many possibilities for defining a probabil-
ity measure μs. Some typical examples of probabil-
ity measures are addressed below.

4. In [2], two probability measures μ+
s and μ−

s , called
minimal probability and maximal probability, re-
spectively, are adopted in pCTL. μ+

s and μ−
s are

defined on a Borel σ -algebra Bs (⊆ 2Ωs) as fol-
lows: for any Δ ∈ Bs, μ+

s (Δ) = sup μs,η(Δ) and
μ−

s (Δ) = in f μs,η(Δ) where μs,η with a strategy η
concerning nondeterminism is a unique probability
measure on Bs.

5. In [8], a probability measure μs concerning some
discrete Markov processes and discrete generalized
Markov processes is adopted in pCTL. μs is defined
as a mapping from C s into [0,1] where C s is a Borel
sigma field, which is the class of subsets of the set of
all infinite state sequences starting at s.

Definition 2.3—PpCTL: Let AT be a nonempty sub-
set of ATOM. Satisfaction relations |=+ and |=− on a
ppk-structure M = 〈S,S0,R, μs,L+,L−〉 are defined induc-
tively as follows (s represents a state in S):

1. for any p ∈ AT, M,s |=+ p iff p ∈ L+(s),

2. M,s |=+ α1→α2 iff M,s |=+ α1 implies M,s |=+ α2,

3. M,s |=+ α1 ∧α2 iff M,s |=+ α1 and M,s |=+ α2,

4. M,s |=+ α1 ∨α2 iff M,s |=+ α1 or M,s |=+ α2,

5. M,s |=+ ¬α1 iff M,s �|=+ α1,

6. M,s |=+ ∼α iff M,s |=− α ,

7. for any x ∈ [0,1], M,s |=+ P≤xα iff μs({w ∈ Ωs | M,s |=+

α}) ≤ x,

8. for any x ∈ [0,1], M,s |=+ P≥xα iff μs({w ∈ Ωs | M,s |=+

α}) ≥ x,

9. for any x ∈ [0,1], M,s |=+ P<xα iff μs({w ∈ Ωs | M,s |=+

α}) < x,
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10. for any x ∈ [0,1], M,s |=+ P>xα iff μs({w ∈ Ωs | M,s |=+

α}) > x,

11. M,s |=+ AXα iff ∀s1 ∈ S [(s,s1) ∈ R implies M,s1 |=+ α],

12. M,s |=+ EXα iff ∃s1 ∈ S [(s,s1) ∈ R and M,s1 |=+ α ],

13. M,s |=+ AGα iff for all paths π ≡ s0,s1,s2, ..., where s≡ s0,
and all states si along π , we have M,si |=+ α ,

14. M,s |=+ EGα iff there is a path π ≡ s0,s1,s2, ..., where
s ≡ s0, and for all states si along π , we have M,si |=+ α ,

15. M,s |=+ AFα iff for all paths π ≡ s0,s1,s2, ..., where s≡ s0,
there is a state si along π such that M,si |=+ α ,

16. M,s |=+ EFα iff there is a path π ≡ s0,s1,s2, ..., where s ≡
s0, and for some state si along π , we have M,si |=+ α ,

17. M,s |=+ A(α1Uα2) iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, there is a state sk along π such that [(M,sk |=+ α2)
and ∀ j (0 ≤ j < k implies M,s j |=+ α1)],

18. M,s |=+ E(α1Uα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for some state sk along π , we have
[(M,sk |=+ α2) and ∀ j (0 ≤ j < k implies M,s j |=+ α1)],

19. M,s |=+ A(α1Rα2) iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, and all states s j along π , we have [∀i < j not-
[M,si |=+ α1] implies M,s j |=+ α2],

20. M,s |=+ E(α1Rα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for all states s j along π , we have [∀i < j
not-[M,si |=+ α1] implies M,s j |=+ α2],

21. for any p ∈ AT, M,s |=− p iff p ∈ L−(s),

22. M,s |=− α1→α2 iff M,s |=+ α1 and M,s |=− α2,

23. M,s |=− α1 ∧α2 iff M,s |=− α1 or M,s |=− α2,

24. M,s |=− α1 ∨α2 iff M,s |=− α1 and M,s |=− α2,

25. M,s |=− ¬α1 iff M,s |=+ α1,

26. M,s |=− ∼α1 iff M,s |=+ α1,

27. for any x ∈ [0,1], M,s |=− P≤xα iff μs({w ∈ Ωs | M,s |=−
α}) > x,

28. for any x ∈ [0,1], M,s |=− P≥xα iff μs({w ∈ Ωs | M,s |=−
α}) < x,

29. for any x ∈ [0,1], M,s |=− P<xα iff μs({w ∈ Ωs | M,s |=−
α}) ≥ x,

30. for any x ∈ [0,1], M,s |=− P>xα iff μs({w ∈ Ωs | M,s |=−
α}) ≤ x,

31. M,s |=− AXα iff ∃s1 ∈ S [(s,s1) ∈ R and M,s1 |=− α],

32. M,s |=− EXα iff ∀s1 ∈ S [(s,s1) ∈ R implies M,s1 |=− α],

33. M,s |=− AGα iff there is a path π ≡ s0,s1,s2, ..., where
s ≡ s0, and for some state si along π , we have M,si |=− α ,

34. M,s |=− EGα iff for all paths π ≡ s0,s1,s2, ..., where s≡ s0,
there is a state si along π such that M,si |=− α ,

35. M,s |=− AFα iff there is a path π ≡ s0,s1,s2, ..., where s ≡
s0, and for all states si along π , we have M,si |=− α ,

36. M,s |=− EFα iff for all paths π ≡ s0,s1,s2, ..., where s≡ s0,
and all states si along π , we have M,si |=− α ,

37. M,s |=− A(α1Uα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for all states s j along π , we have [∀i < j
not-[M,si |=− α1] implies M,s j |=− α2],

38. M,s |=− E(α1Uα2) iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, and for all states s j along π , we have [∀i < j not-
[M,si |=− α1] implies M,s j |=− α2],

39. M,s |=− A(α1Rα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for some state sk along π , we have
[(M,sk |=− α2) and ∀ j (0 ≤ j < k implies M,s j |=− α1)],

40. M,s |=− E(α1Rα2) iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, there is a state sk along π such that [(M,sk |=− α2)
and ∀ j (0 ≤ j < k implies M,s j |=− α1)].

Definition 2.4: A formula α is valid (satisfiable) in
PpCTL if M,s |=+ α holds for any (some) ppk-structure
M = 〈S,S0,R,μs, L+,L−〉, any (some) s ∈ S, and any
(some) satisfaction relations |=+ and |=− on M.

Definition 2.5: Let M be a ppk-structure 〈S,S0,R,μs,
L+,L−〉 for PpCTL, and |=+ and |=− be satisfaction rela-
tions on M. Then, the positive and negative model check-
ing problems for PpCTL are respectively defined by: for
any formula α , find the sets {s ∈ S | M,s |=+ α} and
{s ∈ S | M,s |=− α}.

Some remarks on PpCTL are then given as follows.

1. The intuitive meanings of |=+ and |=− in PpCTL
are “verification (or justification)” and “refutation
(or falsification),” respectively [15, 16].

2. PpCTL is regarded as a four-valued logic, since for
each s ∈ S and each formula α , we can take one of
the following four cases:

a. α is verified at s, i.e., M,s |=+ α ,
b. α is falsified at s, i.e., M,s |=− α ,
c. α is both verified and falsified at s,
d. α is neither verified nor falsified at s.

3. PpCTL is regarded as a paraconsistent logic. This is
explained as follows. Assume a ppk-structure M =
〈S,S0,R,μs,L+,L−〉 such that p ∈ L+(s), p ∈ L−(s)
and q /∈ L+(s) for any distinct atomic formulas p and
q. Then, M,s |=+ (p∧∼p)→q does not hold, and
hence |=+ in PpCTL is paraconsistent with respect
to ∼. For more information on paraconsistency, see
e.g., [13].

4. The positive model checking problem for PpCTL
corresponds to the standard “verification-based”
model checking problem for pCTL. The negative
model checking problem for PpCTL corresponds to
the dual of positive one. i.e., it is regarded as a
“refutation-based” model checking problem. Both
the positive and negative model checking should si-
multaneously be performed, i.e., only one of them
cannot be performed.

An expression α ↔ β is used to represent (α→β )∧
(β→α).

Proposition 2.6: The following formulas concerning
paraconsistent negation are valid in PpCTL: for any for-
mulas α and β ,

1. ∼∼α ↔ α ,

2. ∼¬α ↔ α ,

3. ∼(α ∧β ) ↔∼α ∨∼β ,
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4. ∼(α ∨β ) ↔∼α ∧∼β ,

5. ∼(α→β ) ↔ α ∧∼β ,

6. ∼P≤xα ↔ P>x∼α ,

7. ∼P≥xα ↔ P<x∼α ,

8. ∼P<xα ↔ P≥x∼α ,

9. ∼P>xα ↔ P≤x∼α ,

10. ∼AXα ↔ EX∼α ,

11. ∼EXα ↔ AX∼α ,

12. ∼AGα ↔ EF∼α ,

13. ∼EGα ↔ AF∼α ,

14. ∼AFα ↔ EG∼α ,

15. ∼EFα ↔ AG∼α ,

16. ∼A(αUβ) ↔ E((∼α)R(∼β )),

17. ∼E(αUβ ) ↔ A((∼α)R(∼β )),

18. ∼A(αRβ ) ↔ E((∼α)U(∼β )),

19. ∼E(αRβ ) ↔ A((∼α)U(∼β )).
Proof. We show some characteristic cases. Suppose that
M = 〈S,S0,R,μs,L+,L−〉 is an arbitrary ppk-structure,
and that |=+ and |=− are any satisfaction relations on M.

(1): We show that ∼∼α→α is valid in PpCTL. Let
s be an arbitrary element of S. Then, to show
M,s |=+ ∼∼α→α , we show that M,s |=+ ∼∼α im-
plies M,s |=+ α . Suppose M, |=+ ∼∼α . Then, we
obtain the required fact as follows: M,s |=+ ∼∼α iff
M,s |=− ∼α iff M,s |=+ α . In a similar way, we can
also show that α→∼∼α is valid in PpCTL.

(2): We show that ∼¬α→α is valid in PpCTL. Let
s be an arbitrary element of S. Then, to show
M,s |=+ ∼¬α→α , we show that M,s |=+ ∼¬α im-
plies M,s |=+ α . Suppose M, |=+ ∼¬α . Then, we
obtain the required fact as follows: M,s |=+ ∼¬α iff
M,s |=− ¬α iff M,s |=+ α . In a similar way, we can
also show that α→∼¬α is valid in PpCTL.

(6): We show that ∼P≤xα→P>x∼α is valid in PpCTL.
Let s be an arbitrary element of S. Then, we show
M,s |=+ ∼P≤xα→P>x∼α . To show this, we show
that M,s |=+ ∼P≤xα implies M,s |=+ P>x∼α . Sup-
pose M, |=+ ∼P≤xα . Then, we obtain the required
fact as follows: M, |=+ ∼P≤xα iff M, |=− P≤xα
iff μs({w ∈ Ωs | M,w |=− α}) > x iff μs({w ∈
Ωs | M,w |=+ ∼α}) > x iff M,s |=+ P>x∼α . In a
similar way, we can also show that P>x∼α→∼P≤xα
is valid in PpCTL.

(9): We show that ∼P>xα→P≤x∼α is valid in PpCTL.
Let s be an arbitrary element of S. Then, we show
M,s |=+ ∼P>xα→P≤x∼α . To show this, we show
that M,s |=+ ∼P>xα implies M,s |=+ P≤x∼α . Sup-
pose M, |=+ ∼P>xα . Then, we obtain the required
fact as follows: M, |=+ ∼P>xα iff M, |=− P>xα
iff μs({w ∈ Ωs | M,w |=− α}) ≤ x iff μs({w ∈
Ωs | M,w |=+ ∼α}) ≤ x iff M,s |=+ P≤x∼α . In a
similar way, we can also show that P≤x∼α→∼P>xα
is valid in PpCTL.

(16): We show that ∼A(αUβ)→E((∼α)R(∼β)) is
valid in PpCTL. Let s be an arbitrary ele-
ment of S. Then, we show that M,s |=+

∼A(αUβ)→E((∼α)R(∼β)). To show this, we
show that M,s |=+ ∼A(αUβ ) implies M,s |=+

E((∼α)R(∼β)). Suppose M,s |=+ ∼A(αUβ ), i.e.,
M,s |=− A(αUβ ). Then, we obtain the required fact
as follows:

M,s |=− A(αUβ )

iff there is a path π ≡ s0,s1,s2, ..., where s ≡ s0, and
for all states s j along π , we have [∀i < j not-
[M,si |=− α] implies M,s j |=− β ]

iff there is a path π ≡ s0,s1,s2, ..., where s ≡ s0, and
for all states s j along π , we have [∀i < j not-
[N,si |=+ ∼α] implies N,s j |=+ ∼β ]

iff M,s |=+ E((∼α)R(∼β)).

In a similar way, we can also show that
E((∼α)R(∼β)→∼A(αUβ)) is valid in PpCTL.

In order to define a translation, the logic pCTL is de-
fined below.

Definition 2.7—pCTL: A probabilistic Kripke struc-
ture (pk-structure for short) for pCTL is a structure
〈S,S0,R,μs,L〉 such that

1. S,S0,R and μs are the same as those in Definition 2.2,

2. L is a mapping from S to the power set of a nonempty
subset AT of ATOM.

A satisfaction relation |= on a pk-structure M =
〈S,S0,R,μ,L〉 for pCTL is defined by the same conditions
for |=+ (except the condition 6) as in Definition 2.3 (by
deleting the superscript +). The validity, satisfiability and
model-checking problems for pCTL are defined similarly
as those for PpCTL.

It is remarked that |=+ of PpCTL includes |= of pCTL,
and hence PpCTL is an extension of pCTL.

3. Embeddability and Relative Decidability

In this section, we introduce a translation function from
PpCTL into pCTL. By using this translation function, we
show the embedding theorem of PpCTL into pCTL and
the relative decidability theorem for PpCTL.

Vol.20 No.5, 2016 Journal of Advanced Computational Intelligence 817
and Intelligent Informatics



Kamide, N. and Koizumi, D.

Definition 3.1: Let AT be a non-empty subset of
ATOM, and AT′ be the set {p′ | p ∈ AT} of atomic formu-
las. The language L ∼ (the set of formulas) of PpCTL is
defined using AT, ∼, →,∧,∨,¬, P≤x,P≥x,P<x,P>x, X, F,
G, U, R, A and E. The language L of pCTL is obtained
from L ∼ by adding AT′ and deleting ∼.

A mapping f from L ∼ to L is defined inductively by:

1. for any p ∈ AT, f (p) := p and f (∼p) := p′ ∈ AT′,

2. f (α � β) := f (α) � f (β ) where � ∈ {∧,∨,→},

3. f (�α) := � f (α) where
�∈{¬,P≤x,P≥x,P<x,P>x,AX,EX,AG,EG,AF,EF},

4. f (A(αUβ ))) := A( f (α)U f (β )),

5. f (E(αUβ ))) := E( f (α)U f (β )),

6. f (A(αRβ ))) := A( f (α)R f (β)),

7. f (E(αRβ))) := E( f (α)R f (β )),

8. f (∼∼α) := f (α),

9. f (∼(α→β )) := f (α)∧ f (∼β),

10. f (∼(α ∧β )) := f (∼α)∨ f (∼β),

11. f (∼(α ∨β )) := f (∼α)∧ f (∼β),

12. f (∼¬α) := f (α),

13. f (∼P≤xα) := P>x f (∼α),

14. f (∼P≥xα) := P<x f (∼α),

15. f (∼P<xα) := P≥x f (∼α),

16. f (∼P>xα) := P≤x f (∼α),

17. f (∼AXα) := EX f (∼α),

18. f (∼EXα) := AX f (∼α),

19. f (∼AGα) := EF f (∼α),

20. f (∼EGα) := AF f (∼α),

21. f (∼AFα) := EG f (∼α),

22. f (∼EFα) := AG f (∼α),

23. f (∼(A(αUβ))) := E( f (∼α)R f (∼β)),

24. f (∼(E(αUβ ))) := A( f (∼α)R f (∼β)),

25. f (∼(A(αRβ))) := E( f (∼α)U f (∼β)),

26. f (∼(E(αRβ ))) := A( f (∼α)U f (∼β)).

In order to show the embedding theorem, we need to
show some lemmas.

Lemma 3.2: Let f be the mapping defined in Definition
3.1. For any ppk-structure M := 〈S,S0,R,μs,L+,L−〉 for
PpCTL, and any satisfaction relations |=+ and |=− on M,
we can construct a pk-structure N := 〈S,S0,R,μs,L〉 for
CTL and a satisfaction relation |= on N such that for any
formula α in L ∼ and any state s in S,

1. M,s |=+ α iff N,s |= f (α),

2. M,s |=− α iff N,s |= f (∼α).
Proof. Let AT be a nonempty subset of ATOM, and AT′
be the set {p′ | p ∈ AT} of atomic formulas. Suppose that
M is a ppk-structure 〈S,S0,R,μs,L+,L−〉 such that

L+ and L− are mappings from S to the power
set of AT.

Suppose that N is a pk-structure M := 〈S,S0,R,μs,L〉 such
that

L is a mapping from S to the power set of AT∪
AT′.

Suppose moreover that for any s ∈ S and any p ∈ AT,

1. p ∈ L+(s) iff p ∈ L(s),

2. p ∈ L−(s) iff p′ ∈ L(s).

The lemma is then proved by (simultaneous) induction
on the complexity of α .
• Base step:

Case α ≡ p ∈ AT: For (1), we obtain: M,s |=+

p iff p∈ L+(s) iff p∈ L(s) iff N,s |= p iff N,s |=
f (p) (by the definition of f ). For (2), we obtain:
M,s |=− p iff p ∈ L−(s) iff p′ ∈ L(s) iff N,s |=
p′ iff N,s |= f (∼p) (by the definition of f ).

• Induction step: We show some cases.

1. Case α ≡ β ∧ γ: For (1), we obtain: M,s |=+ β ∧
γ iff M,s |=+ β and M,s |=+ γ iff N,s |= f (β ) and
N,s |= f (γ) (by induction hypothesis for 1) iff N,s |=
f (β )∧ f (γ) iff N,s |= f (β ∧ γ) (by the definition of
f ). For (2), we obtain: M,s |=− β ∧ γ iff M,s |=− β
or M,s |=− γ iff N,s |= f (∼β ) or N,s |= f (∼γ) (by
induction hypothesis for 2) iff N,s |= f (∼β )∨ f (∼γ)
iff N,s |= f (∼(β ∧ γ)) (by the definition of f ).

2. Case α ≡ β→γ: For (1), we obtain: M,s |=+ β→γ
iff M,s |=+ β implies M,s |=+ γ iff N,s |= f (β) im-
plies N,s |= f (γ) (by induction hypothesis for 1) iff
N,s |= f (β)→ f (γ) iff N,s |= f (β→γ) (by the def-
inition of f ). For (2), we obtain: M,s |=− β→γ
iff M,s |=+ β and M,s |=− γ iff N,s |= f (β) and
N,s |= f (∼γ) (by induction hypothesis for 1 and 2)
iff N,s |= f (β )∧ f (∼γ) iff N,s |= f (∼(β→γ)) (by
the definition of f ).

3. Case α ≡ ¬β : For (1), we obtain: M,s |=+ ¬β iff
M,s �|=+ β iff [N,s �|= f (β ) (by induction hypothe-
sis for 1) iff N,s |= ¬ f (β) iff N,s |= f (¬β ) (by the
definition of f ). For (2), we obtain: M,s |=− ¬β iff
M,s |=+ β iff N,s |= f (β ) (by induction hypothesis
for 1) iff N,s |= f (∼¬β) (by the definition of f ).

4. Case α ≡ ∼β : For (1), we obtain: M,s |=+ ∼β iff
M,s |=− β iff N,s |= f (∼β ) (by induction hypothesis
for 2). For (2), we obtain: M,s |=− ∼β iff M,s |=+ β
iff N,s |= f (β) (by induction hypothesis for 1) iff
N,s |= f (∼∼β) (by the definition of f ).
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5. Case α ≡ P≤xβ : For (1), we obtain: M,s |=+ P≤xβ
iff μs({w ∈ Ωs | M,w |=+ β}) ≤ x iff μs({w ∈
Ωs | N,w |= f (β )}) ≤ x (by induction hypothesis
for 1) iff N,s |= P≤x f (β ) iff N,s |= f (P≤xβ) (by
the definition of f ). For (2), we obtain: M,s |=−
P≤xβ iff μs({w ∈ Ωs | M,w |=− β}) > x iff μs({w ∈
Ωs | N,w |= f (∼β)}) > x (by induction hypothesis
for 2) iff N,s |= P>x f (∼β ) iff N,s |= f (∼P≤xβ ) (by
the definition of f ).

6. Case α ≡ P<xβ : For (1), we obtain: M,s |=+ P<xβ
iff μs({w ∈ Ωs | M,w |=+ β}) < x iff μs({w ∈
Ωs | N,w |= f (β )}) < x (by induction hypothesis
for 1) iff N,s |= P<x f (β ) iff N,s |= f (P<xβ) (by
the definition of f ). For (2), we obtain: M,s |=−
P<xβ iff μs({w ∈ Ωs | M,w |=− β})≥ x iff μs({w ∈
Ωs | N,w |= f (∼β)}) ≥ x (by induction hypothesis
for 2) iff N,s |= P≥x f (∼β ) iff N,s |= f (∼P<xβ ) (by
the definition of f ).

7. Case α ≡ AXβ : For (1), we obtain: M,s |=+ AXβ
iff ∀s1 ∈ S [(s,s1) ∈ R implies M,s1 |=+ β ] iff ∀s1 ∈
S [(s,s1)∈ R implies N,s1 |= f (β )] (by induction hy-
pothesis for 1) iff N,s |= AX f (β) iff N,s |= f (AXβ )
(by the definition of f ). For (2), we obtain: M,s |=−
AXβ iff ∃s1 ∈ S [(s,s1) ∈ R and M,s1 |=− β ] iff
∃s1 ∈ S [(s,s1) ∈ R and N,s1 |= f (∼β )] (by induc-
tion hypothesis for 2) iff N,s |= EX f (∼β ) iff N,s |=
f (∼AXβ) (by the definition of f ).

8. Case α ≡ AGβ : For (1), we obtain:

M,s |=+ AGβ
iff for all paths π ≡ s0,s1,s2, ..., where s ≡ s0, and all

states si along π , we have M,si |=+ β
iff for all paths π ≡ s0,s1,s2, ..., where s ≡ s0, and all

states si along π , we have N,si |= f (β) (by induc-
tion hypothesis for 1)

iff N,s |= AG f (β)

iff N,s |= f (AGβ ) (by the definition of f ).

For (2), we obtain:

M,s |=− AGβ
iff there is a path π ≡ s0,s1,s2, ..., where s ≡ s0, for

some state si along π , we have M,si |=− β
iff there is a path π ≡ s0,s1,s2, ..., where s ≡ s0, for

some state si along π , we have N,si |= f (∼β ) (by
induction hypothesis for 2)

iff N,s |= EF f (∼β )

iff N,s |= f (∼AGβ )) (by the definition of f ).

9. Case α ≡ A(β Uγ): For (1), we obtain:

M,s |=+ A(βUγ)

iff for all paths π ≡ s0,s1,s2, ..., where s≡ s0, there is
a state sk along π such that [M,sk |=+ γ and ∀ j[i ≤
j < k implies M,s j |=+ β ]

iff for all paths π ≡ s0,s1,s2, ..., where s ≡ s0, there
is a state sk along π such that [N,sk |= f (γ) and
∀ j[i ≤ j < k implies N,s j |= f (β )] (by induction
hypothesis for 1)

iff N,s |= A( f (β )U f (γ))
iff N,s |= f (A(β Uγ)) (by the definition of f ).

For (2), we obtain:

M,s |=− A(β Uγ)
iff there is a path π ≡ s0,s1,s2, ..., where s ≡ s0, and

for all states s j along π , we have [∀i < j not-
[M,si |=− β ] implies M,s j |=− γ]

iff there is a path π ≡ s0,s1,s2, ..., where s ≡ s0, and
for all states s j along π , we have [∀i < j not-
[N,si |= f (∼β )] implies N,s j |= f (∼γ)] (by induc-
tion hypothesis for 2)

iff N,s |= E( f (∼β )R f (∼γ))
iff N,s |= f (∼(A(βUγ))) (by the definition of f ).

Lemma 3.3: Let f be the mapping defined in Definition
3.1. For any pk-structure N := 〈S,S0,R,μs,L〉 for pCTL,
and any satisfaction relation |= on N, we can construct
a ppk-structure M := 〈S,S0,R,μs,L+,L−〉 for PpCTL and
satisfaction relations |=+ and |=− on M such that for any
formula α in L ∼ and any state s in S,

1. N,s |= f (α) iff M,s |=+ α ,

2. N,s |= f (∼α) iff M,s |=− α .
Proof. Similar to the proof of Lemma 3.2.

By using Lemmas 3.2 and 3.3, we obtain the following
embedding and relative decidability theorems.

Theorem 3.4—Embeddability: Let f be the mapping
defined in Definition 3.1. For any formula α ,

α is valid (satisfiable) in PpCTL iff f (α) is
valid (satisfiable, resp.) in pCTL.

Proof. By Lemmas 3.2 and 3.3.
Theorem 3.5—Relative decidability: If the model-

checking, validity and satisfiability problems for pCTL
with a probability measure are decidable, then the model-
checking, validity and satisfiability problems for PpCTL
with the same probability measure as that of pCTL are
also decidable.
Proof. Suppose that the probability measure μs in the
underlying ppk-structure 〈S,S0,R, μs, L+,L−〉 of PpCTL
is the same as the underlying pk-structure 〈S,S0,R, μs,
L〉 of pCTL. Suppose also that pCTL with μs is decid-
able. Then, by the mapping f defined in Definition 3.1,
a formula α of PpCTL can be transformed into the corre-
sponding formula f (α) of pCTL. By Lemmas 3.2 and 3.3
and Theorem 3.4, the model checking, validity and sat-
isfiability problems for PpCTL can be transformed into
those of pCTL. Since the model checking, validity and
satisfiability problems for pCTL with μs are decidable by
the assumption, the problems for PpCTL with μs are also
decidable.

Some remarks on the decidability of PpCTL are given
as follows.
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1. The logic pCTL with two probability measures μ+
s

and μ−
s by Bianco and de Alfaro is decidable [2].

The logic pCTL with a probability measure μs by
Aziz et al. is also decidable [8]. Thus, the extended
PpCTLs based on the above pCTLs are also decid-
able by Corollary 3.5.

2. Since the mapping f from PpCTL into pCTL is a
polynomial-time reduction, the complexity results
for PpCTL become the same results as those for
pCTL., e.g., if the model-checking problem for
pCTL is deterministic PTIME-complete, then so is
PpCTL.

3. The model-checking, validity and satisfiability prob-
lems for both CTL and its paraconsistent extension
PCTL [7] are known to be EXPTIME-complete,
deterministic EXPTIME-complete and deterministic
PTIME-complete, respectively.

4. Translation Examples

We provide an algorithm for translating a PpCTL-
formula into a pCTL-formula.

Algorithm 4.1: Let α be a PpCTL-formula. Then,
we translate the PpCTL-formula α into a pCTL-formula
f (α) by using the translation function f defined in Defi-
nition 3.1.

1. For α , we apply the condition of f which corre-
sponds to the outer-most PpCTL-connective of α .

2. The resulting formula expression β is of the form
f (α1) ◦ f (α2), � f (α1), �( f (α1) ◦ f (α2)) or f (α1)
where ◦ and � represent the outer-most PpCTL-
connectives of α .

3. If there is a PpCTL-connective appearing in α1
and/or α2 in β , then we apply the same procedure
displayed above to α1 and α2, where α1 and/or α2
are regarded as α above. If there is no PpCTL-
connective appearing in α1 and/or α2 in β , then we
go to the next step.

4. We translate all the formulas of the form ∼p ap-
pearing in the resulting formula expression into the
pCTL-formulas of the form p′.

5. The resulting formula expression is just a required
pCTL-formula f (α).

We now show some translation examples based on the
above algorithm.

Example 4.2: We consider a formula P>x∼p→∼P≤x p
where p is an atomic formula. We translate this PpCTL-
formula into a pCTL-formula by the translation function
f as follows:

f (P>x∼p→∼P≤x p)
= f (P>x∼p)→ f (∼P≤x p)
= P>x f (∼p)→P>x f (∼p)
= P>x p′→P>x p′

where p′ is an atomic formula in pCTL. Thus, the formula
P>x∼p→∼P≤x p in PpCTL is translated into the formula
P>x p′→P>x p′ in pCTL.

Example 4.3: We consider a formula
P≤x(∼A(pUq))→A((∼P>x p)U(∼P>xq)) where p
and q are atomic formulas. We translate this PpCTL-
formula into a pCTL-formula by the translation function
f as follows:

f (P≤x(∼A(pUq))→A((∼P>x p)U(∼P>xq)))
= f (P≤x(∼A(pUq)))→ f (A((∼P>x p)U(∼P>xq)))

= P≤x f (∼A(pUq))→A( f (∼P>x p)U f (∼P>xq))
= P≤xE( f (∼p)R f (∼q))→A( f (∼P>x p)U f (∼P>xq))
= P≤xE(p′Rq′)→A((P≤x f (∼p))U(P≤x f (∼q)))

= P≤xE(p′Rq′)→A((P≤x p′)U(P≤xq′))

where p′,q′ are atomic formulas in pCTL. Thus, the
formula P≤x(∼A(pUq)) → A((∼P>x p)U(∼P>xq)) in
PpCTL is translated into the formula P≤xE(p′Rq′) →
A((P≤x p′)U(P≤xq′)) in pCTL.

Example 4.4: We consider a formula ∼AG(P≤x p ∧
∼P>xq→EFr) where p,q and r are atomic formulas. We
translate this PpCTL-formula into a pCTL-formula by the
translation function f as follows:

f (∼AG(P≤x p∧∼P>xq→EFr))

= EF f (∼(P≤x p∧∼P>xq→EFr))
= EF( f (P≤x p∧∼P>xq)→ f (∼EFr))

= EF( f (P≤x p)∧ f (∼P>xq)→AG f (∼r))
= EF(P≤x f (p)∧P≤x f (∼q)→AGr′)
= EF(P≤x p∧P≤xq′→AGr′)

where p′,q′ are atomic formulas in pCTL. Thus, the for-
mula ∼AG(P≤x p∧∼P>xq → EFr) in PpCTL is translated
into the formula EF(P≤x p∧P≤xq′→AGr′) in pCTL.

5. Bisimulations

In this section, we present the bisimulation theorem for
PpCTL. Since concrete system models tend to be very
large, the state explosion problem arises, and abstraction
techniques are needed to reduce a large concrete model
to a small abstract one. As presented in [4, 24], the fol-
lowing bisimulation theorem for CTL, which is useful for
abstraction in model checking, is well-known:

If two Kripke structures M and M′ are bisimula-
tion equivalent, then for every CTL-formula α ,
M satisfies α if and only if M′ satisfies α .

This theorem guarantees that we can use an efficient small
abstract structure that is bisimular to the given concrete
large structure. The logic CTL and the bisimulation re-
sult addressed above are not sufficient for accommodat-
ing inconsistency-tolerant reasoning. Thus, the aim of this
section is to extend the bisimulation framework of CTL to
that of PpCTL.
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Definition 5.1: Let M = 〈S,S0,R,μs,L+,L−〉 and M′ =
〈S′,S′0,R′,μ ′

s′ ,L
′+,L′−〉 be ppk-structures with the same

nonempty set AT ⊆ ATOM.
A relation B ⊆ S×S′ is a bisimulation relation between

M and M′ if and only if for all s and s′, if B(s,s′) then the
following conditions hold:

1. L+(s) = L′+(s′),

2. L−(s) = L′−(s′),

3. μs = μ ′
s′

4. ∀s1[R(s,s1) implies ∃s′1[R
′(s′,s′1) and B(s1,s′1)]].

5. ∀s′1[R
′(s′,s′1) implies ∃s1[R(s,s1) and B(s1,s′1)]].

The structures M and M′ are bisimulation equivalent if
there exists a bisimulation relation B such that

1. ∀s0 ∈ S0 ∃s′0 ∈ S′0 [B(s0,s′0)],

2. ∀s′0 ∈ S′0 ∃s0 ∈ S0 [B(s0,s′0)].
Definition 5.2: Two paths π = s0,s1,s2, ... in a ppk-

structure M and π ′ = s′0,s
′
1,s

′
2, ... in a ppk-structure M′ are

called corresponding paths if ∀i ≥ 0 [B(si,s′i)].
Lemma 5.3: Let s and s′ be two states such that B(s,s′).

Then for every path starting from s there is a correspond-
ing path starting from s′, and for every path starting from
s′ there is a corresponding path starting from s.
Proof. See [4].

Lemma 5.4: Let M and M′ be ppk-structures with the
same nonempty set AT ⊆ ATOM, and B be a bisimulation
relation between M and M′. Let α be a PpCTL formula.
Assume that B(s,s′) and that π in M and π ′ in M′ are
corresponding paths.

Then, for any formula α , we have:

1. M,s |=+ α iff M′,s′ |=+ α ,

2. M,s |=− α iff M′,s′ |=− α .
Proof. This lemma is proved by (simultaneous) induc-
tion on the complexity of α . In the following, the ppk-
structures M and M′ are omitted from the expressions,
since the structures are clear from the context.

• Base step:

α ≡ p for p ∈ AT. By the assumption B(s,s′),
we have L+(s) = L′+(s′) and L−(s) = L′−(s′),
and hence obtain (1) s |=+ p iff s′ |=+ p and (2)
s |=− p iff s′ |=− p.

• Induction step:
We show some cases.

1. Case (α ≡ α1 ∨α2): (1) s |=+ α1 ∨α2 iff s |=+ α1
or s |=+ α2 iff s′ |=+ α1 or s′ |=+ α2 (by induction
hypothesis) iff s′ |=+ α1 ∨α2. (2) s |=− α1 ∨α2 iff
s |=− α1 and s |=− α2 iff s′ |=− α1 and s′ |=− α2 (by
induction hypothesis) iff s′ |=− α1 ∨α2.

2. Case (α ≡ ∼α1): (1) s |=+ ∼α1 iff s |=− α1 iff
s′ |=− α1 (by induction hypothesis) iff s′ |=+ ∼α1.
(2) s |=− ∼α1 iff s |=+ α1 iff s′ |=+ α1 (by induction
hypothesis) iff s′ |=− ∼α1.

3. Case (α ≡ ¬α1): (1) s |=+ ¬α1 iff s �|=+ α1 iff
s′ �|=+ α1 (by induction hypothesis) iff s′ |=+ ¬α1.
(2) s |=− ¬α1 iff s |=+ α1 iff s′ |=+ α1 (by induction
hypothesis) iff s′ |=− ¬α1.

4. Case (α ≡ P≤xα1): (1) s |=+ P≤xα1 iff μs({ω ∈
Ωs | ω |=+ α1}) ≤ x iff μ ′

s′({ω ′ ∈ Ωs′ | ω ′ |=+

α1}) ≤ x (by hypothesis and induction hypothe-
sis) iff s′ |=+ P≤xα1. (2) s |=− P≤xα1 iff μs({ω ∈
Ωs | ω |=− α1}) > x iff μ ′

s′({ω ′ ∈ Ωs′ | ω ′ |=−
α1}) > x (by hypothesis and induction hypothesis)
iff s′ |=− P≤xα1.

5. Case (α ≡ AXα1): (1) s |=+ AXα1 iff ∀s1 ∈ S
[(s,s1) ∈ R implies s1 |=+ α1] iff ∀s′1 ∈ S′ [(s′,s′1) ∈
R′ implies s′1 |=+ α1] (by hypothesis and induc-
tion hypothesis) iff s′ |=+ AXα1. (2) s |=− AXα1
iff ∃s1 ∈ S [(s,s1) ∈ R and s1 |=+ α1] iff ∃s′1 ∈ S′
[(s′,s′1) ∈ R′ and s′1 |=+ α1] (by hypothesis and in-
duction hypothesis) iff s′ |=− AXα1.

6. Case (α ≡ A(α1Uα2)):

(1) We only show the direction s |=+ A(α1Uα2)
implies s′ |=+ A(α1Uα2). The converse direction
can be shown in a similar way. Suppose s |=+

A(α1Uα2). Then, we have: for all path π ≡
s0,s1,s2, ... where s ≡ s0, there is a state sk along
π such that [(sk |=+ α2) and ∀ j (0 ≤ j < k im-
plies s j |=+ α2)]. By Lemma 5.4, we have (*):
there exists a corresponding path π ′ starting from
s′0, i.e., π and π ′ are corresponding paths. Then, by
(*) and induction hypothesis, we have: for all path
π ′ ≡ s′0,s

′
1,s

′
2, ... where s′ ≡ s′0, there is a state s′k

along π ′ such that [(s′k |=+ α2) and ∀ j (0 ≤ j < k
implies s′j |=+ α2)]. This means s′ |=+ A(α1Uα2).

(2) We only show the direction s |=− A(α1Uα2)
implies s′ |=− A(α1Uα2). The converse direction
can be shown in a similar way. Suppose s |=−
A(α1Uα2). Then, we have: there is a path π ≡
s0,s1,s2, ... where s≡ s0, and for all states s j along π ,
we have [∀i < j not-(si |=− α1) implies s j |=− α2].
By Lemma 5.4, we have (**): there exists a corre-
sponding path π ′ starting from s′0, i.e., π and π ′ are
corresponding paths. Then, by (**) and induction
hypothesis, we have: there is a path π ′ ≡ s′0,s

′
1,s

′
2, ...

where s′ ≡ s′0, and for all states s′j along π ′, we have
[∀i < j not-(s′i |=− α1) implies s′j |=− α2]. This
means s′ |=− A(α1Uα2).

The following theorem is a consequence of the preced-
ing lemma.

Theorem 5.5: Let M and M′ be ppk-structures and B be
a bisimulation relation between M and M′. If B(s,s′), then
for any formula α ,

1. M,s |=+ α iff M′,s′ |=+ α ,

2. M,s |=− α iff M′,s′ |=− α .
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For any ∗ ∈ {+,−}, M |=∗ α is defined by ∀s ∈
S[M,s |=∗ α ]. We then obtain the following bisimulation
theorem.

Theorem 5.6—Bisimulation: Suppose that ppk-
structures M and M′ are bisimulation equivalent. For any
formula α ,

1. M |=+ α iff M′ |=+ α ,

2. M |=− α iff M′ |=− α .

6. Illustrative Examples

6.1. SQL Injection Attack Detection Algorithm
SQL injection [25, 26] is one of the numerous mali-

cious attack methods used to exploit security vulnerabil-
ities on SQL database servers. An attacker sends injec-
tion codes through a network to illegally obtain stored
information from the SQL database servers. According
to an introductory article [26], methods intended as de-
fense against SQL injection can be classified into three
types: defensive coding, SQL injection vulnerabilities)
detection, and SQL injection attack runtime prevention.
Studies by various researchers have led to the proposal
of a new approach to the latter of these three types of
methods [9, 27, 28]. They utilized the contained rate of
suspicious characters over the length of an input string.
Consider an attempt by an automatic detection program
to determine if the ith input string li (i = 1,2, . . .) to an
SQL database server is obtained as a result of an SQL in-
jection attack. Then, the contained rate pi can be defined
as:

pi =
#S
|li| , . . . . . . . . . . . . . . . (1)

where #S is the number of suspicious characters and |li|
is the length of the ith input string. Automatic detection
with pi is executed on the basis of the following rule:

h(pi) =

{
1 if pi > α;
0 otherwise,

. . . . . . . . (2)

where h(pi) = 1 indicates that the detected result is an
attack string, h(pi) = 0 implies that it is a normal string,
and α is a predetermined threshold value. A set S contains
some suspicious characters (e.g., a space, semi-colon, sin-
gle quotation, etc.) in the input string of some SQL injec-
tion attacks. A learning algorithm of threshold value α
from the observed data set of both input strings and their
labels (attacks or normals) is proposed [28]. Furthermore,
the detecting performance of discriminant functions h (pi)
is considered [27].

Example 6.1: Suppose the unknown input string l1 as
“DROP sampletable;--” is sent to the SQL server.
Let the elements of S be a space, semi-colon, and right
parenthesis, and let the threshold value α be 0.08. Then,
this input l1 is detected as an attack string because the
length |l1| is 19 and the suspicious characters contained in
S is 2, the contained rate p1 = 2/19 = 0.105, and hence

p1 is greater than α .
In an experiment [9], each attack detection rate μA and

normal detection rate μN for the underlying characters
were calculated by changing the threshold α . The overall
detection rate μ is defined as the weighted average of μA
and μN :

μ = (1−β)μA +β μN , . . . . . . . . . (3)

where a real number β , which satisfies 0 ≤ β ≤ 1, is the
weight of the normal string over the input strings. The use
of the SQL injection attack detection algorithm explained
above is assumed in the following discussion.

6.2. Representing Paraconsistency
Now, we consider some example formulas for SQL in-

jection attacks. The paraconsistent negation connective
∼α in PpCTL is used to represent the negation of an un-
certain or ambiguous concept “attack”. If we cannot de-
termine whether an input string is obtained by an SQL
injection attack, then this concept is regarded as uncer-
tain. The uncertain concept attack can be represented by
asserting the inconsistent formula of the form:

attack∧∼attack

where ∼attack represents the uncertain negation informa-
tion that can be true at the same time as attack, which
represents positive information. This is well formalized
because the formula of the form:

(attack∧∼attack)→⊥
is not valid in PpCTL.

We can also present the following formula:

EF(attack∧∼attack)

which implies:

“There exists a situation in which a string input
is considered to be obtained as both an SQL in-
jection attack and a non-SQL injection attack,
i.e., we cannot use the algorithm to determine
whether a string was obtained from an attack.”

In addition, we can present the following formula:

EF(crashed∧AG crashed)

which implies:

“There is a situation in which a crashed
database caused by an SQL injection attack will
not function again.”

6.3. Representing Probability
We can express Example 6.1 as the following formula:

AG(P≤0.08α ∧ (pi < α) → ∼attack)

which implies:
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“If the threshold value α is at the most 8 per-
cent and the contained rate pi is greater than α ,
then the string was probably not obtained by an
SQL injection attack, i.e., it can be regarded as
a normal string.”

Let μA and μN be an attack detection rate and a nor-
mal detection rate, respectively. Then, we can present the
following formula:

AG(P≥0.08μA ∧ P≥0.02μN → attack)

which implies:

“If the attack detection rate μA and the normal
detection rate μN with respect to some fixed
characters in the underlying string are at least
8 percent and at least 2 percent, respectively,
then the string is obtained by an SQL injection
attack, i.e., it is regarded as a malicious attack
string.”

Similarly, we can present the following formula:

AG(P<0.08μA ∧ P<0.02μN →∼attack)

which implies:

“The string entered by someone is probably not
obtained by an SQL injection attack.”

In addition, we present the following formula with the
classical negation connective ¬:

AG(P<0.02μA ∧ P<0.01μN →¬attack)

which implies:

“The string entered by someone is clearly not
obtained by an SQL injection attack, i.e., it is
just a normal string.”

6.4. Representing Some Experimental Facts
The single quotation mark “’” forms a set with the pre-

vious single quotation. A pair of single quotation marks
appears, for instance, as “uid=’user01’” which im-
plies: “the user ID is user01.” We can present this situa-
tion as the following formula:

AG(singleQuotation ∧ EF singleQuotation →
∼attack)

which implies:

“At any time, if a single quotation “’” ap-
pears in the string described in a web form, and
the corresponding (closed) single quotation “’”
eventually appears in the same string, then such
an input string is probably not obtained as an
SQL injection attack.”

The statement “OR 1=1” is sometimes used in an at-
tack string. Then, we present this situation as the follow-
ing formula:

AG(EF or1=1 → attack)

which implies:

“At any time, if the statement “OR 1=1” even-
tually appears, then such an input string was
probably obtained as an SQL injection attack.”

7. Remarks on Extensions

In this section, we remark that PpCTL can be extended
with the addition of a location operator [l] which repre-
sents the location of propositions. An extension LPpCTL
(locative PpCTL) on PpCTL is obtained from PpCTL by
adding [l]. A formula of the form [l]α in LPpCTL can
be interpreted as “proposition α holds at location l.” The
location operator is formulated in a similar setting as in
[29, 30], which is regarded as a refinement of the original
setting by Kobayashi et al. [31]. In [31], such a location
operator was introduced using a structural congruence re-
lation in formalizing a distributed concurrent linear logic
programming language. In [29, 30], the framework of this
original operator was improved as a purely logical formu-
lation without any structural congruence relation.

Assuming a space domain Loc and the operator [l] with
l ∈ Loc, we can interpret the satisfaction relation (s, l) |=+

α of LPpCTL as “proposition α holds at time (or state) s
and location l.” Then, various properties and situations
with space and time can be expressed using LPpCTL-
formulas. For example, the following liveness property
can be expressed: “If we input the login-password of host
computer Comp3 at one of the mobile computers Comp1
and Comp2, then we will eventually be able to login to
Comp3.” This is expressed formally as:

AG([comp1]password∨
[comp2]password→EF[comp3]login)

where the space domain Loc is {comp1,comp2,comp3}.
We introduce the definition of formulas in LPpCTL.
Definition 7.1: Let Loc be a finite nonempty set of lo-

cations. Formulas α are defined by the following gram-
mar, assuming p ∈ ATOM, x ∈ [0,1] and l ∈ Loc:

α ::= p | α→α | α ∧α | α ∨α | ¬α | ∼α |
P≤xα | P≥xα | P<xα | P>xα | AXα |
EXα | AGα | EGα | AFα | EFα |
A(αUα) |E(αUα) | A(αRα) | E(αRα) | [l]α .

We are ready to introduce LPpCTL.
Definition 7.2: A locative paraconsistent probabilistic

Kripke structure (lppk-structure for short) is a structure
〈Loc, S,S0, R, μs, L+,L−〉 such that

1. Loc is a finite nonempty set of locations,

2. 〈S,S0, R, μs, L+,L−〉 is a ppk-structure.

A path in an lppk-structure is defined similarly as in a
ppk-structure.

Definition 7.3—LPpCTL: Let AT be a nonempty sub-
set of ATOM. Satisfaction relations |=+ and |=− on an
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lppk-structure M = 〈Loc, S,S0,R, μs,L+,L−〉 are defined
inductively as follows (s represents a state in S and l,k
represent locations in Loc):

1. for any p ∈ AT, M,(s, l) |=+ p iff p ∈ L+(s) and l ∈ Loc,

2. M,(s, l) |=+ [k]α iff M,(s,k) |=+ α ,

3. M,(s, l) |=+ α1→α2 iff M,(s, l) |=+ α1 implies
M,(s, l) |=+ α2,

4. M,(s, l) |=+ α1 ∧α2 iff M,(s, l) |=+ α1 and M,(s, l) |=+

α2,

5. M,(s, l) |=+ α1 ∨α2 iff M,(s, l) |=+ α1 or M,(s, l) |=+ α2,

6. M,(s, l) |=+ ¬α1 iff M,(s, l) �|=+ α1,

7. M,(s, l) |=+ ∼α iff M,(s, l) |=− α ,

8. for any x ∈ [0,1], M,(s, l) |=+ P≤xα iff μs({w ∈
Ωs | M,(s, l) |=+ α}) ≤ x,

9. for any x ∈ [0,1], M,(s, l) |=+ P≥xα iff μs({w ∈
Ωs | M,(s, l) |=+ α}) ≥ x,

10. for any x ∈ [0,1], M,(s, l) |=+ P<xα iff μs({w ∈
Ωs | M,(s, l) |=+ α}) < x,

11. for any x ∈ [0,1], M,(s, l) |=+ P>xα iff μs({w ∈
Ωs | M,(s, l) |=+ α}) > x,

12. M,(s, l) |=+ AXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
M,(s1, l) |=+ α],

13. M,(s, l) |=+ EXα iff ∃s1 ∈ S [(s,s1) ∈ R and M,(s1, l) |=+

α ],

14. M,(s, l) |=+ AGα iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, and all states si along π , we have M,(si, l) |=+ α ,

15. M,(s, l) |=+ EGα iff there is a path π ≡ s0,s1,s2, ..., where
s ≡ s0, and for all states si along π , we have M,(si, l) |=+ α ,

16. M,(s, l) |=+ AFα iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, there is a state si along π such that M,(si, l) |=+ α ,

17. M,(s, l) |=+ EFα iff there is a path π ≡ s0,s1,s2, ..., where
s ≡ s0, and for some state si along π , we have M,(si, l) |=+

α ,

18. M,(s, l) |=+ A(α1Uα2) iff for all paths π ≡ s0,s1,s2, ...,
where s ≡ s0, there is a state sk along π such that
[(M,(sk, l) |=+ α2) and ∀ j (0 ≤ j < k implies M,(s j, l) |=+

α1)],

19. M,(s, l) |=+ E(α1Uα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for some state sk along π , we have
[(M,(sk, l) |=+ α2) and ∀ j (0 ≤ j < k implies M,(s j, l) |=+

α1)],

20. M,(s, l) |=+ A(α1Rα2) iff for all paths π ≡ s0,s1,s2, ...,
where s ≡ s0, and all states s j along π , we have [∀i < j not-
[M,(si, l) |=+ α1] implies M,(s j, l) |=+ α2],

21. M,(s, l) |=+ E(α1Rα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for all states s j along π , we have [∀i < j
not-[M,(si, l) |=+ α1] implies M,(s j, l) |=+ α2],

22. for any p ∈ AT, M,(s, l) |=− p iff p ∈ L−(s) and l ∈ Loc,

23. M,(s, l) |=− [k]α iff M,(s,k) |=− α ,

24. M,(s, l) |=− α1→α2 iff M,(s, l) |=+ α1 and M,(s, l) |=−
α2,

25. M,(s, l) |=− α1 ∧α2 iff M,(s, l) |=− α1 or M,(s, l) |=− α2,

26. M,(s, l) |=− α1 ∨α2 iff M,(s, l) |=− α1 and M,(s, l) |=−
α2,

27. M,(s, l) |=− ¬α1 iff M,(s, l) |=+ α1,

28. M,(s, l) |=− ∼α1 iff M,(s, l) |=+ α1,

29. for any x ∈ [0,1], M,(s, l) |=− P≤xα iff μs({w ∈
Ωs | M,(s, l) |=− α}) > x,

30. for any x ∈ [0,1], M,(s, l) |=− P≥xα iff μs({w ∈
Ωs | M,(s, l) |=− α}) < x,

31. for any x ∈ [0,1], M,(s, l) |=− P<xα iff μs({w ∈
Ωs | M,(s, l) |=− α}) ≥ x,

32. for any x ∈ [0,1], M,(s, l) |=− P>xα iff μs({w ∈
Ωs | M,(s, l) |=− α}) ≤ x,

33. M,(s, l) |=− AXα iff ∃s1 ∈ S [(s,s1) ∈ R and M,(s1, l) |=−
α ],

34. M,(s, l) |=− EXα iff ∀s1 ∈ S [(s,s1) ∈ R implies
M,(s1.l) |=− α ],

35. M,(s, l) |=− AGα iff there is a path π ≡ s0,s1,s2, ..., where
s ≡ s0, and for some state si along π , we have M,(si, l) |=−
α ,

36. M,(s, l) |=− EGα iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, there is a state si along π such that M,(si, l) |=− α ,

37. M,(s, l) |=− AFα iff there is a path π ≡ s0,s1,s2, ..., where
s ≡ s0, and for all states si along π , we have M,(si, l) |=− α ,

38. M,(s, l) |=− EFα iff for all paths π ≡ s0,s1,s2, ..., where
s ≡ s0, and all states si along π , we have M,(si, l) |=− α ,

39. M,(s, l) |=− A(α1Uα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for all states s j along π , we have [∀i < j
not-[M,(si, l) |=− α1] implies M,(s j, l) |=− α2],

40. M,(s, l) |=− E(α1Uα2) iff for all paths π ≡ s0,s1,s2, ...,
where s ≡ s0, and for all states s j along π , we have [∀i < j
not-[M,(si, l) |=− α1] implies M,(s j, l) |=− α2],

41. M,(s, l) |=− A(α1Rα2) iff there is a path π ≡ s0,s1,s2, ...,
where s ≡ s0, and for some state sk along π , we have
[(M,(sk, l) |=− α2) and ∀ j (0 ≤ j < k implies M,(s j, l) |=−
α1)],

42. M,(s, l) |=− E(α1Rα2) iff for all paths π ≡ s0,s1,s2, ...,
where s ≡ s0, there is a state sk along π such that
[(M,(sk, l) |=− α2) and ∀ j (0 ≤ j < k implies M,(s j, l) |=−
α1)].

Definition 7.4: A formula α is valid (satisfiable) in
LPpCTL if M,(s, l) |=+ α holds for any (some) lppk-
structure M = 〈Loc, S,S0,R,μs, L+,L−〉, any (some) s ∈
S, any (some) l ∈ Loc and any (some) satisfaction rela-
tions |=+ and |=− on M.

Definition 7.5: Let M be an lppk-structure 〈Loc,
S,S0,R,μs, L+,L−〉 for LPpCTL, and |=+ and |=− be
satisfaction relations on M. Then, the positive and neg-
ative model checking problems for LPpCTL are respec-
tively defined by: for any formula α , find the sets {s ∈
S | M,(s, l) |=+ α} and {s ∈ S | M,(s, l) |=− α}.

The proposed setting of the location operator [l] repre-
sents the discrete space interpretation in which a location
is regarded as a point and is independent of other loca-
tions. To introduce [l] is to allow the following axiom
schemes with respect to [l]: For any l, li, l j ∈ Loc,

1. [li][l j]α ↔ [li]α ,

2. [l](α�β ) ↔ ([l]α)�([l]β ) where � ∈ {∧,∨,→},

3. [l](†(α�β)) ↔ †(([l]α)�([l]β )) where † ∈ {A,E}
and � ∈ {U,R},
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4. [l](�α) ↔ �([l]α) where � ∈
{∼,¬,AX,EX,AG,EG,AF,EF,P≤x,P≥x,P<x,P>x},

The first axiom scheme [li][l j]α ↔ [li]α displayed
above intuitively means that each location l is the absolute
address of locations, i.e., the location l refers to the same
location anywhere [31]. The other axiom schemes dis-
played above intuitively mean that the truth is time- and
space-independent, i.e., “space” is almost independent of
“time”. As mentioned in [29, 30], the following inference
rule called space induction rule is also true:

If (∀l ∈ Loc)([l]α), then α .

In this rule, if [l1]α , [l2]α and [l3]α with Loc = {l1, l2, l3}
hold, then α holds. It is also remarked that if Loc = {l},
then [l] derives the modal logic S4-like axiom schemes:

1. [l](α→β )→([l]α→[l]β ),

2. [l]α→[l][l]α ,

3. [l]α→α .

Thus, the operator [l] is more expressive (or stronger)
than the S4-type modal operator. Since the case that
Loc is empty corresponds to the PpCTL case, LPpCTL
is regarded as a natural generalization and extension of
PpCTL.

We have not yet obtained a decidability result for model
checking based on LPpCTL. On the other hand, a bisim-
ulation result for LPpCTL is obtained.

Definition 7.6: Let M = 〈Loc, S,S0,R,L+,L−〉 and
M′ = 〈Loc, S′,S′0,R

′,L′+,L′−〉 be lppk-structures with the
common (nonempty) sets AT (⊆ ATOM) and Loc. The
definition of bisimulation w.r.t. M and M′ is almost the
same as that in Definition 5.1, since the space domain
Loc is independent of this definition: Of course, the
conditions L+(s) = L′+(s′) and L−(s) = L′−(s′) in Def-
inition 5.1 must be replaced by L+(s, l) = L′+(s′, l) and
L−(s, l) = L′−(s′, l), respectively. The notion of the “cor-
responding paths” in lppk-structures is the same as that in
Definition 5.2,

The lemma concerning the notion of the “correspond-
ing paths” also holds for the same setting as Lemma 5.3.

Lemma 7.7: Let M and M′ be lppk-structures with the
same nonempty set AT ⊆ ATOM, and B be a bisimulation
relation between M and M′. Let α be a LPpCTL formula.
Assume that B(s,s′) and that π in M and π ′ in M′ are
corresponding paths.

Then, for any formula α , we have:

1. M,(s, l) |=+ α iff M′,(s′, l) |=+ α ,

2. M,(s, l) |=− α iff M′,(s′, l) |=− α .
Proof. This lemma is proved by (simultaneous) induc-
tion on the complexity of α . In the following, the ppk-
structures M and M′ are omitted from the expressions,
since the structures are clear from the context. We only
show the following case. The other cases are similar to
the cases of PpCTL.

Case (α ≡ [k]α1): Let ∗ ∈ {+,−}. (s, l) |=∗
[k]α1 iff (s,k) |=∗ α1 iff (s′,k) |=∗ α1 (by induction
hypothesis) iff (s′, l) |=∗ [k]α1.

We now define M |=∗ α as ∀s ∈ S ∀l ∈ Loc [M,(s, l) |=∗
α]. Then, M |=∗ α is intuitively interpreted as follows: “If
a proposition α can be verified (or refuted) at any time in
the future for all spaces in a world M, then the proposition
is the eternal truth (or falsehood) in the world”.

We then obtain the following bisimulation theorem.
Theorem 7.8—Bisimulation: Suppose that lppk-

structures M and M′ are bisimulation equivalent. For any
formula α ,

1. M |=+ α iff M′ |=+ α ,

2. M |=− α iff M′ |=− α .

8. Conclusions and Related Works

In this paper, paraconsistent probabilistic computation
tree logic (PpCTL) was introduced and studied. PpCTL
was constructed by combining two existing extended
temporal logics: Paraconsistent computation tree logic
(PCTL) and probabilistic computation tree logic (pCTL).
Then, a theorem for embedding PpCTL into pCTL was
proven using translation, which is independent of the
probability measure setting. A relative decidability the-
orem for PpCTL, which states that the decidability of
pCTL implies that of PpCTL, was also obtained as a
corollary of this embedding theorem. This relative de-
cidability theorem indicates that we can reuse some ex-
isting pCTL-based verification algorithms. Some illustra-
tive examples for describing an SQL injection attack de-
tection algorithm, involving the use of PpCTL, were also
presented to highlight the virtues of combining paracon-
sistency (in PCTL) and probability (in pCTL).

Some remarks are given as follows. A translation from
PpCTL into PCTL was not provided in this paper, al-
though a translation from PpCTL into pCTL was given.
The issue for obtaining a translation from PpCTL (pCTL)
into PCTL (CTL, resp.) has not been solved yet, because a
formula with probabilistic operators that have probability
measures is difficult to translate into a non-probabilistic
formula of PCTL or CTL. In the meantime, we would
like to extend the proposed embedding-based method to
obtain an extended PpCTL with the sequence modal op-
erator which was introduced for expressing ontological
or hierarchical information (see e.g, [32–37]). This is-
sue would need to be addressed in future. We would also
like to show that the proposed embedding-based method
for extending CTL with paraconsistency and probabil-
ity is applicable to other temporal logics such as linear-
time temporal logic (LTL) and full computation-tree logic
(CTL∗). Namely, we would like to introduce PpLTL and
PpCTL∗ in a similar manner to these other logics, and to
prove their corresponding embedding and relative decid-
ability theorems. This issue would also need to be re-
solved in future.

The remainder of this paper addresses some related
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works. Although the idea of combining paraconsistency
and probability within a temporal logic is new, the idea
of introducing a paraconsistent computation tree logic is
not. In this study, PCTL [6, 7] was used as a base logic for
constructing PpCTL. However, there are some other para-
consistent variants of CTL. For example, a multi-valued
computation tree logic, χCTL, was introduced by Easter-
brook and Chechik [38], and a quasi-classical temporal
logic, QCTL, was proposed by Chen and Wu [1]. PCTL
was introduced as an alternative to these logics. In ad-
dition, an extension PCTL∗ of PCTL has also been stud-
ied from the viewpoint of bisimulations for paraconsistent
Kripke structures in paraconsistent model checking [39].
Another extension of PCTL was also studied in [32] for
verifying student learning processes in learning support
systems.

Compared with paraconsistent CTLs, several studies
have been reported on probabilistic temporal logics, in-
cluding probabilistic CTLs. The study in [40] is a typical
example of such a study. In [40], a probabilistic and real-
time extension of CTL, also called PCTL, was introduced
and investigated on the basis of an interpretation of dis-
crete time Markov chains. In contrast to the probabilistic
frameworks of pCTL and PpCTL, the notion of proba-
bility in PCTL is assigned to all the temporal operators in
PCTL. For example, a PCTL formula with the form G≤t

≥pα
implies “the formula α holds continuously for t time units
with a probability of at least p.”

Some works on non-classical logics with the sequence
modal operator are explained as follows, although these
logics have no probability account. The sequence modal
operator can be used for a wide range of non-classical log-
ics. For example, an extended CTL∗ with the sequence
modal operator was studied in [35], wherein it was shown
that the sequence modal operator is applicable to certain
ontological descriptions. An extended LTL with the se-
quence modal operator was also studied in [36], wherein
it was observed that the sequence modal operator is use-
ful for specifying some time-dependent secure authenti-
cation systems. A study of an extension of the logic BI of
bunched implications, which was obtained by adding the
sequence modal operator, was reported [34], and it was
shown that the completeness theorem with respect to an
extension of the Grothendieck topological semantics for
BI holds for such an extension of BI.
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