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Particle filter is one promising method to estimate the
internal states in dynamical systems, and can be used
for various applications such as visual tracking and
mobile-robot localization. The major drawback of
particle filter is its large computational amount, which
causes long computational-time and large power-
consumption. In order to solve this problem, this
paper proposes an Field-Programmable Gate Array
(FPGA) platform for particle filter. The platform is de-
signed using the OpenCL-based design tool that allows
users to develop using a high-level programming lan-
guage based on C and to change designs easily for var-
ious applications. The implementation results demon-
strate the proposed FPGA implementation is 106 times
faster than the CPU one, and the power-delay product
of the FPGA implementation is 1.1% of the CPU one.
Moreover, implementations for three different systems
are shown to demonstrate flexibility of the proposed
platform.

Keywords: particle filter, Monte Carlo method, parallel
processing, OpenCL, FPGA

1. Introduction

Particle filter, which includes bootstrap filter [1], Monte
Carlo filter [2], and CONDENSATION [3], is one promis-
ing method to estimate state distribution for the general
state space model and has a wide range of applications
such as robotics, financial analysis, and environment sim-
ulation [4, 5]. Particle filter has a great advantage of being
able to handle any functional nonlinearity, and system or
measurement noise of any distribution. However, parti-
cle filter requires a large computational amount because it
uses many candidate vectors called “particles” to approx-
imate the state distribution. This problem prevents parti-
cle filter from being used for real-time and low-power ap-
plications because the large computational amount causes
long computational-time and large power-consumption.

One method for solving this problem is an Field-

Programmable Gate Array (FPGA) implementation of
particle filter. An FPGA is a reconfigurable LSI consist-
ing of programmable logic blocks, programmable inter-
connects, embedded memory blocks, Digital Signal Pro-
cessor (DSP) blocks, etc., and is used to generate custom
processors. Performance per power is a great advantage
of FPGAs over CPUs. However, traditional FPGA de-
velopment is inefficient because FPGA designers have to
create cycle-by-cycle descriptions of processors using a
Hardware Description Language (HDL).

For high-speed and low-power, FPGA implementations
of particle-filter-based algorithms have been proposed and
are used for various applications such as air traffic man-
agement [6], multi-target tracking [7] and tracking current
dipole sources of neural activity [8]. In these FPGA im-
plementations, operations for different particles are pro-
cessed in a pipeline manner. For speeding up further,
a parallel implementation with multiple processing ele-
ments is proposed, where each processing element pro-
cesses a fraction of the total number of particles [9]. How-
ever, in the simple parallel implementation, exchanging
data among processing elements become a bottleneck.
Moreover, to enhance the flexibility, some parameteriz-
able FPGA implementations have been proposed and are
easy to change their parameters such as the number of par-
ticles, image size, and object size [10]. However, chang-
ing the FPGA design for different applications, i.e., state
space models, requires much design effort in the HDL-
based design even though particle filter is flexible.

This paper proposes an FPGA platform for particle fil-
ter that is easy to change its design for various applica-
tions by utilizing a design tool based on Open Comput-
ing Language (OpenCL). OpenCL is a unified parallel
programing model on heterogeneous systems consisting
of Central Processing Units (CPUs), Graphics Process-
ing Units (GPUs), FPGAs, etc. [11]. As an OpenCL-
based design tool for FPGAs, we use the Altera SDK for
OpenCL (AOCL) [12] provided from Altera corp. Since
the AOCL allows us to use a C-based high-level pro-
gramming language, we can efficiently design the FPGA.
Thanks to the AOCL, users can change state space mod-
els, noise distributions and parameters such as the total
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number of particles and the number of particles processed
in parallel, with a small amount of design effort.

The number of particles processed in parallel deter-
mines the performance of the platform. For the scalability
of the platform, this paper proposes the OpenCL-oriented
parallel implementation of particle filter. There are three
major processes in particle filter, which are prediction,
weight evaluation and resampling processes. The predic-
tion and weight evaluation processes for multiple particles
can be performed in parallel naturally. However, the re-
sampling process becomes a bottleneck because there is
no natural parallelism among its operations for different
particles [13]. In the AOCL, kernels, which perform the
processes, are implemented in a pipeline manner. Hence,
this paper proposes the pipeline-oriented parallel imple-
mentation of the resampling process.

The implementation results demonstrate the FPGA im-
plementation based on this platform is 106 times faster
than the CPU implementation, and the power-delay prod-
uct of the FPGA implementation is 1.1% of the CPU im-
plementation. The proposed platform makes it possible
to use particle filter for real-time and low-power applica-
tions.

2. Particle Filter

2.1. State Space Model

Particle filter is the method to estimate the state dis-
tribution of a dynamical system from a sequence of ob-
servation. The state of the system and observation at the
time step k are denoted by vectors xxxk and yyyk respectively,
where k is an integer of the discrete time index. Vectors xxxk
and yyyk are called “state vector” and “observation vector”
respectively and are given by

xxxk = [x1(k),x2(k), . . . ,xn(k)]T ,

yyyk = [y1(k),y2(k), . . . ,ym(k)]T ,

where n and m denote the dimensions of the state vec-
tor and observation vector respectively. The state vector
is not measured directly, while the observation vector is
measured. The target system is modeled in a state space
representation by using two probability distributions

xxxk ∼ f (xxxk|xxxk−1), . . . . . . . . . . . . (1)
yyyk ∼ h(yyyk|xxxk), . . . . . . . . . . . . . (2)

where Eqs. (1) and (2) are called “system model” and “ob-
servation model” respectively. The system model defines
time evolution of the state vector and is written in a condi-
tional probability distribution of a state vector with given
the state vector at the previous time step (k − 1). Note
that, when k = 0, the initial distribution of the state vector
is defined by a probability distribution xxx0 ∼ p0(xxx). The
observation model defines the relation between the state
vector and observation vector, and is written in a con-
ditional probability distribution of the observation vector
with given the state vector of the same time step k.

2.2. Estimation Algorithm

Particle filter is one efficient method to estimate the
posterior distribution of the state vector at the current time
step by approximating the distribution with many parti-
cles. Let x(i)

k be a particle at the time step k, where i is an
index of the particle. Fig. 1 illustrates a flowchart of the
particle filter algorithm. Note that our platform is based
on the most simple particle filter [1, 2]. We explain pro-
cesses of the flowchart as follows.

(P1) Initialization: Generate initial particles according to
the initial distribution such that

xxx(i)
0 ∼ p0(xxx),

for i = 1,2, . . . ,N, where N denotes the number of parti-
cles.

(P2) Prediction: According to the system model given by
Eq. (1), draw temporary particles at the time step k from
the particles at the previous time step (k−1) such that

x̃xx(i)
k ∼ f

(
xxxk|xxx(i)

k−1

)
,

for i = 1,2, . . . ,N.

(P3) Weight evaluation: On receipt of the observation
vector, evaluate the weight of each particle according to
the observation model given by Eq. (2) such that

w̃(i)
k ∝ h

(
yyyk|x̃xx(i)

k

)
,

for i = 1,2, . . . ,N, where each value of the weight is non-
negative.

(P4) Resampling: Draw N particles according to the
probability proportional to the weight values such that

xxxk ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃xx(1)
k with probability

w̃(1)
k

N

∑
i=1

w̃(i)
k

,

x̃xx(2)
k with probability

w̃(2)
k

N

∑
i=1

w̃(i)
k

,

...
...

x̃xx(N)
k with probability

w̃(N)
k

N

∑
i=1

w̃(i)
k

.

This task is executed through three steps as follows. First,
from the weight values, compute the cumulative distribu-
tion function at the time step k which is given by

Ck(i) =
i

∑
j=1

w̃( j)
k , . . . . . . . . . . . . (3)

for i = 1,2, . . . ,N. Second, select an index r(i) of the
drawn particle by using a random number ui from the uni-
form distribution over (0,1]. Index r(i) is an integer satis-
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Initialization

Prediction

Weight evaluation

State estimation

Resampling

Fig. 1. Flowchart of the particle filter algorithm.

fying the equation

Ck

(
r(i) −1

)
< uiCk(N) ≤Ck

(
r(i)
)

, . . . (4)

where Ck(0) = 0. This step is repeated for i = 1,2, . . . ,N.
Note that, for normalization, the random number is mul-
tiplied by the sum Ck(N) of weight values, which is a
technique for the FPGA implementation as described in
Section 3.2.3. Finally, on the basis of the index r(i), draw
posterior particles such that

xxx(i)
k := x̃xx(

r(i))
k ,

for i = 1,2, . . . ,N. After the resampling, the weight values
of all particles are uniform.

(P5) State estimation: The drawn particles approximate
the posterior distribution of the state vector at the time
step k. Let p(xxxk|yyy1:k) be the posterior distribution, which
is given by{

xxx(i)
k

}N

i=1
≈ p(xxxk|yyy1:k),

where yyy1:k denotes the set {yyy1,yyy2, . . . ,yyyk}. In practical ap-
plications such as object tracking and localization, it is
necessary to obtain one representative state vector from
all particles. One simple method to obtain the representa-
tive state vector xxxk is given by

xxxk =
1
N

N

∑
i=1

xxx(i)
k . . . . . . . . . . . . . . (5)

3. FPGA Implementation

3.1. Programming Model of Altera SDK for
OpenCL

We introduce how an OpenCL program is executed [11,
14]. An OpenCL program is a collection of kernels, each
of which is a function in the program code. When a
kernel is executed, an index space is defined as shown
in Fig. 2. This index space is called an N-Dimensional
Range (NDRange), and a point of the NDRange is called
a work-item. Each work-item executes the same kernel.
Each work-item is given a unique ID that is called a global

(a) OpenCL kernel

���������	
��������
����

�

�����������
����������

���������������� �����

!

"#$����

...

Work-item #0:  C[0] = A[0] + B[0]

Work-item #1:  C[1] = A[1] + B[1]

Work-item #2:  C[2] = A[2] + B[2]

Work-group

Work-group

Work-group

Work-group

...
(b) NDRange

Work-item

Fig. 2. OpenCL execution model.

ID. According to the global ID, each set of data is mapped
to a work-item. A set of work-item is a work-group and
a set of work-group is an NDRange. Work-items of one
work-group can share data.

Kernels of the AOCL are classified into two types:
“NDRange kernels” and “Single Work-Item kernels.” The
NDRange kernels utilize work-item-level parallelism. An
NDRange kernel has multiple work-items and executes
them in parallel like GPU programing models. The
NDRange kernels are suitable for the case when work-
items do not have memory dependencies. A single work-
item kernel is a kernel executed with one work-group con-
taining a single work-item. The single work-item kernels
utilize loop-level parallelism and loop-iterations run in
parallel. Hence, the single work-item kernel is adapted to
the case of data-dependencies arise when loop-iterations
run. In the following, we call a loop-iteration a Loop-
Iteration-Thread (LI-Thread).

Figure 3 illustrates how the Altera Offline Compiler
(AOC) generates custom hardware from OpenCL codes
of both an NDRange kernel and a single work-item ker-
nel. Note that, although this figure shows execution of
each work-item of the NDRange kernel, each LI-thread
of the single work-item kernel is executed in the same
way. Operations of the kernel are directly converted to
the circuit; the AOC translates an addition to an adder
and a subtraction to a subtracter. In addition, the AOC
generates the custom pipeline for speeding up computa-
tion. At each clock cycle, one work-item is fed into the
pipeline and multiple work-items are executed in parallel.
Since every work-item is executed in the same pipeline,
the pipeline is more efficient in hardware resources than
replicating hardware for each work-item. Moreover, the
pipeline makes it possible to efficiently use the memory
bandwidth because each work-item loads its input data at
each clock cycle sequentially. This is essential for FPGAs
because the external memory bandwidths of FPGAs are
smaller than those of GPUs.

A major difference between the NDRange kernel and
the single work-item kernel is a way to share data. In
NDRange kernels, sharing data among work-items is
done by writing data processed by each work-item to
a shared memory as shown in Fig. 4(a). In single
work-item kernels, LI-threads can efficiently share data
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Load
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C
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(a) OpenCL kernel (b) Generated hardware

(c) Time chart of executing operations

(d) Different pipeline stages perform different operations 
of work-items in parallel

Fig. 3. Generated custom hardware by the AOC [14]. When
the AOC finds operations that can be performed in parallel,
it generates circuits performing them concurrently.

through feedbacks without the shared memory as shown
in Fig. 4(b). This efficient data sharing of the single work-
item kernel is an advantage of the AOCL over typical
GPU programing models.

OpenCL handles four memory regions, which are
global, constant, local and private memories. A typical
FPGA board supporting OpenCL has external SDRAM,
on-chip memory blocks and on-chip registers. In the
AOCL, the global, constant, local and private memories
respectively correspond to SDRAM, SDRAM, memory
blocks and registers. A recent high-end FPGA like Stratix
V FPGAs has a large memory blocks of 50M bits and
about one million of registers. One of the keys to success
of the FPGA design is to fully reuse data that are once
retrieved from the external memory by using the large on-
chip memories. Features of the memory regions are sum-
marized as follows. The global memory has a large capac-
ity, and hence processing data such as images are stored in
it. However, the global memory requires high access la-
tency and its bandwidth is small. The constant memory is
implemented in SDRAM like the global memory, whereas
the constant memory is a read-only memory. Since the

���������	
�����������

�

�
����������������

�

���������������������

�

�

(b) Generated pipeline from the single work-item kernel

Load

+

Store
Feedback 

(a) Generated pipeline from the NDRange kernel
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Shared memory

Computation unit 
for operations 1

Computation unit
for operations 2

'(��� �
���

'(��� �
��)

Work-item #0

Work-item #0

#2#1

#1 #2

Fig. 4. Difference of the data sharing method between the
NDRange kernel and single work-item kernel [15].

constant memory is loaded into an on-chip cache at run-
time, it is used for constant data requiring the large band-
width. The local memory can be randomly accessed with-
out any performance penalty unlike the global memory,
and hence a data array requiring complex addressing is
stored in the local memory. In addition, the local memory
has lower access latency and the larger bandwidth than
the global memory. The private memory is mainly imple-
mented in registers. Using the private memory is almost
always better than using other memory regions because it
provides the larger bandwidth than other memory regions.
However, for efficiently using the private memory, an data
array in the private memory requires static addressing to
determine the access address at compilation time. Other-
wise, the private memory may be implemented in the on-
chip memory blocks that have the smaller bandwidth than
registers. Memory access efficiency determines the max-
imum performance of a kernel. The bandwidths of the
constant, local and private memories are larger than that
of the global memory. Hence, minimizing global mem-
ory accesses by using other memory regions often leads
to improving the kernel performance.

3.2. FPGA Implementation of Particle Filter
3.2.1. Overall Structure

Figure 5 illustrates the kernel structure of the imple-
mentation. The implementation of particle filter consists
of two parts: (A) Random number generation and (B)
Particle filter execution. For the random number gener-
ation, we use the Mersenne Twister algorithm [16]. The
random number generation is decomposed into two ker-
nels: (A1) Initialization and (A2) Generation. The ini-
tialization kernel generates initial states used for gener-
ating random numbers and the generation kernel gener-
ates random numbers. The particle filter execution is de-
composed into four kernels: (B1) Prediction, (B2) Weight
evaluation, (B3) Resampling and (B4) State estimation.
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(A1) Initialization
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(B4)  State estimation

G
lo

ba
l M

em
or

y
On-chip

(B3)    Resampling

(B) Particle filter execution

(A) Random number generation

Initial states

Fig. 5. Overall kernel structure of the implementation.

These kernels perform the processes (P1)–(P5) described
in Section 2.2; the prediction, weight evaluation, resam-
pling, and state estimation kernels respectively perform
the processes (P1) and (P2), (P3), (P4), and (P5). Note
that, since particles are used for both drawing posterior
particles and state estimation, drawing posterior particles
is performed by the state estimation kernel. Hence, the re-
sampling kernel performs to compute the cumulative dis-
tribution function given in Eq.(3) and to select indexes of
drawn particles.

This implementation performs the particle filter algo-
rithm at each time step. At each time step, input and out-
put data are transferred between the host PC and FPGA
board. The input and output at the time step k are defined
as follows.

Input: Observation vector yyyk
Output: Representative state vector xxxk

The input data is transferred from the host memory to the
global memory before processing and the output data is
transferred from the global memory to the host memory
after processing.

3.2.2. Basic Ideas for the Kernel Design

The keys to success of the FPGA implementation are
as follows.
(i) Minimizing global memory accesses: Since the
global memory bandwidth determines the maximum per-
formance of kernels, global memory accesses are mini-
mized whenever possible by utilizing on-chip memories.
(ii) Pipeline-oriented processing: The input data is pro-
cessed in the incoming order for reducing hardware re-
sources storing the input data.

For efficient parallel processing, each process needs to
be broken down to sub-processes that can be performed
in parallel. One sub-process is executed by one work-
item of an NDRange kernel or one LI-thread of a single
work-item kernel. In the following, a work-item or an
LI-thread is called a thread. In the algorithm, the oper-
ation for each particle can be performed independently
except the resampling and state estimation processes. On
the basis of this consideration, we assign some particles

to one thread, and one thread performs operations for the
assigned particles in parallel. In the resampling and state
estimation processes, by using single work-item kernels,
these processes are executed with efficient data sharing
among threads.

3.2.3. Design of Kernels

We describe the fundamental design of kernels. As an
example, we use the simple state space model given by

xk = xk−1 + vk, . . . . . . . . . . . . (6)
yk = xk +wk, . . . . . . . . . . . . . (7)

where vk and wk are zero-means Gaussian white noises
with variances 0.01 and 0.09, respectively. The weight
value of each particle is given by

wk = g(yk − xk), . . . . . . . . . . . . (8)

where g() denotes a zero-means Gaussian probability
density function with the variance 0.09. The initial distri-
bution p0(x) is given by a Gaussian distribution N(0,1).
The estimated state is the representative state vector given
by Eq. (5).

Figure 5 shows the overall kernel structure. In the fol-
lowing, we describe design of kernels.
(A) Random number generation

We describe two kernels performing the random num-
ber generation. Note that we implement these kernels
based on the OpenCL code of the Mersenne Twister [17]
provided from Alter corp.
(A1) Initialization

This kernel generates initial states used for generating
random numbers. The initial states are computed by up-
dating a seed value sequentially. Hence, we design this
kernel as a single work-item kernel for efficient data shar-
ing among LI-threads. We assign one initial state to one
LI-thread. Note that this kernel is executed once when
processing of particle filter is started.
(A2) Generation

This kernel generates random numbers from the uni-
form distribution over (0,1]. This operation requires to
update states sequentially like the initialization kernel.
Hence, we design this kernel as a single work-item ker-
nel. Let R be the number of random numbers used for
one particle, and p be the number of particles processed
by one thread in the kernels of particle filter execution. In
the system model given by Eq. (6), the one random num-
ber is enough for one particle, and R = 1. One LI-thread
generates (R× p) random numbers and passes them to the
prediction kernel. In order to save hardware resources,
one of the random numbers is reused for the resampling
kernel. Note that, since this kernel does not have to re-
ceive data from the host, this kernel runs at all time steps
of estimation.
(B) Particle filter execution

We describe four kernels performing particle filter at
each time step. In these kernels, one thread performs op-
erations for p particles. In the following, number p is
called a parallel number.
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Fig. 6. Operation of the resampling kernel.

(B1) Prediction
This kernel generates initial particles or calculates tem-

porary particles at a next time step. Since operations for
particles are independent of each other, we design this ker-
nel as an NDRange kernel. For the first time step k = 1,
each work-item computes initial particles from the initial
distribution N(0,1) by using the random numbers. For the
other time step k �= 1, each work-item computes tempo-
rary particles from Eq. (6). In these operations, we use
the Box-Muller transform for generating normally dis-
tributed random numbers from uniformly distributed ran-
dom numbers. The result of each work-item is passed to
the weight evaluation and state estimation kernels.
(B2) Weight evaluation

Since operations for particles are independent of each
other, we design this kernel as an NDRange kernel.
Each work-item loads the observation vector from the
global memory and evaluates the weight of particles from
Eq. (8). The result of each work-item is passed to the re-
sampling kernel.

For reducing hardware resources, we represent the
weight value as a unsigned fixed-point 32-bit integer. For
this technique, the weight values given by Eq. (8) are nor-
malized to satisfy the equation sup{w̃(i)

k }N
i=1 ≤ 1, i.e., the

upper bound of the weight values are 1. Note that, to
avoid the integer overflow, when the cumulative distribu-
tion function given by Eq. (3) is computed, a weight value
of one particle is represented as the value that is less than
232−log2 N .
(B3) Resampling

For efficient data sharing, we design this kernel as a
single work-item kernel. Selecting indexes of drawn parti-
cles must be started after computing the cumulative distri-
bution function is finished. Hence, two pipelines are gen-
erated for computing the cumulative distribution function
and selecting indexes respectively, where each pipeline
corresponds to one loop statement in the OpenCL code.

Figure 6 illustrates the operation of this kernel. First,
each LI-thread computes the cumulative distribution func-
tion from Eq. (3) by cumulatively adding the weight value
in the incoming order. Although the size of the results
is large because the number of particles is many, the re-
sults are stored in the local memory for high-speed ac-

Computing the 
partial CD function

Data stream 1

Computing the 
partial CD function

Data stream 2

Computing the 
partial CD function

Data stream 3

Computing the 
partial CD function

Data stream 4

(a) Computing partial Cumulative Distribution (CD) functions in parallel

(b) Cumulative distribution function in the parallel implementation

Fig. 7. Computing the cumulative distribution function in
the parallel implementation, where the parallel number p is
4.

cess. Second, selecting indexes is performed. Note that,
before LI-threads compare the random numbers and cu-
mulative distribution function, the value of each random
number is multiplied by C(N) for normalization. Since
the sum C(N) of all weight values is obtained after com-
puting the cumulative distribution function is finished, to
normalize the random number is more efficient in hard-
ware resources than to normalize the cumulative distribu-
tion function. Each LI-thread selects the index satisfy-
ing Eq. (4) using the binary search technique for efficient
search. Finally, the selected indexes are passed to the state
estimation kernel.

The resampling process is performed in parallel for
multiple particles. Selecting indexes can be performed
in parallel naturally by using random numbers. However,
computing the cumulative distribution function become a
problem because there is no natural parallelism among its
operations for different particles. The cumulative distri-
bution function is computed as follows. First, partial cu-
mulative distribution functions are computed in parallel
for p data streams from the weight evaluation kernel as
shown in Fig. 7(a). Let Ck,l(i) be a value of the partial
cumulative distribution function in the data stream l and
it is given by

Ck,l(i) =
i

∑
j=1

w̃(p( j−1)+l)
k ,

where i = 1,2, . . . ,(N/p) and l = 1,2, . . . , p. Second,
last values of the partial cumulative distribution functions
(i.e., Ck,l(N/p)) are added cumulatively as follows:

Mk(i) =
i

∑
j=1

Ck, j

(
N
p

)
,
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where i = 1,2, . . . ,(p−1). Although this operation causes
the overhead for the parallel implementation and requires
(p − 1) sequential additions, this overhead is relatively
small because (p − 1) is typically much smaller than
(N/p). Finally, the cumulative distribution function is
given by

C
′
k(i) = C

k,

(⌊
i−1

(N
p )

⌋
+1

)(((i−1) mod
N
p

)
+1
)

+Mk

⎛⎝⎢⎢⎢⎣ i−1(
N
p

)
⎥⎥⎥⎦⎞⎠ , . . . . . . . . (9)

where i = 1,2, . . . ,N, Mk(0)= 0 and �x	 denotes the maxi-
mum integer that does not exceed the number x. Fig. 7 (b)
illustrates the cumulative distribution function computed
from Eq. (9). Each section of this function whose length
is (N/p) corresponds to the partial cumulative distribu-
tion function and Mk(l) is the offset value for Ck,l+1(i).
One element of the cumulative distribution function can
be computed from Eq. (9) without computing all elements
of that.

In the parallel implementation, selecting indexes is
performed by using the cumulative distribution function
computed from Eq. (9). Let ipara be a selected index
by using the function computed from Eq. (9). By using
ipara, the index r(i) of the drawn particle described in Sec-
tion 2.2 is given by

r(i) = p
(

(ipara −1) mod
N
p

)
+

⎢⎢⎢⎣ ipara −1(
N
p

)
⎥⎥⎥⎦+1.

. . . . . . . . . . . . . . . . . . (10)

When the selected index ipara is given, we compute the
index r(i) of the drawn particle from Eq. (10).
(B4) State estimation

This kernel executes drawing posterior particles and
computing the representative state vector. For efficient
data sharing, we design this kernel as single work-item
kernel. Drawing particles must be started after all tem-
porary particles are received because temporary particles
used are determined at runtime. Hence, two pipelines
are generated for storing temporary particles and drawing
posterior particles, respectively.

Figure 8 illustrates the operation of this kernel. First,
each LI-thread stores all temporary particles in the local
memory for high-speed access. Second, drawing parti-
cles and computing the representative state vector are ex-
ecuted. Each LI-thread receives the selected indexes from
the resampling kernel and draws posterior particles cor-
responding to the indexes from the local memory. The
drawn particles are used for computing the sum of all pos-
terior particles and are passed to the prediction kernel.
After computing the sum, the representative state vector
is computed by multiplying the sums by 1/N. The repre-
sented vector is stored in the global memory.

On-chip

Lo
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em
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y

Pipeline 1

Pipeline 2

+
Feedback

G
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y

Fig. 8. Operation of the state estimation kernel.
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Fig. 9. Timechart of the particle filter execution kernels,
where the parallel number p is 2.

3.2.4. Connecting Between Kernels

The AOCL provides a mechanism enabling to con-
nect different kernels directly through an on-chip FIFO
buffer, called a “channel,” with high-efficiency and low-
latency [18]. The kernels are connected by channels as
shown in Fig. 5, where a channel is represented by a rect-
angle on the line connecting kernels. The use of channels
has following advantages.
(i) Saving the global memory bandwidth:

In the typical OpenCL, which includes its version 1.0,
1.1 and 1.2, the global memory must be used for data
transfer between kernels. By using channels, results of
each kernel can be passed to the next kernel without using
the global memory.
(ii) Multiple kernels executed in parallel:

Since kernels pass their results synchronously by chan-
nels, multiple kernels with mutual data-dependencies can
be executed in parallel. Fig. 9 illustrates the timechart
of kernels of particle filter execution. A hexagon denotes
the processing time of each operation for one particle and
an internal symbol of the hexagon denotes the operation.
Although the generation kernel is omitted, the generation
kernel is executed in parallel with these kernels. Note that,
in the resampling kernel, selecting indexes is started after
computing the cumulative distribution function. A rectan-
gle denotes the processing time of operations performed
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#define N_STS (6)  // dimension of state vector
#define N_OBS (3)  // dimension of observation vector
#define N_PAR (2)  // parallel number
#define N_RND (4*N_PAR)  // the number of random numbers
#define N_PART (8192)  // the number of particles

#define VARIANCE_S (0.01)

__kernel void prediction(…) {

// system model
xp[i] = xf[i] + v;

}

#define VARIANCE_S (1.0e-6)

__kernel void prediction(…) {

// system model
xp[i] = 0.5*xf[i] + 25*xf[i]/(1+xf[i]*xf[i])

+ 8*cos(1.2*(k-1)) + v;

}

...

...

...

...

Simple model Nonlinear model

(a) Changing the system model and variance of the system noise 

(b) Definition of implementation parameters

Fig. 10. Flexibility of the implementation.

by one thread. The computation is speeded up by utilizing
both pipeline processing and spatial parallel processing.
(iii) Improving development efficiency:

Processes with mutual data-dependencies can be im-
plemented as multiple kernels while keeping their perfor-
mance. Hence, the use of channels improves development
efficiency and maintainability.

3.2.5. Flexibility of Designs

The AOCL allows us to use the high-level program-
ming language for the FPGA design. Hence, the OpenCL-
based design is much easier to change than the HDL-
based design. For example, let us change the simple
model given by Eqs. (6) and (7) to the nonlinear model
given by

xk = 0.5xk−1 +
25xk−1

1+ x2
k−1

+8cos(1.2(k−1))+ vk, . . . . . . (11)

yk =
x2

k
20

+wk, . . . . . . . . . . . . (12)

where vk and wk are zero-means Gaussian white noises
with variances 1e−6 and 0.01, respectively. The initial
distribution and way to compute the representative state
vector are not change. In this case, the prediction kernel
is changed as shown in Fig. 10(a) and the weight evalu-
ation kernel is changed in the same way. The variances
of the noises vk and wk are also changed. By only these
changes, we can change the state space model easily. Pa-
rameters of the implementation can be also easily changed
by changing “#define” statements as shown in Fig. 10(b).

4. Evaluation

4.1. Performance Comparison Between CPU and
FPGA Implementations

We compare performance between CPU and FPGA
implementations. As the state space model, the simple

Table 1. Processing time and power-delay (PD) product of
CPU and FPGA implementations.

Corei7-3960X DE5-Net
(1-thread) FPGA board

Processing time (ms) 15.13 0.14
PD product (W×s) 0.86 0.0095

model given by Eqs. (6) and (7) is used. The number N
of particles is determined as 8192, and the parallel num-
ber p in the FPGA implementation is determined as 1. As
a CPU, we use Core i7-3960X from Intel corp. running
at a clock frequency of 3.3 GHz–3.9 GHz. The CPU im-
plementation is the simple implementation with a single
thread. For the CPU implementation, we use the C/C++
Optimizing Compiler Version 18 for x64 from Microsoft
corp. The CPU is also used for the host in the FPGA
implementation. As a FPGA board, we use the DE5-Net
board from Terasic corp. that has the Stratix V A7 FPGA
from Altera corp. For the FPGA implementation, we use
the Altera SDK for OpenCL, Version 15.0.2.

For evaluation metrics, we use the processing time and
power-delay product. The processing time is the time for
executing particle filter at one time step, and is measured
as the average time of 1000 executions. In the FPGA
implementation, the processing time includes the time of
data transfer between the host PC and FPGA board. The
power-delay product, which represents energy-efficiency,
is defined as the product of the processing time and power
consumption. The power consumption is measured with a
power meter (HIOKI AC/DC POWER HiTESTER 3334).
Note that the power consumption is the difference be-
tween the powers of a whole computer in the idle state and
operation state. Table 1 summarizes the processing time
and power-delay product of each implementation. The
FPGA implementation is 106 times faster than the CPU
implementation. Moreover, the power-delay product of
the FPGA implementation is 1.1% of the CPU implemen-
tation. The results demonstrate that the FPGA implemen-
tation is much faster and more energy-efficient than the
CPU implementation.

4.2. Implementations for Different State Space
Models

In order to demonstrate flexibility of the proposed plat-
form, we evaluate implementations for three state space
models as follows. The first one is the simple model given
by Eqs. (6) and (7). The implementation using the simple
model is called Isimple in the following, which is the same
implementation in Section 4.1. The second one is the non-
linear model given by Eqs. (11) and (12), where the initial
distribution is given by a Gaussian distribution N(0,25).
The implementation using the nonlinear model is called
Inonlinear in the following. The third one is the model used
for color tracking. The system model is given by

xxxk = FFFxxxk−1 +GGGvvvk,
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Table 2. Implementation results of FPGA implementations for three models.

Stratix V A7 Isimple Inonlinear Icolortrack Isimple

Logica 234,720 54,748 (23%) 58,552 (25%) 162,580 (69%) 55,474 (24%)
Registers 938,880 89,007 (9%) 97,752 (10%) 209,759 (22%) 90,060 (10%)

RAM blocks 2,560 444 (17%) 449 (18%) 1,775 (69%) 1,582 (62%)
DSP blocks 256 26 (10%) 36 (14%) 38 (15%) 26 (10%)

Frequency (MHz) 298 288 166 188
The number of particles N 8192 8192 8192 65536

Parallel number p 1 1 1 1
Processing time (ms) 0.14 0.15 4.05 0.86

Standard deviation (ms) 0.0082 0.0086 0.16 0.039

a. Logic denotes Adaptive Logic Modules (ALMs).

where xxxk = [xk,yk,x
p
k ,yp

k ,bk,hk]T , vvvk = [vx
k,v

y
k,v

b
k,v

h
k ]

T ,

FFF =

⎡⎢⎢⎢⎢⎢⎣
2 0 −1 0 0 0
0 2 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
and

GGG =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ .

Here xk and yk denote coordinates of the current target po-
sition; numbers xp

k and yp
k denote coordinates of the previ-

ous target position; numbers bk and hk denote the size of
the image window centered on the coordinate (xk,yk) and
are used for weight evaluation. Number vx

k ∼ N(0,25),
vy

k ∼ N(0,25), vb
k ∼ N(0,4) and vh

k ∼ N(0,4). The weight
value of each particle is given by

wk =
T
W

,

where T denotes the number of pixels of the target color in
the image window and W denotes the number of all pixels
in the image window. The maximum size of the image
window is determined as 50× 50 pixels. Note that color
tracking is executed both the host and FPGA serially; the
host performs the operation of creating the mask image
whose pixel values of the target color pixels are 1 and
other pixel values are 0, and after that, the FPGA performs
all the other operations. The implementation using the
this model is called Icolortrack in the following.

The implementation results are summarized in Table 2,
which contains the resource utilization, the maximum fre-
quency, the number of particles, the parallel number, the
processing time and the standard deviation of the process-
ing time. In these implementations, the parallel number is
determined as 1. The “Stratix V A7” column shows the
specification of the FPGA (Stratix V A7) [19]. The pro-
cessing time is measured in the same way as described in
Section 4.1. Note that the processing time of Icolortrack in-

cludes the time required for the host to create the mask im-
age; the time for creating the mask image is 3.63 (ms) and
the time of processing all other operations is 0.42 (ms).
The standard deviation is calculated from the processing
time of 1000 executions. The standard deviation of each
implementation is much smaller than its processing time.
The right-most column shows the implementation results
of Isimple for the case when the number of particles are
maximized; the maximum number of particles is 65536
under the resource constraint of the used FPGA. The per-
formances of these implementations are sufficient for typ-
ical real-time applications. Fig. 11 illustrates estimation
results for the three models by CPU and FPGA implemen-
tations with 8192 particles. The cross marks, dashed lines
and solid lines represent true states, results of the CPU
implementation and results of the FPGA implementation,
respectively. The size of the image used for Icolortrack is
640×480 pixels. These results demonstrate that the re-
sults of CPU and FPGA implementations are almost the
same.

5. Discussion for High-Speed Implementations

The proposed implementation can be more speeded up.
The implementation performs the particle filter algorithm
at each time step since the output and input data are trans-
ferred between the host PC and FPGA board at each time
step. However, if the data transfer is not required, op-
erations at different time steps can be executed in paral-
lel. We present two types of high-speed implementations
based on this idea as follows.

The first one is based on overlapping operations with-
out replicating the local memory. We call this implemen-
tation IHS1. Fig. 12(a) illustrates the timechart of the this
implementation. In the resampling kernel, the operations
of both computing the cumulative distribution function
and selecting indexes use the same local memory storing
the function. For this reason, the operation of comput-
ing the cumulative distribution function at the time step k
must be started after the operation of selecting indexes for
all particles at the previous time step (k−1) is finished; in
Fig. 12(a), the operation of (B3.1) at the time step k must
be started after the operation of (B3.2) for all particles at
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Fig. 11. Estimation results of CPU and FPGA implementations.

the previous time step (k− 1) is finished. Besides, in the
state estimation kernel, the operations of both storing tem-
porary particles and drawing posterior particles use the
same local memory storing the temporary particles. For
this reason, the operation of storing temporary particles at
the time step k must be started after the operation of draw-
ing posterior particles at the previous time step (k− 1) is
finished; in Fig. 12(a), the operation of (B4.1) at the time
step k must be started after the operation of (B4.2) for
all particles at the previous time step (k− 1) is finished.
Hence, the operations at the time steps (k− 1) and k are
overlapped based on the above restrictions.

The second one is based on overlapping operations with
replicating the local memory. We call this implementa-
tion IHS2. Fig. 12(b) illustrates the timechart of the this
implementation. In the resampling kernel, the memory
storing the cumulative distribution function is replicated
for starting the operation at the time step k while the op-
eration at the previous time step (k− 1) is executed; in
Fig. 12(b), the operations of (B3.1) at the time step k is
started while the operations (B3.2) at the previous time
step (k − 1) is executed. Similarly, in the state estima-
tion kernel, the memory storing the temporary particles
is replicated for starting the operation at the time step k
while the operation at the previous time step (k−1) is ex-
ecuted; in Fig. 12(b), the operations of (B4.1) at the time
step k is started while the operations (B4.2) at the previous
time step (k−1) is executed. This technique leads to high
performance, though utilization of the memory blocks is
increased.

We implement IHS1 and IHS2 by using the simple state
space model given by Eqs. (6) and (7). The number of
particles is 8192. The results of these implementations
are summarized in Table 3, which includes Isimple for
comparison. The total processing time is the time of ex-
ecuting particle filter during time steps 1–1000. For the
parallel number of 1, IHS1 is 1.9 times faster than Isimple,
and IHS2 is 3.6 times faster than Isimple. In this case, the
memory blocks of IHS2 are increased compared to those
of IHS1. Performances of the implementations can be im-
proved by increasing the parallel number. As for IHS1,
3.5-time speedup is achieved by increasing the parallel
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Fig. 12. Timechart of high-speed implementations.

number from 1 to 4. As for IHS2, 2.6-time speedup is
achieved by increasing the parallel number from 1 to 4.

6. Conclusion

This paper proposes the FPGA platform for particle fil-
ter for the purpose of high-speed and low-power, which
can be easily used for various state space models by the
OpenCL-based design. The key to speeding up computa-
tion is to utilize pipeline processing and spacial parallel
processing. The proposed implementation makes it possi-
ble to use particle filter for real-time and low-power appli-
cations. As future work, we are building a large-scale par-
ticle filter accelerator with more than several million par-
ticles by connecting multiple FPGAs. We are also plan-
ning to develop the FPGA-oriented OpenCL-code gener-
ator for the user-specified state space model, noise distri-
bution and parameters such as the number of particles and
parallel number.
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Table 3. Implementation results of high-speed implementations.

Isimple IHS1 IHS2 IHS1 IHS2

Logica 54,748 (23%) 58,557 (25%) 58,791 (25%) 83,397 (36%) 83,957 (36%)
Registers 89,007 (9%) 97,718 (10%) 97,923 (10%) 158,362 (17%) 160,465 (17%)

RAM blocks 444 (17%) 486 (19%) 678 (26%) 548 (21%) 1,167 (46%)
DSP blocks 26 (10%) 26 (10%) 26 (10%) 88 (34%) 88 (34%)

Frequency (MHz) 298 220 221 208 165
The number of particles N 8192 8192 8192 8192 8192

Parallel number p 1 1 1 4 4
Total processing time (ms) 142.96 76.74 39.56 21.98 15.09

a. Logic denotes Adaptive Logic Modules (ALMs).
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[9] M. Bolić, “Architectures for Efficient Implementation of Particle
Filters,” Ph.D. thesis, State University of New York at Stony Brook,
2004.

[10] P. Engineer, R. Velmurugan, and S. B. Patkar, “Parameterizable
FPGA framework for particle filter based object tracking in video,”
28th Int. Conf. on VLSI Design (VLSID), pp. 35-40, 2015.

[11] Khronos Group, 2010, The OpenCL Specification, available:
https://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf.

[12] “Altera SDK for OpenCL,” https://www.altera.com/products/design-
software/embedded-software-developers/opencl/overview.html.
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