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Interval models based on fuzzy regression and fuzzy
time-series can illustrate the possibilities of a system
using the intervals in the model. Thus, the aim is
to minimize the vagueness of the model in order to
describe the possible states of the system. In the
present study, we consider on an interval fuzzy time-
series model based on a Box–Jenkins model, a fuzzy
autocorrelation model proposed by Yabuuchi, and a
fuzzy regressive model proposed by Ozawa. We ex-
amine two models by analyzing the Japanese national
consumer price index and demonstrate that our ap-
proach improves the accuracy of predictions. The util-
ity and predictive accuracy of fuzzy time-series models
are validated using two concepts of fuzzy theory and
statistics. Finally, we demonstrate the applicability of
the fuzzy autocorrelation model with fuzzy confidence
intervals.

Keywords: fuzzy time-series model, Box-Jenkins model,
autocorrelation, fuzzy random variable

1. Introduction

Time-series models are commonly used in economic
analysis, where the objective of the analysis is to under-
stand time-dependent fluctuations in the economic system
more precisely based on statistical data. However, eco-
nomic systems are closely linked to many aggregated fac-
tors related to human behavior. Therefore, it is not suffi-
cient to interpret an economic system based only on the
results obtained using conventional statistical methods.
Instead, when we analyze economic systems that depend
on many vague factors, it is desirable to apply the con-
cept of fuzzy theory, which can handle the ambiguity of a
structure.

Two types of fuzzy time-series approaches can extend
the Box–Jenkins model to deal with fuzzy data and nu-

meric data. The present study focuses on models that deal
with fuzzy numbers, such as those proposed by Ozawa et
al. [1] and Yabuuchi et al. [2, 3]. Ozawa et al. [1] built a
fuzzy autoregressive (FAR) model that includes a differ-
enced series of fuzzified data in its intervals. Yabuuchi et
al. [2, 3] defined fuzzy autocorrelation (FAC) coefficients
based on fuzzified data and used these values to build a
FAC model. Moreover, Yabuuchi proposed an approach
for improving the accuracy of predictions using fuzzy
random variables [4, 5]. Fuzzy autoregressive integrated
moving average (ARIMA) models such as those proposed
by Tseng et al. [6, 7] can deal with numeric data. These
models express the possibilities of a time-series system
based on the fuzzy coefficients of the model in a similar
manner to other fuzzy time-series models.

In this study, we consider on a fuzzy time-series model
that deals with fuzzy data. We also examine the accuracy
of the predictions obtained by a FAR model and a FAC
model with and without fuzzy confidence intervals (FCI),
as well as demonstrating the utility of these models based
on a numerical example. The Japanese national consumer
price index is employed in this numerical simulation. We
verify the characteristics and usefulness of FAC models.

The remainder of this paper is organized as follows.
Section 2 introduces a fuzzy time-series model, which is
an extension of the Box–Jenkins model. Section 3 de-
scribes the FCI for fuzzy random variables. The FCI is
employed instead of time-series data to improve the ac-
curacy of predictions. In Section 4, we use these models
to analyze the monthly Japanese national consumer price
index from January 1970 to March 2012, and we discuss
the results of the analysis.

2. Fuzzy Time-Series Model

The Box–Jenkins time-series model has high predictive
precision and it is also easy to handle. In possibility the-
ory, data are considered to be the embodied possibilities
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of a system. It is natural to consider time-series data as
realizations of the possibilities of the time-series system.
Therefore, a fuzzy time-series model is an effective means
of analyzing time-series systems that include vagueness.

In this section, we introduce two Box–Jenkins-based
models; a FAR model and our FAC model. Both models
use fuzzy time-series data and they have interval outputs.

2.1. FAR Model
Ozawa et al. [1] proposed a FAR model that expresses

the possibilities of fuzzified difference sequences. The
fuzzy time-series data YYY t used by the FAR model are
fuzzified versions of the original time-series data yt . The
fuzzy data are given as follows:

YYYt = [Y L
t ,YC

t ,YU
t ],

YU
t = yt

max(yt−1,yt ,yt+1)
min(yt−1,yt ,yt+1)

,

YC
t = yt ,

Y L
t = yt

min(yt−1,yt ,yt+1)
max(yt−1,yt ,yt+1)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. . . . . . (1)

A FAR model is obtained by using the differenced series
ZZZt = [ZL

t ,ZC
t ,ZU

t ], which removes trends from the fuzzy
time-series data YYY t with Eq. (1). The FAR model illus-
trates the relationship between the fuzzy time-series data
ZZZt using a real-valued autoregressive parameter φ and it
represents the vagueness of the system by introducing a
triangular fuzzy number uuu = [uL,uC,uU ]. The FAR model
can be described as follows:

Z̃ZZt= [Z̃L
t , Z̃C

t , Z̃U
t ]

= φ1ZZZt−1 +φ2ZZZt− + · · ·+φpZZZt−p +uuu.
. . (2)

The autoregressive parameters φφφ = [φ1,φ2, . . . ,φp] are real
values and the error term uuu = [uL,uC,uU ] is an asymmetric
triangular fuzzy number.

The FAR model (2) results in a linear programming
(LP) problem that involves minimizing the ambiguity of
the model according to the inclusion relation ZZZt ⊆ Z̃ZZt(t =
p+1, p+2, . . .,n) as follows:

min
φφφ ,uuu

n

∑
t=p+1

(Z̃U
t − Z̃L

t )

s.t. ZZZt ⊆ Z̃ZZt (t = p+1, p+2, . . .,n).

2.2. FAC Model
In our FAC model, the time-series data zt are trans-

formed into a fuzzy number to express the possibilities
of the data using a different definition from that given by
Ozawa (Eq. (1)). The following fuzzy equation describes
the case where only one time point before and after t are
considered when building a fuzzy number [8].

YYYt= [Y L
t ,YC

t ,YU
t ]

= [min(zt−1,zt ,zt+1),zt ,max(zt−1,zt ,zt+1)]
(3)

We use this fuzzy equation to determine the fuzzy time-
series data. Furthermore, we employ the calculus of finite

differences to filter out the time-series trend data, which
allow us to use the following first-order difference equa-
tion:

ZZZt = [ZL
t ,ZC

t ,ZU
t ],

ZU
t = max(YYYt −YYYt−1),

ZC
t = YC

t −YC
t−1,

ZL
t = min(YYYt −YYYt−1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

FAC models employ a fuzzy operation. In general, the
product of negative values increases the vagueness.

2.2.1. FAC

We define the fuzzy autocovariance ΛΛΛk = [λ L
k ,λC

k ,λU
k ]

and the FAC rrrk = [ρL
k ,ρC

k ,ρU
k ] using the fuzzy time-series

data ZZZt and ZZZt−k as follows:

ΛΛΛk ≡Cov[ZZZt ,ZZZt−k] = [λ L
k ,λC

k ,λU
k ],

rrrk =
ΛΛΛk

ΛΛΛ0
= [ρL

k ,ρC
k ,ρU

k ].

When we employ a fuzzy operation to obtain a FAC coef-
ficient, the ambiguity may be increased by the fuzzy op-
eration itself. To solve this problem, we adjust the width
of a fuzzy number by using an α-cut when determining
the difference series. This means that it is impossible to
obtain a FAC that reflects the possibilities of the time-
series system. Therefore, we maximize the width of the
autocorrelation to cover the possibilities of the time-series
system. However, the width is determined automatically-
because the autocorrelation value should be in the range
of [−1,1]. The α-cut level can be obtained by solving the
following LP problem:

max
h

p

∑
i=1

(ρU
i −ρL

i )

s.t. −1 ≤ ρL
i ,ρU

i ≤ 1
ρL

i ≤ ρC
i ≤ ρU

i (i = 1,2, . . . , p).

⎫⎪⎪⎬
⎪⎪⎭

We control the ambiguity of the difference series by em-
ploying the α-cut level h, which is obtained by solving
the above LP problem. Using the FAC coefficient, which
is calculated from the α-cut level h, we redefine the fuzzy
Yule–Walker equations as an LP problem, and we calcu-
late the fuzzy partial autocorrelation. The fuzzy Yule–
Walker equations are defined below.

2.2.2. Model Definition

We develop the following autoregressive process:

Z̃ZZt = ΦΦΦ1ZZZt−1 +ΦΦΦ2ZZZt−2 + · · ·+ΦΦΦpZZZt−p. . . . (4)

Here, ΦΦΦ = [φ L,φC,φU ] denotes a FAR coefficient.
As mentioned above, the next observation value de-

pends on the present observed value; thus, autocorrelation
is important for the time-series analysis. Therefore, we
build a model that illustrates the ambiguity of the system
captured by the FAC. The autocorrelation is also a fuzzy
number, so the Yule–Walker equations can be viewed as
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a fuzzy equation. The fuzzy Yule–Walker equations are
written as follows:

RRRt = ΦΦΦ1rrrt−1 +ΦΦΦ2rrrt−2 + · · ·+ΦΦΦprrrt−p. . . . (5)

We build the model in terms of FAC, which can describe
the ambiguity of the system. However, when the ambi-
guity of model Z̃ZZt is large, the relationship between the
model and the system becomes ambiguous. Therefore,
the possibilities of the system cannot be described cor-
rectly. Hence, to obtain the FAR coefficient for which the
ambiguity of a time-series model should be minimized,
we have the following LP problem:

min
ΦΦΦ

p

∑
i=1

(ρU
t −ρL

t )

s.t. rrrt ⊆ RRRt ,

ρC
t = RC

t (t = 1,2, . . . , p).

⎫⎪⎪⎬
⎪⎪⎭

. . . (6)

As mentioned above, RRR is obtained by using a fuzzy oper-
ation with the FAC rrr and FAR coefficient ΦΦΦ. RL, RC, and
RU represent the lower limit, center, and upper limit of RRR,
respectively.

FAC models express the possibility that a system
change is realized in the data, which is different from the
conventional statistical method. Our method can build a
model that describes ambiguous portions called possibil-
ities, which are not clearly expressed using conventional
statistical techniques.

3. FCI

After obtaining the FAC coefficients using a fuzzy op-
eration, it is easy to obtain a FAC model using LP. How-
ever, the ambiguity may increase when we use fuzzy op-
erations. Therefore, we employ a fuzzy random variable
to solve the problem of increasing ambiguity. The accu-
racy of predictions can be improved by using a confidence
interval for the fuzzy random data in a FAC model [2].

Various studies have considered fuzzy random vari-
ables [9–12], particularly the fuzzy random variables de-
fined by Kwakernaak [13, 14] and Puri et al. [15]. In many
cases, fuzzy numbers can be treated as fuzzy random vari-
ables. Similarly, it is appropriate to handle fuzzy time-
series data as fuzzy random variables. Therefore, our FAC
model employs the confidence intervals of fuzzy random
variables.

A Box–Jenkins model constructed using an autocorre-
lation coefficient is likely to overreact to the original se-
ries. Our FAC model also overreacts, so we aim to sup-
press the overreaction of the model. Hence, we use the
definition given by Watada [16], which is easy to handle.

3.1. Expected Value and Variance of Fuzzy
Random Variables

For the fuzzy variable Y with a possibility distribution
μY , the possibility Pos{Y ≤ r}, necessity Nec{Y ≤ r}, and
credibility Cr{Y ≤ r} of an event {Y ≤ r} are given as

follows:
Pos{Y ≤ r}= sup

t≤r
μY (t),

Nec{Y ≤ r}= 1− sup
t>r

μY (t),

Cr{Y ≤ r} =
1
2

(
1+ sup

t≤r
μY (t)− sup

t>r
μY (t)

)
.

Based on the credibility measure, the expected value of
the fuzzy variable is calculated as follows:

E[Y ] =
∫ ∞

0
Cr{Y ≥ r}dr−

∫ 0

−∞
Cr{Y ≤ r}dr.

Let X be a fuzzy random variable in a probability space
(Ω,Σ,Pr), where for each ω ∈ Ω, X(ω) denotes a fuzzy
variable. For any fuzzy random variable X on Ω, for each
ω ∈ Ω, X(ω), the expected value of the fuzzy variable
X(ω) is denoted by E[X(ω)]. This is known to be a mea-
surable function of ω , i.e., it is a random variable.

Therefore, the expected value of X is defined as fol-
lows:

E[X ] =
∫

Ω
E[X(ω)]Pr(ω).

Let X be a fuzzy random variable defined on a probability
space (Ω,Σ,Pr) with the expected value e. The variance
of X can be defined as follows:

V [X ] = E[(X − e)2].

3.2. FAC Model with Confidence Intervals
In this study, we employ confidence intervals instead of

fuzzy time-series data. These confidence intervals com-
bine the expected value, variance of fuzzy random vari-
ables, and the fuzzy inclusion relation at level h to deal
with model (4). For instance, to retain more complete in-
formation regarding the fuzzy random data, we can em-
ploy the fuzzy inclusion relation directly for the prod-
uct between a fuzzy parameter and a fuzzy value at some
probability level. However, this calculation could be diffi-
cult because the product of two triangular fuzzy numbers
does not retain the same triangular shape as the resulting
membership function. Thus, the solution to the problem
may be found using heuristics, as proposed by Watada et
al. [16].

Before building the FAC model with confidence inter-
vals, we define the confidence interval induced by the ex-
pectation eZ and variance σ2

Z of a fuzzy random variable
Z. A one-sigma (1×σ) confidence interval for each fuzzy
random variable can be expressed as follows:

I[eZ,σZ] = [eZ −σZ,eZ +σZ] . . . . . . . . (7)

In this analysis, we employ confidence intervals for the
fuzzy random variable instead of fuzzy times-series data.
We refer to these as FCI, and we define a FAC model with
FCI as follows:

Z̃ZZt = [aL
1 ,a

U
1 ]ZZZt−1 + · · ·+[aL

p,a
U
p ]ZZZt−p, . . . (8)

where [aL,aU ] denotes the coefficient of the FAC model
with FCI.
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Fig. 1. Correlogram of the Japanese national consumer price
index.

Our FAC model uses triangular fuzzy numbers, which
give a triangular fuzzy autoregressive coefficient, but the
autoregressive coefficient is a symmetric triangular fuzzy
number when a FCI is used as fuzzy time-series data.

4. Analysis of the Japanese National Consumer
Price Index

The 2010-base Japanese national consumer price index
was analyzed using a FAR model and FAC models with
and without FCI. This consumer price index considers
monthly data from January 1970 to March 2012.

In this analysis, we examined three models and iden-
tified their utility. The fuzzy autocorrelation model with
fuzzy confidence intervals (FCI model) uses a one-sigma
confidence interval, so the widths of the data were reduced
to 68.3% of that of the original fuzzy time-series data YYYt
for the FAR and FAC models.

We define the deviation Δ3Δ12ZZZt − ZC of the differ-
enced series Δ3Δ12ZZZt , and denote it as XXXt . Then, we can
obtain the fuzzy autocovariance ΛΛΛk and the FAC rrrk of XXXt
as follows:

ΛΛΛk = E[XXXtXXXt−k], rrrk =
ΛΛΛk

ΛΛΛ0
.

Fig. 1 shows the correlogram of XXXt . This figure also
shows that the one-time previous value and the two-time
previous values exhibit a high degree of correlation. Two
definitions were used to transform the original series data
into fuzzy time-series data. However, the same center was
obtained from both definitions. Therefore, both FAR and
FAC employed a two-order model. The resulting FAR
model is:

XXXFAR
t =1.390XXXt−1 −1.117XXXt−2

+[−1.754,0.157,2.067].

Fig. 2 shows the values predicted by the FAR model and
the original series.

Next, the FAC model was obtained by solving the fuzzy
Yule–Walker equations (6). The resulting FAC model is:

XXXFAC
t =[−0.589,0.816,0.816]XXXt−1

+[−0.219,−0.180,0.118]XXXt−2.
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Fig. 2. FAR model and original series.
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Fig. 3. FAC model and original series.

Fig. 3 shows the relationship between the values predicted
by the FAC model and the original series. Comparing
Figs. 2 and 3, we can see that the ambiguity of the FAC
model is subjectively less than that of the FAR model.
However, the center of the FAC model also overreacts to
the data. Therefore, it appears that an overreaction to the
behavior of the data is a characteristic of models with au-
tocorrelation coefficients.

Adjusting the width of the fuzzy time-series data causes
both limits of the fuzzy coefficient of XXXt−2 to become
large and positive, which implies that the time-series of
the two-time previous values spreads in a positive direc-
tion. Fig. 3 confirms this that the ambiguity of the model
decreases as time progresses.

Figure 4 shows the center of the correlogram of the
FAC coefficients with FCI. The one-time previous value
and the two-time previous values exhibit a high degree
of correlation. Similar to the FAC model, the FCI model
was obtained by solving the fuzzy Yule–Walker equation.
The resulting FCI model is shown in Fig. 5, which can be
expressed as follows:

XXXFCI
t =[−0.170,0.956]XXXt−1

+[−0.141,−0.076]XXXt−2.

According to Figs. 3 and 5, we can confirm that the FCI
model has a smaller coefficient width than the FAC model.
The FCI model also overreacts, but the degree of overre-
action is obviously smaller than that of the FAC model.

The center of the FAC model coincides with that of the
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Fig. 4. Correlogram of the FCI.
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Fig. 5. FCI model and original series.

autoregressive model because the FAC coefficient was ob-
tained using a fuzzy operation. This explains the overre-
action of the center of the FAC model. Moreover, as men-
tioned above, ambiguous data may widen the FAC model.

Compared with time-series data, the fluctuations in the
center of the confidence intervals are smooth because the
center of the FCI is the expectation of fuzzy random vari-
ables. Therefore, the overreaction of the FAC model with
confidence intervals is absorbed.

The features of the FAR, FAC, and FCI models are
listed in Table 1. Although these are fuzzy models, the
residual sum of squares was used to evaluate the esti-
mates.

First, it can be seen that the FAC model is more accu-
rate than the FAR model. The residual sum of squares
given by the centers of the FAR model is twice that of the
FAC and FCI models. The sum of widths for the FAR
model is also larger than those for the other models. In
general, the possibility grade will be large when the width
is large. Hence, the sum of the possibility grades derived
from the FAR model is greater than those of the other
models.

Second, the FCI model is more accurate than the FAC
model, because the residual sum of squares given by the
centers of the FCI model is smaller than that of the FAC
model. The width of the values predicted by the FAC
model is approximately 1758, whereas that for the FCI
model is approximately 1024 (see Table 1), which im-
plies that the vagueness of the FCI model is less than that

Table 1. Features of the FAR, FAC, and FCI models.

FAR model FAC model FCI model
Sum of
widths
of model
coefficient

3.821 1.742 1.191

Sum of
possibility
grades by
model and
data

444.857 385.875 332.404

Residual
sum of
squares by
centers of
model and
data

269.197 134.032 86.58

Widths of
forecast
values

2277.233 1757.700 1023.942

of the other models. The sum of possibility grades de-
rived from the FCI model and the data is approximately
0.9 times that given by the FAC model. In addition, the
residual sum of squares given by the centers of the FCI
model is 0.7 times that of the FAC model. Therefore, the
FCI model is more accurate in this time-series system.

These models were built using data from February 1970
to February 2012. To validate the model, we compared
the predicted values and the real data for the 12 months
from March 2011 to February 2012 and for the next 12
months from March 2012 to February 2013. Thus, the
predicted values from March 2011 to February 2012 were
used as the real data, and the next 12 months were used
the predicted values. Figs. 6–8 show the results obtained
from the model validation process. The width of the
FAR model changed periodically and both of the limits
switched in August 2012. Thus, as shown in Fig. 6, the
large value set the upper limit and the small value set the
lower limit. The center of the FAC model and the origi-
nal series exhibited almost the same behavior. However,
because FCI use an expected value for a fuzzy random
variable, the values predicted by the FCI model reacted
slowly to the behavior of the original series. The width of
the model reflects its vagueness, so it is obvious that the
FCI model is narrower than the FAC model.

The widths of the predicted values are shown in Ta-
ble 2. The FAC model is approximately 1.4 times wider
than the FCI model. Again, the FCI is smooth because
it uses an expected value. Therefore, it appears that the
prediction accuracy of the FCI model is better than that of
the FAC model.

The verification of the FAR model was not particularly
impressive, so we examined the models using statistical
methods. We considerd AR models, so methods such as
the augmented Dickey–Fuller test and the Phillips–Perron
unit root test could be used. However, because these are

516 Journal of Advanced Computational Intelligence Vol.20 No.4, 2016
and Intelligent Informatics



Fuzzy Autocorrelation Model with Fuzzy Confidence Intervals

90

92

94

96

98

100

102

104

106

108

110
N

at
io

na
l c

on
su

m
er

 p
ri

ce
 in

de
x

Time in months

Lower limit
Center
Upper limit
Original series

Fig. 6. Validation of the FAR model.
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Fig. 7. Validation of the FAC model.
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Fig. 8. Validation of the FCI model.

technical methods, we tested the models using a t-test and
a correlogram of the residual errors. Table 3 presents the
results of the t-test, which were obtained using the resid-
ual errors. This table indicates that the FAC model and
the FCI model can be considered the same as the original
series. However, the center of the FAR model does not
correspond with the original series.

Next, the results of the t-test were confirmed using the
correlograms. Large autocorrelation coefficients are visi-
ble in Fig. 9, but they are within the 95% confidence in-
tervals. However, it seems that the FAR model exhibits a
different trend to the other models. The data and model
settings may be unstable, but the FAR model does not rep-
resent the time-series system with these data.

Table 2. Widths of predicted values.

FAR model FAC model FCI model
2012/03 7.114 3.030 1.672
2012/04 14.828 2.784 1.587
2012/05 18.789 3.308 1.914
2012/06 15.171 5.960 3.483
2012/07 6.715 5.564 3.378
2012/08 3.838 6.240 3.879
2012/09 3.500 8.897 5.580
2012/10 7.413 8.959 5.783
2012/11 13.001 9.720 6.472
2012/12 15.609 12.088 8.241
2013/01 13.887 12.765 8.948
2013/02 8.575 13.844 10.005

The three models were verified statistically using the
centroid of the fuzzy estimates obtained by each model,
where we traced the data distribution at its centroid.
Therefore, the centroid of the predicted values can be con-
sidered to represent the predictive accuracy of the model.
However, the FCI model has a symmetric triangular fuzzy
numbers as fuzzy coefficients, so its characteristic values
are the same when using a centroid or a center value. The
characteristic values obtained using the centroid of each
estimated value are shown in Table 4. The correlation co-
efficient of each model is approximately 1. Using the cen-
troid of the predicted values and data, the FCI model has
the smallest sum of squared deviations. In fact, the FCI
model has the smallest ambiguity among the three models
considered and its predictive accuracy is high. Moreover,
the FAR model has twice the width of the FAC model.

According to the results descrived above, we can con-
firm that highly accurate time-series predictions can be
obtained using FCI. In addition, the use of a FCI de-
creases the model vagueness compared with using fuzzy
time-series data. In the case of the Japanese national con-
sumer price index, the vagueness of the FCI model was
only 0.71 times that of the vagueness of the FAC model.
In this study, we used the centroid for the evaluation inter-
val of the forecast values, and the results were subjectively
acceptable.

Based on the results in Tables 1 and 2, the FCI model
had the best predictive accuracy. For the centroid-based
evaluation, the FCI model has an advantage over the other
two models because it uses the fuzzy coefficients of sym-
metric triangular fuzzy numbers. Therefore, when the
fuzzy coefficients are of different types, it is better to use
a possibility grade derived from models, samples, and the
model widths.

5. Conclusions

In this analysis, the Japanese consumer price index was
described by the one-time previous value and the two-
time previous values using FAR and FAC models, which
were extended versions of the Box–Jenkins model. The
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Table 3. Statistical information from a model test.

FAR model FAC model FCI model
t-value −4.8074 −0.0148 −0.086
p-value 0.0000 0.9882 0.9315
95% confidence interval [−0.2227,−0.0935] [−0.0470,0.0463] [−0.0391,0.0359]
Mean of the residual error −0.1581 −0.0004 −0.0016

Table 4. Characteristic values obtained using the centroid of each estimated value.

FAR model FAC model FCI model
Correlation coefficient obtained
using centroid and data 0.9993 0.9997 0.9998

Sum of squared deviation obtained
using centroid and data 268.8509 128.3598 86.5810
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Fig. 9. Autocorrelation of the residual error of the models.

FAC model was also applied with FCI. We examined
these models using statistical methods.

We confirmed that highly accurate time-series predic-
tions can be obtained using FCI. In addition, the vague-
ness of the FCI model was less than that of the models
based on fuzzy time-series data. In fact, the vagueness of
the FCI model was only 0.71 times that of the FAC model.

In addition, the centroids of the estimated values de-
rived from the models and data were evaluated statisti-
cally. The centers of the fuzzy coefficients of the one-
time previous value and two-time previous values were
(0.816,−0.180) for the FAC model and (0.393,−0.109)
for the FCI model. This indicates that the consumer price
index is positively influenced by the previous month and
negatively influenced by the month before that. Thus, the
effect from two months ago removes the effect of the last
month. However, the fuzzy coefficient of the FAR model
was (−1.754,0.157), which has the opposite sign to the
FAC and FCI models. Although the results predicted by
the FAR model appear to be highly accurate, the applica-
bility of the FAR model obtained was not validated by the
t-test.

To consider the probability of the occurrence of fuzzy
time-series data, the center of the FCI contains smoothed
values, so the FCI helps to improve the model accuracy

when the model overreacts, .
However, our comparison of models using symmetric

and asymmetric triangular fuzzy numbers as fuzzy coeffi-
cients showed that the model using asymmetric triangular
fuzzy number was most the advantageous. Therefore, the
use of centroids to compare various models should be dis-
couraged. An index that considers fuzzy concepts, such
as the possibility grades of a model and the samples and
widths of the model, is more suitable for model compar-
isons.
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