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This study proposes a new real-coded genetic al-
gorithm (RCGA) taking account of extrapolation,
which we call adaptive extrapolation RCGA (AEGA).
Real-world problems are often formulated as black-
box function optimization problems and sometimes
have ridge structures and implicit active constraints.
mAREX/JGG is one of the most powerful RCGAs
that performs well against these problems. However,
mAREX/JGG has a problem of search inefficiency. To
overcome this problem, we propose AEGA that gener-
ates offspring outside the current population in a more
stable manner than mAREX/JGG. Moreover, AEGA
adapts the width of the offspring distribution auto-
matically to improve its search efficiency. We evaluate
the performance of AEGA using benchmark problems
and show that AEGA finds the optimum with fewer
evaluations than mAREX/JGG with a maximum re-
duction ratio of 45%. Furthermore, we apply AEGA
to a lens design problem that is known as a difficult
real-world problem and show that AEGA reaches the
known best solution with approximately 25% fewer
evaluations than mAREX/JGG.

Keywords: real-coded genetic algorithms, adaptive
extrapolation RCGA, black-box function optimization,
ridge structures, implicit active constraints

1. Introduction

Function optimization is an major problem that occurs
in various fields of engineering. The purpose in solving
the problem is to identify the decision variable x ∈X ⊆
R

n that minimizes a given objective function f (x):

minimize f (x) subject to x ∈X ⊆ R
n, . . . (1)

where X is the search space. The problem is uncon-
strained when the search space is n-dimensional real-
valued space, X = R

n, and constrained when constraint
is imposed, X ⊂ R

n. A solution is feasible if it satisfies
the constraint and infeasible if it violates the constraint.

In real-world problems, f (x) is often given as black-
box and sometimes has ridge structures [1]. When f (x)
is not given as an explicit form, f (x) is called black-box.

For example, f (x) is black-box when some simulations
such as of physical phenomena are required to calculate
f (x). The ridge structure is a class of landscapes of ob-
jective functions in which lie narrow and curved valleys,
called ridges.

In real-world constrained problems, implicit constraints
are sometimes imposed and they are often active. An im-
plicit constraint is a constraint that is not explicitly given
as constraint functions. When a constraint is implicit, the
feasibility of x is determined by whether its evaluation
value is defined. The implicit constrained function opti-
mization can be formulated as:

minimize fic(x) =
{

f (x) x ∈X
+∞ x /∈X

, . . . (2)

where undefined objective function values are regarded as
+∞. A constraint is active when the optimum lies on the
boundary between feasible and infeasible regions. Note
that in black-box cases, the boundary is unknown in ad-
vance on implicit constrained problems.

The real-coded genetic algorithm (RCGA) [2–4] is
known as a powerful black-box function optimization
method. In the RCGA, a solution candidate is called an
individual and a set of individuals is called a population.
The RCGA updates its population stochastically through
generations and, finally, is expected to have the population
converge to the optimum. Many RCGAs have been pro-
posed for unconstrained problems and they have yielded
good performance [5–9]. RCGAs for unconstrained prob-
lems can be easily applied to those of implicit constrained
by means of the resampling technique [10, 11]. The re-
sampling technique rejects infeasible individuals and re-
samples them until feasible ones are generated.

Many conventional RCGAs generate new individuals,
called offspring, to interpolate the current population to
find the optimum. They assume that a population contin-
ues covering the optimum throughout the search [5–7, 9].

However, a population does not always cover the opti-
mum. For problems with ridge structures, it is often ob-
served that a population comes not to cover the optimum
while searching on a ridge. As a result, it often prema-
turely converges on the ridge. For implicit active con-
strained problems, it is often observed that a population
does not cover the optimum throughout the search. Thus,
it often converges far from the optimum or on a wrong
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constraint boundary on which the optimum does not lie.
AREX/JGG [12, 13] used with the resampling tech-

nique, called modified AREX/JGG (mAREX/JGG), is one
of the most promising methods used to correct the prob-
lems of interpolation-oriented RCGAs. mAREX/JGG
generates offspring not only to interpolate but also to ex-
trapolate the current population and has shown good per-
formance on problems with ridge structures and implicit
active constraints. Extrapolation enables a population not
only to move along a ridge but also to approach the opti-
mum on an active constraint or escape from a wrong con-
straint boundary.

However, mAREX/JGG has a problem of search ineffi-
ciency. mAREX/JGG cannot always extrapolate the pop-
ulation because mAREX/JGG chooses parents randomly
from the current population to generate offspring.

In this study, we propose an RCGA, called adaptive ex-
trapolation RCGA (AEGA)1 that extrapolates the current
population in a stable manner to overcome the problem
of mAREX/JGG. AEGA generates offspring based on in-
formation about the current population to extrapolate that
population when AEGA tries to move or expand it. Fur-
thermore, AEGA adapts the width of the offspring distri-
bution separately in two directions to improve the search
efficiency. We show the effectiveness of AEGA compared
to that of mAREX/JGG using benchmark problems and a
lens design problem [15].

The reminder of the paper is organized as follows. We
explain mAREX/JGG and point out its problem in Sec-
tion 2. We then propose AEGA in Section 3 and evaluate
it using benchmark and real-world problems in Sections 4
and 5, respectively. In Section 6, we conclude the study
and suggest future research.

2. mAREX/JGG and its Problem

2.1. mAREX/JGG
AREX/JGG [12, 13] is one of the most powerful RC-

GAs for unconstrained benchmark problems. To han-
dle implicit constrained problems, AREX/JGG is often
used with the resampling technique. In this study, we
call AREX/JGG with the resampling technique the modi-
fied AREX/JGG (mAREX/JGG). Note that mAREX/JGG
works in exactly the same manner as AREX/JGG on un-
constrained problems.

mAREX/JGG can generate offspring not only to in-
terpolate but also to extrapolate the current population,
as shown in Fig. 1. At the beginning of a generation,
mAREX/JGG chooses n + 1 parents randomly from the
population, where n is the dimension of a problem. Then,
mAREX/JGG generates the region spanned by the par-
ents and translates the region so that its center matches the
weighted mean of the parents. The weighted mean is cal-
culated with a higher weight for a better parent and thus,

1. We have developed AEGA based on the prototype that we proposed in
[14]. We have introduced a new adaptation mechanism of expansion
rate, β , and a new definition of the promising direction toward which an
offspring distribution spreads widely to the prototype.

Fig. 1. Offspring generation in mAREX/JGG. Curved lines
represent the contours of the objective function. The op-
timum (red point) lies on the boundary between feasible
(lower white area) and infeasible (upper gray area) regions.

Fig. 2. Problem of mAREX/JGG.

mAREX/JGG translates the region toward one considered
more promising. After the translation, mAREX/JGG ex-
pands the region isotropically with an expansion rate pa-
rameter that is adapted automatically using AER(M) [12]
and generates λ (> n + 1) offspring according to the the
multivariate normal distribution on the expanded region.
Finally, mAREX/JGG replaces the parents with the best
n + 1 offspring selected from that of λ . Please see the
study of [12, 13] for the details about this algorithm.

2.2. Problem of mAREX/JGG
We believe that mAREX/JGG has a problem regard-

ing search efficiency. mAREX/JGG generates offspring
to extrapolate not the population but rather the parents that
are chosen randomly from the current population. There-
fore, if the parents are chosen unevenly as shown in Fig. 2,
mAREX/JGG cannot extrapolate the population.

3. Adaptive Extrapolation RCGA

3.1. Basic Ideas
3.1.1. Generating Offspring and Updating a Population

To overcome the problem of mAREX/JGG, we propose
an RCGA called AEGA. AEGA generates offspring to ex-
trapolate the current population in a more stable manner
when it needs to move or expand the population.

AEGA expands an offspring distribution separately in
two directions, named promising and orthogonal direc-
tions. A promising direction is one from the mean of the
worst half individuals to the mean of the best half indi-
viduals in the current population that consists of μ indi-
viduals. Orthogonal directions are all directions that are
orthogonal to the promising direction.

AEGA determines the width of the offspring distribu-
tion separately in the promising and orthogonal directions
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Fig. 3. Generating an offspring distribution in AEGA.

Fig. 4. Situations in which the expansion along the orthogo-
nal direction (shown in dotted arrows) seems to be effective.

as shown in Fig. 3. At the beginning of a generation,
AEGA chooses n + 1 parents randomly from the worst
half individuals in the population, where n is the dimen-
sion of a problem, and calculates the mean of the best half
individuals, mb, as shown in Fig. 3(a). Then, AEGA con-
structs the region spanned by the parents and the mirrored
parents that locate symmetric with respect to mb as shown
in Fig. 3(b). AEGA is expected to generate the offspring
widely in the promising direction, a, when the solutions
having good evaluation values are biased in the popula-
tion. Finally, AEGA expands the region in the orthogonal
directions using an expansion rate parameter, β , as show
in Fig. 3(c), and generates offspring according to the mul-
tivariate normal distribution on the expanded region. Note
that AEGA uses the resampling technique to handle con-
strained problems.

To control the width of the offspring distribution in or-
thogonal directions, AEGA adapts β so that β increases
when a population moves along a ridge and approaches a
wrong boundary without the optimum as shown in Fig. 4,
and decreases when a population converges into a promis-
ing region. A large β helps the population to change
the search direction along a ridge as shown in Fig. 4(a)
and to escape from the convergence on a wrong boundary
as shown in Fig. 4(b). By contrast, a small β helps the
population to converge into the promising region quickly.
AEGA guarantees that β is greater than or equal to 1 be-
cause the purpose of the expansion is to extrapolate the
population and excessive convergence may degrade per-
formance. Therefore, AEGA adapts β according to two
basic ideas: 1) β increases when the population changes
the search direction and escaping from a wrong bound-
ary, and 2) decreases when the population converges into
a promising region. We call an adaptation mechanism
based on the first idea Adaptation 1 and that based on the
second Adaptation 2. We explain in detail the two adap-
tation mechanisms in Section 3.1.2.

After generating offspring, AEGA replaces all n + 1

Fig. 5. Expected changes of populations when they: (a) ad-
vances along a ridge, and (b) approaches a wrong boundary.
P(t) is a population of the tth generation.

Fig. 6. Expected changes of populations and promising di-
rections, a, when the population is: (a) moving and (b) con-
verging. P(t) is the population of the t-th generation.

parents randomly chosen from the worst half individuals
in the population with the best n + 1 individuals selected
from the offspring to accelerate the search.

3.1.2. Adapting the Expansion Rate
Adaptation 1 increases β in order to change the search

direction or expand the population when the population
advances along a ridge for problems with ridge structures
or approaches a wrong constraint boundary without the
optimum for implicit active constrained problems. Fig. 5
depicts the expected changes of successive populations in
these situations. The population is expected to move or
expand in orthogonal directions when it advances along a
ridge as shown in Fig. 5(a) or approaches a wrong bound-
ary without the optimum as shown in Fig. 5(b). There-
fore, Adaptation 1 increases β according to the degree
of movement or expansion of the two successive popula-
tions, P(t) and P(t+1), in orthogonal directions.

Adaptation 2 decreases β to prevent extrapolation when
the population is converging into a promising region.
Fig. 6(a) depicts the expected changes of successive pop-
ulations and their promising directions when the popu-
lation moves in a certain direction. On the other hand,
Fig. 6(b) depicts expected changes when the population is
converging into a promising region. The promising direc-
tions are expected to point in various directions when the
population is converging as shown in Fig. 6(b) and point
in similar directions when moving in a certain direction
as shown in Fig. 6(a). Therefore, Adaptation 2 decreases
β according to the degree of variation of the promising
directions in recent generations.

In the following section, we describe the implementa-
tion of generating offspring, Adaptation 1, Adaptation 2,
and combining the two adaptation mechanisms.
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3.2. Generating Offspring
First, AEGA calculates the mean of the best half indi-

viduals, mb, and the worst half individuals, mw, and the
promising direction, a, of the current population as:

mb :=
1
μh

μh

∑
k=1

pk:μ ,

mw :=
1

μ−μh

μ

∑
k=μh+1

pk:μ ,

a := mb−mw, . . . . . . . . . . . . (3)

where μh := �μ/2�; μ is the number of individuals in the
population, called the population size; and pk:μ is the k-
th best individual in the current population with respect
to the evaluation value. AEGA then generates λ feasible
offspring, x1, . . . ,xλ , according to:

xi = mb +
n+1

∑
j=1

εi, jB(y j−mb), . . . . . . . (4)

where y1, . . . ,yn+1 are the parents chosen randomly from
the worst half individuals in the population; εi, j is a ran-
dom number from the normal distribution with a mean of
zero and a user-defined variance of σ2; and B is the ex-
pansion matrix for the orthogonal directions. B is defined
as B := ((1−β )/‖a‖2)aaT +β In.

After generating offspring, AEGA updates the popu-
lation by replacing the n + 1 parents, y1, . . . ,yn+1, with
the best n + 1 individuals selected from the λ offspring,
s1, . . . ,sn+1:

{p′1, . . . ,p′μ}=({p1, . . . ,pμ}\{y1, . . . ,yn+1}
)∪{s1, . . . ,sn+1}. (5)

3.3. Adaptation 1
Adaptation 1 adapts β according to

β ← (1− cβ )β + cβ ·max
{

δ̃ ,1
}

, δ̃ :=
√

1+dβ τ, (6)

where τ represents the degree of movement or expan-
sion of two successive populations, and cβ ∈ [0,1] and
dβ ∈ [0,1] are user parameters that determine the learning
speed of β and adjust the scale of τ , respectively. The max
operator is introduced to guarantee β ≥ 1. The reminder
of this section explains the definition of τ .

To quantify the degree of the movement or the expan-
sion of two successive populations in an arbitrary orthog-
onal direction, q, Adaptation 1 employs the ratio of the
second moment of the current population that is projected
onto one-dimensional space spanned by q to the second
moment of the previous population about m, where m is
the mean of the previous projected population. However,
the value of the ratio depends on the population size pa-
rameter. Thus, to remove the dependency, Adaptation 1
uses the parents, y1, . . . ,yn+1, and the best individuals se-
lected from the offspring, s1, . . . ,sn+1, instead of the two
successive populations. Noting that the projection of a
vector, x, onto the one-dimensional space spanned by a

unit vector, q, is defined as qTx, we can calculate the sec-
ond moments as:

1
n+1

n+1

∑
j=1

(
qTy j−qTm

)(
qTy j−qTm

)T
=: qTMyq, (7)

1
n+1

n+1

∑
i=1

(
qTsi−qTm

)(
qTsi−qTm

)T
=: qTMsq, (8)

where My and Ms are the n-dimensional second moment
matrices about m of the parents and the selected individu-
als, respectively. The quantity of the change of the popu-
lation in q is then defined as:

τq :=
qTMsq
qTMyq

−1. . . . . . . . . . . . (9)

The value of τq tends to exceed 0 when the population
moves or expands in q.

However, the selection of q is not unique in three or
more dimensional space. To detect the change even when
the population moves or expands in only one direction,
AEGA employs the maximum value, τ := maxq τq. By
solving this maximization problem,2 we obtain

τ = maxeig
{(

In− 1
‖b‖2 bbT

)
L−1MsL−T

}
−1, (10)

where maxeig{·} is the maximum eigenvalue, L is the
Cholesky decomposition of My, and b := L−1a.

Note that, ignoring the two user parameters, cβ and dβ ,
by setting them to 1 for simplicity, Eq. (6) enables β to
approach the square root of the ratio of the second mo-
ments.

3.4. Adaptation 2
Adaptation 2 adapts β according to

β ← (β −1)r +1, . . . . . . . . . . . (11)

where r represents the degree of variation of the promis-
ing directions in the recent generations. The reminder of
this section explains the definition of r.

To quantify the degree of variation of the promising di-
rections, a, in the recent generations, Adaptation 2 em-
ploys the squared ratio of the norm of the exponential
moving average vector of a to the exponential moving av-
erage value of the norm of a. The ratio is defined as:

r :=
vTv
�2 , . . . . . . . . . . . . . . . (12)

where v and � are updated before the adaptation of β ac-
cording to:

v← (1− cr)v+ crǎ, �← (1− cr)�+ cr‖ǎ‖, . (13)

where cr ∈ [0,1] is a user parameter that determines the
learning speed and ǎ is a normalized promising direc-
tion. AEGA uses the promising direction normalized by
the population distribution instead of a itself so that r be-
comes independent of the scale and shape of the popula-

2. See Appendix for the derivation.
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tion distribution. The normalized promising direction, ǎ,
is defined as:

ǎ :=

√
aTC−1a
‖a‖ a, . . . . . . . . . . . . (14)

where C is the covariance matrix of the population before
replacing the parents with the best individuals selected
from the offspring, {p1, . . . ,pμ}, and is calculated as:

C :=
1

μ−1

μ

∑
k=1

(pk−m)(pk−m)T, m :=
1
μ

μ

∑
k=1

pk. (15)

Note that Adaptation 2 does not increase β because r is
guaranteed to be in [0,1] under appropriate3 initializations
of v and �.

3.5. Combination of Two Adaptations
AEGA adapts β based on Adaptations 1 and 2 by:

β ← (1− cβ )β + cβ δ ,

δ := max
{(√

1+dβ τ−1
)

r +1, 1
}

. . . (16)

Note that δ in Eq. (16) is equivalent to δ̃ in Eq. (6) ad-
justed by r in Eq. (11).

3.6. Algorithm
The algorithm of AEGA is as follows:

1. Initialize the population with μ (> 2(n+1)) feasible
individuals according to a given distribution.

2. Choose n + 1 parents, y1, . . . ,yn+1, randomly from
the worst half individuals in the population.

3. Generate λ feasible offspring, x1, . . . ,xλ , according
to Eq. (4) with the current expansion rate, β .

4. Update the population by replacing the parents with
the best n+1 offspring, s1, . . . ,sn+1.

5. Adapt the expansion rate, β , according to Adapta-
tions 1 and 2 by means of Eq. (16).

6. Repeat Steps 2–5 until termination conditions are
met.

4. Experiments with Benchmark Problems

4.1. Purpose and Performance Index
To show the effectiveness of AEGA, we compared

the performance of AEGA and that of mAREX/JGG on
benchmark problems with implicit active constraints or
ridge structures.

As a performance index, we used the minimum number
of evaluations when the population size and number of
offspring per generation were tuned so that each method
can find the optimum in all 10 trials. We determined that
the method with the fewer number of evaluations outper-
forms the other in terms of cost for finding the optimum.

3. It follows that 0≤‖v0‖ ≤ �0⇒ 0≤ r≤ 1 by the mathematical induction.

We included the number of infeasible individuals that are
rejected by the resampling technique in the total number
of evaluations.

4.2. Benchmark Problems
We used CSF [16], G06, G07, G09, and G10 [17]

as benchmark problems with implicit active constraints.
Note that the boundary between feasible and infeasible
regions is unknown in advance on implicit constrained
black-box problems. We set the dimension, n, and the
number of active constraints, m, on CSF to n = 10, 20,
and m = 1, n/2, n, respectively. G06, G07, G09, and G10
are widely used active constrained benchmark problems
with n = m = 2, n = 10, m = 8, n = 7, m = 4, and n = 8,
m = 6, respectively. G10 is a difficult problem where con-
vergence on wrong constraint boundaries without the op-
timum is likely to occur. Although constraints are given
explicitly on these problems, we used them as implicit
constrained.

We used Rosenbrock (star) and Rosenbrock (chain)
[12] as benchmark problems with ridge structures. We
set the dimension to n = 20, 40 on each problem.

See each study for the details of the problems (i.e., def-
initions, search spaces, optimal evaluation values, etc.).

4.3. Settings
We initialized a population with feasible individuals

that are sampled randomly in the search space of each
problem. We tuned the population size, μ , and the
number of offspring per generation, λ , of AEGA and
mAREX/JGG on each problem. We employed the setting
that achieved the minimum average number of evaluations
among the all combinations of μ = 3n,4n, . . . ,10n and
λ = 2n,3n, . . .,5n. We determined that a method found
the optimum successfully if f (x∗)− f ∗ < 10−8 on CSF
and Rosenbrock(star, chain) and f (x∗) = f ∗known on G06,
G07, G09, and G10 before the total number of evalua-
tions reached n · 105, where f (x∗) is the best evaluation
value in the population, f ∗ is the optimal evaluation value,
and f ∗known is the known best evaluation value. We set
other user parameters of mAREX/JGG to those recom-
mended [12, 13]. We decided the recommended parame-
ters of AEGA by preliminary experiments: cβ = 1/(5(n−
1)),dβ = 0.14,cr = 1/n,σ2 = 1/n. We initialized the in-
ternal parameters of AEGA as β = 1,v = 0, � = 0.

4.4. Results
Tables 1 and 2 show the results on the problems with

the implicit active constraint and the ridge structure, re-
spectively. We found that AEGA reaches the optimum
with a fewer number of evaluations than mAREX/JGG on
all problems. The reduction ratio is at most 55% on im-
plicit active constrained problems and 35% on problems
with ridge structures. These results indicate the effective-
ness of AEGA.
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Table 1. Results on CSF, G06, G07, G09 and G10. Each value indicates (the number of evaluations ± the standard deviation) and
tuned values of [μ,λ ]; and n and m are the dimension and number of active constraints, respectively. The better results are written
in bold.

CSF (n = 10) m = 1 m = n/2 = 5 m = n = 10
AEGA (7.20±0.68)×103 [4n,3n] (1.85±0.05)×104 [6n,2n] (3.27±0.12)×104 [6n,2n]
mAREX/JGG (1.47±0.13)×104 [5n,4n] (3.58±0.38)×104 [5n,3n] (6.48±0.48)×104 [6n,2n]
CSF (n = 20) m = 1 m = n/2 = 10 m = n = 20
AEGA (2.44±0.33)×104 [5n,3n] (8.08±0.25)×104 [7n,2n] (1.49±0.27)×105 [6n,2n]
mAREX/JGG (3.68±0.20)×104 [6n,3n] (1.27±0.05)×105 [7n,2n] (2.65±0.24)×105 [8n,2n]

G06 (n = 2,m = 2) G07 (n = 10,m = 8)
AEGA (1.15±0.12)×103 [4n,4n] (1.82±0.08)×104 [6n,2n]
mAREX/JGG (2.66±0.33)×103 [5n,4n] (3.45±0.43)×104 [6n,2n]

G09 (n = 7,m = 4) G10 (n = 8,m = 6)
AEGA (5.43±0.52)×103 [5n,3n] (2.29±0.14)×104 [8n,3n]
mAREX/JGG (9.58±1.13)×103 [5n,3n] (2.90±0.47)×104 [5n,2n]

Table 2. Results on Rosenbrock(star) and Rosenbrock(chain). Each value indicates (the number of evaluations ± the standard
deviation) and tuned values of [μ,λ ] and n is the dimension. The better results are written in bold.

Rosenbrock(star) n = 20 n = 40
AEGA (3.92±0.14)×104 [6n,4n] (1.58±0.12)×105 [7n,4n]
mAREX/JGG (6.17±0.23)×104 [9n,3n] (2.07±0.08)×105 [8n,4n]
Rosenbrock(chain) n = 20 n = 40
AEGA (8.65±0.49)×104 [7n,3n] (4.99±0.10)×105 [8n,4n]
mAREX/JGG (1.09±0.05)×105 [5n,3n] (5.98±0.16)×105 [7n,3n]

Table 3. Comparison of the performance of AEGA and that of AEGA with no expansion (AEGAnoexp). Variables n and m are the
dimension and the number of active constraints, respectively. The results of AEGA are reproduced in Tables 1 and 2. Note that “−”
indicates that no parameter settings exist to find the optimum in all 10 trials. The better results are written in bold.

CSF(n = 20,m = 1) CSF(n = 20,m = 10) CSF(n = 20,m = 20)
AEGA (2.44±0.33)×104 [5n,3n] (8.08±0.25)×104 [7n,2n] (1.49±0.27)×105 [6n,2n]
AEGAnoexp (2.35±0.09)×104 [6n,2n] (9.58±0.66)×104 [10n,2n] (1.71±0.12)×105 [9n,3n]

G07(n = 10,m = 7) G10(n = 8,m = 6) Rosenbrock(chain, n = 20)
AEGA (1.15±0.12)×103 [4n,4n] (2.29±0.14)×104 [8n,3n] (8.65±0.49)×104 [7n,3n]
AEGAnoexp (2.07±0.12)×104 [8n,2n] − −

4.5. Discussions
4.5.1. Effectiveness of the Adaptive Expansion with β

To evaluate the effectiveness of the expansion along or-
thogonal directions, we conducted additional experiments
with AEGA that uses β = 1 throughout the search and
was named AEGAnoexp. The settings followed those of
the aforementioned experiments.

Table 3 shows the results of AEGAnoexp. We found that
the performance of AEGAnoexp deteriorated as the num-
ber of active constraints increased. Moreover, AEGAnoexp
failed in finding the optimum on G10 and Rosen-
brock(chain). These results suggest that the adaptive ex-
pansion with β works effectively.

4.5.2. Behavior of the Adaptation of β
To verify that the adaptation of β works as expected,

in Fig. 7 we show the transitions of the coordinate values
of the mean of the population and β in a typical trial on
20-dimensional Rosenbrock(chain).

As shown in Fig. 7, AEGA increases β while the pop-
ulation moves along a ridge in the middle of the search
(i.e., from nearly 100 to 1100 generations) and decreases
β when the population converges to the optimum (i.e., af-
ter nearly 1100 generations). This result suggests that β
is adapted successfully as we designed in Section 3.1.2.

5. Application to Lens Design Problem

To verify the effectiveness of AEGA in real-world
problems, we applied AEGA and mAREX/JGG to a four
fixed-focus lens system design problem [15].

The purpose in solving the problem is to identify the
lens system that satisfies given design specifications (i.e.,
the focal length, the F-number and the angle of view)
and minimizes the resolution and the distortion of the im-
age. Fig. 8 shows an example of the lens system. The
system consists of four lenses. The decision variables
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Fig. 7. Transitions of the mean coordinates of the popu-
lation and β in one typical trial on 20-dimensional Rosen-
brock(chain). The horizontal axis shows the generation.

Fig. 8. Example of four fixed-focus lens systems. Variable
di (i = 1, . . . ,7) is the distance between the i-th and (i+1)-th
lens surfaces, and ci (i = 1, . . . ,7) is the curvature of the i-th
lens surface. The figure depicts the known best solution.

are the distance between two successive lens surfaces,
d1,d2, . . . ,d7, and the radii of curvature of each lens sur-
face, c1,c2, . . . ,c7, which results in a 14-dimensional op-
timization problem. The distance between the last lens
and image plane, and the radius of the last lens are both
calculated automatically to satisfy the given focal length.

The problem is formulated as an implicit constrained
black-box function optimization problem. The objective
function is black-box because the evaluation value is the
sum of the resolution and distortion that are obtained by
optical simulations. The constraint is implicit because an
individual is regarded as infeasible when all rays do not
reach the image plane, which is determined only through
simulations. The problem is known to have ridge struc-
tures and active constraint as well as a multimodal land-
scape.

We used the design specifications of the lens system in
[15]. We set the population size and number of offspring
per generation to [μ,λ ] = [25n,15n], respectively, and fol-
lowed the previous experiments for the other settings. We
conducted 20 trials for each method.

Figure 9 shows the convergence curves of successful
trials of each method. We found that AEGA approaches
the known best solution with approximately 25% fewer
number of evaluations than mAREX/JGG on average. In
addition, whereas mAREX/JGG reaches the known best
solution in seven trials, AEGA reaches it in 11 trials.
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Fig. 9. Transitions of the errors between the best evalua-
tion value in the population and known best in the success-
ful trials of the 20 total. The horizontal axis shows the total
number of evaluations.

These results suggest the effectiveness of AEGA.

6. Conclusion

In this study, we proposed a new RCGA called AEGA
for black-box function optimization problems with im-
plicit active constraints and ridge structures. This algo-
rithm overcomes the problem of mAREX/JGG. AEGA
generates offspring with parents that are chosen randomly
from the worst half individuals in the current population
and the mean of the best half to extrapolate the population
in a more stable manner than in mAREX/JGG. Moreover,
AEGA controls the width of the offspring distribution
separately in two directions to improve search efficiency.
We showed that AEGA found the optimum with fewer
evaluations than mAREX/JGG on benchmark problems.
The maximum reducing ratios were 55% on the problems
with implicit active constraints and 35% on those with
ridge structures. In addition, we showed that AEGA can
find the known best solution with 25% fewer evaluations
on a four fixed-focus lens design problem, which is rec-
ognized as a difficult real-world problem.

In a future study, we plan to establish analytical rec-
ommended values of user parameters of AEGA to im-
prove the usability of practitioners. Applying AEGA to
various classes of benchmark problems including multi-
modal problems and more challenging real-world prob-
lems, while analyzing the behavior of AEGA in the pro-
cess, are also crucial.
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Appendix A. Derivation of τττ

We derive τ in Eq. (10), which is defined as the maxi-
mum value of τq in Eq. (9).
Proof. We define the maximum problem as:

τ := max
q∈Q

τq = max
q∈Q

qTMsq
qTMyq

−1, . . . . . . (17)

where Q is the set of all orthogonal directions. We can
ignore the scalar multiplication of q because τq is invariant
against the scalar multiplication of q. Here, we choose:

Q := {q | aTq = 0, qTMyq = 1}
for the definition of Q. This then leads to

τ +1 = max
q∈Q

qTMsq
qTMyq

= max
q∈Q

qTMsq

= max
bTq̃=0,q̃Tq̃=1

q̃TL−1MsL−Tq̃, . . . . (18)

where L is the Cholesky decomposition of My (i.e., My =
LLT) and b and q̃ are defined as b := L−1a and q̃ := LTq,
respectively. We can derive Eq. (10) by means of the
method of Lagrange multipliers [18] by defining the La-
grangian as:

L(q̃,λ1,λ2) := q̃TL−1MsL−Tq̃−λ1bTq̃−λ2(q̃Tq̃−1),

where λ1 and λ2 are the Lagrange multipliers. �
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