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Protein structural class prediction is beneficial to
study protein function, regulation and interactions.
However, protein structural class prediction for low-
similarity sequences (i.e., below 40% in pairwise se-
quence similarity) remains a challenging problem at
present. In this study, a novel computational method
is proposed to accurately predict protein structural
class for low-similarity sequences. This method
is based on support vector machine in conjunction
with integrated features from evolutionary informa-
tion generated with position specific iterative basic
local alignment search tool (PSI-BLAST) and pre-
dicted secondary structure. Various prediction accu-
racies evaluated by the jackknife tests are reported
on two widely-used low-similarity benchmark datasets
(25PDB and 1189), reaching overall accuracies 89.3%
and 87.9%, which are significantly higher than those
achieved by state-of-the-art in protein structural class
prediction. The experimental results suggest that our
method could serve as an effective alternative to exist-
ing methods in protein structural classification, espe-
cially for low-similarity sequences.

Keywords: protein domains, secondary protein structure,
protein sequence similarity, support vector machines, po-
sition specific scoring matrices

1. Introduction

Protein structural class is an important property for
characterizing the over folding type of a protein and plays
an important role in studying protein function, regulation
and interactions [1, 2]. Since Levitt and Chothia intro-
duced the concept of protein structural class in 1976 [3],
the identification of protein structural class has become
one of the hot topics in protein science [1, 4]. Based on
the type, amount and arrangement of the secondary struc-
ture elements, a structurally-known protein is generally
categorized into the four major classes: all-α , all-β , α/β ,
α + β . Traditional methods manually assign the struc-

tural class to a protein by manual inspection, which is a
complex and time-consuming process. Therefore, with
the rapid development of the genomics and proteomics, it
is urgently desirable to develop prediction methods to au-
tomatically determine structural class for the dramatically
expanding newly-discovered proteins.

As a typical statistical pattern recognition problem,
computational protein structural class prediction is usu-
ally performed in two steps: representation of protein se-
quences and selection of classification algorithms. The
existing sequence representation methods and classifica-
tion algorithms have been extensively reviewed [4–6].
Many previous structural class prediction methods use
features directly from the sequence such as amino acid
composition [7, 8], pseudo amino acid composition [9–
12], polypeptide composition [13, 14], etc. These meth-
ods perform well on high-similarity datasets where simi-
larities between protein sequences are higher than 50%,
and the prediction accuracies have reached up to 90%.
However, for low-similarity datasets such as the widely-
used 25PDB and 1189 datasets (with sequence similarity
lower than 25% and 40%, respectively), the reported ac-
curacies range between 50-70% [5]. In order to improve
prediction accuracies of low-similarity sequences, several
recent methods extract protein features from sequence-
derived information such as evolutionary profiles gener-
ated with PSI-BLAST [15] and predicted secondary struc-
ture. Evolutionary relationship is one of the most impor-
tant information in biological analysis. Numerous pre-
vious studies have illustrated that evolutionary informa-
tion is more informative than the sequence itself [16,
17]. Overall accuracies of the recently reported evolution-
ary information based protein structural class prediction
methods have been about 75% for some low-similarity
datasets [18–20]. Considering the fact that proteins with
low sequence similarity but in the same structural class
are likely to have high similarity in their correspond-
ing secondary structure elements, several predicted sec-
ondary structure based features have been proposed [2,
21–25]. Novel computational predictors that utilize these
features have achieved significantly improved accuracies,
between 80% and 85% on several low-similarity bench-
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mark datasets.
Despite some success in prediction tasks with above ad-

vanced features, a carefully engineered integrated feature
model generally offers higher accuracy than those with
single type of features [26, 27]. In our previous stud-
ies [25, 28, 29], we extracted predicted secondary struc-
ture based features to reflect the general contents and spa-
tial arrangements of the secondary structure elements of
a given protein. Here, in order to further improve the
prediction accuracy of protein structural class for low-
similarity sequences, we focus on extracting comprehen-
sive features from PSI-BLAST profiles and combining
them with several secondary structural features in this
study. A total of 148 features are extracted and selected
by a filtered feature selection method, and a multi-class
nonlinear support vector machine (SVM) classifier is ap-
plied to predict protein structural class. The prediction
performance is evaluated by jackknife test on two widely-
used low-similarity datasets (25PDB and 1189). The ex-
perimental results show that the evolutionary features and
secondary structural features make complementary con-
tributions to each other. The proposed predictor with inte-
grated feature model provides significantly improved abil-
ity to differentiate protein structural classes.

2. Materials and Methods

2.1. Datasets
Sequence similarity has a significant impact on predic-

tion accuracy of protein structural class [5]. Datasets with
sequence similarity ranging between 20%−40% tend to
obtain more reliable and robust results [2]. In order to
facilitate comparison with other existing methods, two
widely-used low-similarity protein datasets are selected
to design and assess our proposed method. The 25PDB
dataset contains 1673 proteins with less than 25% se-
quence similarity. This dataset was introduced by [5] and
extracted from 25% PDBSELECTED list [30] which in-
cludes high-resolution non-homologous proteins from the
Protein Data Bank (PDB) [31]. The 1189 dataset [5] in-
cludes 1092 proteins with sequence similarity lower than
40%. Since sequences in this dataset have lower resolu-
tion than proteins in 25PDB dataset, despite higher se-
quence similarity, similar (or in many case, even lower)
prediction accuracy has been reported for 1189 dataset
compared to the 25PDB dataset [32]. Since protein struc-
tural domains always have limits on size, short sequences
are unsuitable for the protein structural class prediction
and also cannot be performed by PSI-BLAST. Hence, we
remove those sequences with lengths less than 30 residues
from the original datasets. For convenience, we still de-
note the revised datasets as 25PDB and 1189. The con-
tents of these datasets are shown in Table 1. Here 1189
dataset is selected for optimization of the feature sets and
the parameters in support vector machine, and chosen to
predict the structural class of a new protein.

Table 1. The number of proteins belonging to different
structural classes in the datasets.

Dataset All-α All-β α/β α +β Total
25PDB 442 441 344 441 1668
1189 223 292 331 240 1086

2.2. Feature Representation

2.2.1. PSI-BLAST Profile Based Features

Numerous successful applications of PSI-BLAST pro-
file, which can be represented as a matrix called position
specific scoring matrix (PSSM), illustrate that the evolu-
tionary information is more informative than the sequence
itself [16, 17, 32–40]. In this study, the PSSM is obtained
by PSI-BLAST with parameters h and q set to 0.001 and
3 using every protein sequence as a seed to search and
align homogenous sequences from NCBI’s non-redundant
(NR) protein database (ftp://ftp.ncbi.nih.gov/blast/db/nr),
where parameters h and q denote the E-value threshold
for inclusion in PSSM and the maximum number of itera-
tions. The generated PSSM is an L×20 matrix (pi, j)L×20,
where L is the length of protein sequence, pi, j represents
the conservation score of the amino acid in the ith position
of the protein sequence being mutated to amino acid type
j during the evolution process. Here the entries of PSSM
are scaled to the range from 0 to 1 using the following
sigmoid function:

f (x) =
1

1+ e−x , . . . . . . . . . . . (1)

where x is the original PSSM value.
Amino acid composition is a wildly-used classical fea-

ture model. However, the main deficiency of amino acid
composition is ignoring the important sequence order in-
formation. To partially overcome this deficiency, dipep-
tide composition feature model and its variants are pro-
posed. Huang et al. [41] proposed a spaced bipeptide
coding method to better describe the local interactions
among neighboring amino acids in a protein sequence.
The spaced bipeptide coding is to detect the appearance
frequency of any two-alphabet pair in interleaving neigh-
boring amino acids of a protein sequence. To partially
reflect the local sequence order effect, Liu et al. [18] ex-
tended traditional dipeptide composition from the protein
amino acid sequence to the PSSM. Furthermore, Ding
et al. [27] proposed a pseudo dipeptide composition fea-
ture model based on the PSSM to compute the devia-
tion of scores of neighboring amino acid pairs to reflect
the local sequence order information. Inspired by their
works, we integrate the concepts of long-range correlation
and dipeptide composition from PSSM into a unified fea-
ture model PSSMF to reflect sequence order information
and evolutionary difference information between amino
acid pairs. Firstly, evolutionary difference formula be-
tween amino acid pairs (represented by the corresponding
columns in PSSM) along the protein sequence is defined
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as follows:

Xs,t(i,g) = (pi,s− p̄s,t(i,g))2 +(pi+g,t − p̄s,t(i,g))2, (2)

where s, t = 1,2, . . . ,20; g is a distance factor which de-
termines the degree of separation (spatially) between two
amino acids along the protein sequence; i = 1,2, . . . ,L−g;
p̄s,t(i,g)) = (pi,s + pi+g,t)/2 represents the average evo-
lutionary score between two amino acids. According
to Eq. (2), the average evolutionary difference between
amino acid pairs is defined as:

PSSMFs,t(g) =
1

L−g

L−g

∑
i=1

Xs,t(i,g)

=
1

L−g

L−g

∑
i=1

(pi,s− pi+g,t)2

2
. . (3)

Given a distance factor g, PSSMF(g) is defined as a 400-
dimensional vector:

PSSMF(g) = (PSSMF1,1(g), . . . ,PSSMF20,20(g)). (4)

Suppose G is the maximum of g (g = 0,1,2, . . . ,G), the
feature model PSSMF for a protein sequence is a 400×
(G+1)-dimensional vector which is constructed as:

PSSMF = PSSMF(0)⊕ . . .⊕PSSMF(G), . (5)

where ⊕ is the operator of concatenation.

2.2.2. Predicted Secondary Structure Based Features
To effectively extract structural information, a protein

amino acid sequence is transformed into the correspond-
ing sequence of secondary structure elements (helix (H),
strand (E), coil (C)). In this study, we predict secondary
structure using the recently proposed SPINE-X [42, 43]
which has better performance than previous widely-used
PSIPRED [16]. Besides the predicted secondary structure
sequence, SPINE-X also outputs an L×3 matrix (si, j)L×3
(denoted by SPINE-M) consisting of the normalized prob-
ability of contribution of a given amino acid based on its
position along the protein sequence to build one of the
three secondary structure elements.

Similar to PSSMF, we propose a structural feature
model SPINEF1 based on SPINE-M to partially reflect
local sequence order information. Given a distance factor
g, the average sequence order correlation factor between
two secondary structure elements is defined as:

SPINEF1s,t(g) =
1

L−g

L−g

∑
i=1

(si,s − si+g,t)2

2
. . . (6)

For every value of g, a different 9-dimensional vector is
generated for the same protein sequence, which is repre-
sented by SPINEF1(g). Suppose G is the maximum of g
(g = 0,1,2, . . . ,G), all the SPINEF1(g) are concatenated
to form a feature vector SPINEF1 of 9× (G + 1) dimen-
sions.

In addition to extract structural features from SPINE-
M, we also introduce a comprehensive set of 11 predicted
secondary structure based features. The details of these
features are given as follows:

(1) The contents and second order composition mo-
ments of the helix and strand are formulated as:

p(x) =
N(x)

L
, x ∈ {H,E}, . . . . . . . . (7)

CMV(x) =

N(x)

∑
k=1

nxk

L(L−1)
, x ∈ {H,E}, . . . . . (8)

where N(x) is the number of secondary structural el-
ements; nxk is the k-th corresponding secondary struc-
tural element’s order (or position) along the protein se-
quence. For example, given a secondary structure se-
quence CCEEEECCCHHEEHH, the length of protein se-
quence is L = 15 and the number of strand is N(E) = 6.
The 6 strands order is 3, 4, 5, 6, 12, 13, respectively. Ac-
cording to Eq. (8), the second order composition moment
of strand can be computed as:

CMV(E) =
3+4+5+6+12+13

15× (15−1)
= 0.2048. (9)

(2) As the objects of structural classification are globu-
lar proteins, the size (length) of helix and strand segments
is one of the deciding factors when it comes to the assign-
ment of the structural class. In order to utilize this infor-
mation, normalized maximal lengths of helix and strand
segments are proposed as follows:

NMaxSeg(x) =
MaxSeg(x)

L
, x ∈ {H,E}, . . (10)

where MaxSeg(x) is the lengths of the longest α-helices
(β -strands).

(3) While proteins in the α/β and α + β classes con-
tain both α-helices and β -strands, they are usually segre-
gated in the α/β class but are usually interspersed in the
α + β class. In proteins of the α/β class, α-helices and
β -strands alternate more frequently than in proteins of the
α +β class. The preferred way to represent the spatial ar-
rangements of the secondary structures for structural class
prediction is to utilize 3D protein structure. However,
since the input is only flat secondary structure sequence,
quantifying collocation of helix and strand segments in
the predicted secondary structure sequence would be an
effective way to approximate this information. Hence,
we construct a simplified segment sequence from the
predicted secondary structure sequence in the following
steps: (1) every H, E and C segment is respectively re-
placed by the individual letter H, E and C, (2) all of the
letters C are removed. Based on the segment sequence,
we count the number of helix-coil-helix motifs (two α-
helices separated by a coil segment), strand-coil-strand
motifs (two β -strands separated by a coil segment), helix-
coil-strand motifs (α-helices and β -strands separated by a
coil segment) and strand-coil-helix motifs (β -strands and
α-helices separated by a coil segment). Then, the normal-
ized alternating frequency of α-helices and β -strands, the
helices bundle probability and the sheets probability are
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respectively defined as:

NAltn =
N′(HE)+N′(EH)

L
, . . . . . . . (11)

p′(xx) =
N′(xx)

L
, xx ∈ {HH,EE}, . . . . . (12)

where N′(xx) is the number of substring HE, EH, HH or
EE in the segment sequence. In addition, to reflect the
level of separation for α-helices and β -strands, the nor-
malized maximal distance between the adjacent α-helices
and β -strands as well as β -strands and α-helices in the
predicted secondary structure sequence are defined as:

NMaxD(xx) =
MaxD(xx)

L
, xx ∈ {HE,EH}, . (13)

where HE denotes segment from α-helices to the adjacent
β -strands, and EH denotes segment from β -strands to the
adjacent α-helices in the predicted secondary structure se-
quence. From the above description, a 11-dimensional
structural feature vector can be constructed and formally
denoted by SPINEF2 for the rest of this study.

2.3. Feature Selection
Among the above three feature models, the number of

features in PSSMF and SPINEF1 vary with the maximum
value of distant factor g (denoted by G). In this study, the
value of parameter G is set to 9, and the total number of
features in PSSMF and SPINEF1 are 4000 and 90, respec-
tively. Due to the large number of features, irrelevant and
redundant information will be inevitable which can result
in less effective prediction. Feature selection is the pro-
cess of identifying and removing as much irrelevant and
redundant features as possible. This will enable a more
efficient prediction model, and helps speed up the com-
putational analysis time. Many feature selection methods
have been used in a wide range of bioinformatics stud-
ies [44–46]. In this study, a correlation-based feature sub-
set selection method (CFS) [47, 48] is adopted. CFS is a
filtering method which identifies a small set of nonredun-
dant features that are highly correlated with the outcome
while having low correlation among themselves. Specif-
ically, CFS uses a correlation based heuristic to evaluate
the worth of features:

MeritS =
krc f√

k + k(k−1)r f f
, . . . . . . . (14)

where MeritS is the heuristic “merit” of a feature sub-
set S containing k features, rc f measures the average de-
pendence between k features and the class label, and
r f f measures the average dependence among k features
in S. The above average dependences rc f and r f f are
computed by information gain. Obviously, the value of
MeritS increases when the selected features are highly in-
formative about the outcome, but decreases when there
is a high correlation among those features. CFS im-
plemented hill-climbing optimization as in the best first
search with five levels of backtracking, which iteratively
expands the feature subset S starting from an empty set
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Fig. 1. The number of selected features using CFS on 1189
dataset (g ranges from 0 to 9).

to identify a better S based on the merit value among
all the possible expansions at each step until there are
five consecutive nonimproving expansions. Here, we per-
form feature selection based on 1189 dataset. As a re-
sult, 114 and 23 features are selected among the orig-
inal PSSMF and SPINEF1. The selected feature num-
bers with varying distance factor g are shown in Fig.1.
For convenience, the above two feature subsets are de-
noted by PSSMFs and SPINEF1s, respectively. Finally,
given a protein sequence, a 148-dimensional feature vec-
tor (PSSMFs+SPINEF1s+SPINEF2) is constructed and
then used to predict protein structural class.

2.4. Classification Algorithm Construction
Support vector machine (SVM) [49], a particular learn-

ing system based on Vapnik’s statical learning theory, has
been widely used to deal with various important biologi-
cal problems [50–53]. There are four kinds of kernel func-
tions, i.e. linear function, polynomial function, sigmoid
function and radial basis function (RBF), are commonly
used to perform prediction. Here, the publicly available
software package LIBSVM [54] with RBF is adopted.
The best combination of penalty parameter C and kernel
parameter γ are selected by 10-fold cross-validation with
a simple but effective grid search strategy. The parame-
ters C and γ are searched exponentially in the ranges of
[2−5,215] and [2−15,25], respectively, with a step size of
21 to probe the highest classification rate.

2.5. Performance Measures
In statistical prediction, independent dataset test, sub-

sampling test and jackknife test are often used to exam-
ine a predictor for its effectiveness in practical applica-
tion [55]. Among the three test methods, the jackknife
test is deemed the least arbitrary that can always yield a
unique result for a given benchmark dataset [6]. Hence
the jackknife test is employed to examine the performance
of our method. For comprehensive evaluation, the overall
accuracy (the number of correct predictions divided by the
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Table 2. The prediction quality of our method on the 25PDB
and 1189 datasets.

Dataset Class Sens(%) Spec(%) MCC
25PDB All-α 97.3 98.7 0.957

All-β 91.2 96.9 0.881
α/β 87.2 97.3 0.852
α +β 81.2 92.8 0.737
OA 89.3

1189 All-α 94.6 98.0 0.919
All-β 91.4 98.6 0.915
α/β 88.2 95.1 0.835
α +β 77.1 92.2 0.682
OA 87.9

total number of test sequences, denoted by OA), the indi-
vidual sensitivity (or accuracy, denoted by Sens), the indi-
vidual specificity (Spec) and Matthew’s correlation coef-
ficient (MCC) over each of the four structural classes are
reported. These parameters are detailed as follows [18]:

Sens j =
TP j

TP j +FN j
=

TP j

|C j| , . . . . . . . (15)

Spec j =
TN j

FP j +TN j
=

TN j

∑k �= j |Ck| , . . . . . (16)

MCC j

= TP j×TN j−FP j×FN j√
(FP j+TP j)(TP j+FN j)(TN j+FP j)(TN j+FN j)

,
(17)

where TN j, TP j, FN j, FP j and |C j| are the number of true
negatives, true positives, false negatives, false positives
and proteins in the structural class C j, respectively. The
MCC value ranges between−1 and 1 with 0 denoting ran-
dom prediction and higher absolute values denoting more
accurate predictions.

3. Results and Discussion

3.1. Prediction Performance of Our Method
We report the results of jackknife tests performed on

25PDB and 1189 datasets in Table 2. As can be seen,
the overall accuracies of the two datasets are all above
87%. Comparing the prediction accuracies of four struc-
tural classes with each other, the Sens, Spec and MCC
values of the all-α class are always highest. It indicates
that the prediction for the all-α class is most reliable. The
main reason for good performance for the all-α class is
that these sequences are helix rich and helical structures
are the easiest to predicted, i.e., a helix is formed by a
single, continuous sequence segment and is characterized
by highly repetitive structure [21]. Meanwhile, the results
of the all-β and α/β classes are also satisfactory with the
accuracies nearly 90%. However, the prediction accura-
cies of the α + β class are inferior to those of other three
classes, suggesting that difficulty existed in recognizing
the anti-parallel β -sheets [25]. This trend is universal for

all protein structural class prediction methods, although
the corresponding accuracies are lower.

As mentioned earlier, three groups of features
(PSSMFs, SPINEF1s and SPINEF2) are extracted and
selected to represent a protein. In order to further in-
vestigate how these feature subsets contribute to the pre-
diction performance, we compare the accuracies among
all the possible combinations of feature subsets, and the
results are listed in Table 3. It can be seen that when
the feature subsets are used individually, the overall ac-
curacies and accuracies of four structural classes ob-
tained by predicted secondary structure based features
(SPINEF1s and SPINEF2) are higher than evolutionary
features (PSSMFs), and those of SPINEF2 are often the
highest. As more features are involved in the prediction,
the prediction accuracies are shown to increase steadily.
For instance, when 25PDB dataset is tested, the overall
accuracy and accuracies of four structural classes with
PSSMFs are 76.6%, 91.0%, 80.7%, 75.0% and 59.2%,
respectively. With addition of SPINEF1s, these accura-
cies increase by 10.6%, 5.6%, 11.1%, 9.0% and 16.5%. If
SPINEF2 is further added, the overall accuracy increases
by 2.1% up to 89.3%. Therefore, we may conclude that
the three groups of features which characterize a protein
from different aspects can make complementary contribu-
tions to each other, and combining the PSI-BLAST profile
based features and predicted secondary structure features
is an effective method to improve the prediction accuracy
of protein structural class.

3.2. Comparison with Other Prediction Methods
In this section, we compare our method with the re-

cently reported competing protein structural class predic-
tion methods on the same datasets. Here we rationally
classify the compared methods into three groups: (1)
AADP-PSSM [18], AATP [19] and AAC-PSSM-AC [20]
are recently reported prediction methods based on PSI-
BLAST profile; (2) SCPRED [21], RKS-PPSC [2], Liu
and Jia [22], Zhang et al. [23], Ding et al. [24] and
Zhang et al. [25] are prediction methods based on the pre-
dicted secondary structure; (3) MODAS [26] and PSSS-
PSSM [27] are prediction methods with integrated fea-
tures from the PSI-BLAST profile and predicted protein
secondary structure. For convenience, the above three
groups of methods are respectively denoted by M1, M2
and M3.

The comparison results are shown in Table 4. From Ta-
ble 4, we can find that the prediction accuracies obtained
by methods M2 are about 10% higher than those of meth-
ods M1, and the top two overall and individual accura-
cies are commonly from methods M3 and our method. As
for the 25PDB dataset, our method outperforms all other
compared methods. Specifically, the overall accuracy and
accuracies of four structural classes are respectively 2.7%,
0.7%, 4.1%, 1.4% and 2.3% higher than previous best-
performing results. Moreover, our method is the only
method which improves the α + β class accuracy up to
80%. Referring to the 1189 dataset, there are only two
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Table 3. Performance comparison of different feature subsets on the 25PDB and 1189 datasets.

Dataset Features Accuracy(%)
All-α All-β α/β α +β Overall

25PDB PSSMFs 91.0 80.7 75.0 59.2 76.6
SPINEF1s 92.1 83.2 75.9 71.7 81.0
SPINEF2 94.1 83.0 81.1 73.5 83.0
PSSMFs+SPINEF1s 96.6 91.8 84.0 75.7 87.2
PSSMFs+SPINEF2 97.5 88.4 86.6 78.7 87.9
SPINEF1s+SPINEF2 93.2 84.4 82.6 77.6 84.5
PSSMFs+SPINEF1s+SPINEF2 97.3 91.2 87.2 81.2 89.3

1189 PSSMFs 85.2 86.0 82.5 47.9 76.3
SPINEF1s 90.1 88.4 79.2 60.0 79.7
SPINEF2 92.8 85.3 84.3 73.8 84.0
PSSMFs+SPINEF1s 94.6 91.4 88.2 67.9 85.9
PSSMFs+SPINEF2 93.7 89.0 88.8 70.8 85.9
SPINEF1s+SPINEF2 89.7 91.1 85.8 72.9 85.2
PSSMFs+SPINEF1s+SPINEF2 94.6 91.4 88.2 77.1 87.9

Table 4. Performance comparison of different methods on the 25PDB and 1189 datasets.

Dataset Method Accuracy(%)
All-α All-β α/β α +β Overall

25PDB AADP-PSSM [18] 83.3 78.1 76.3 54.4 72.9
AATP [19] 81.9 74.7 75.1 55.8 71.7
AAC-PSSM-AC [20] 85.3 81.7 73.7 55.3 74.1
SCPRED [21] 92.6 80.1 74.0 71.0 79.7
RKS-PPSC [2] 92.8 83.3 85.8 70.1 82.9
Liu and Jia [22] 92.6 81.3 81.5 76.0 82.9
Zhang et al. [23] 95.0 85.6 81.5 73.2 83.9
Ding et al. [24] 95.0 81.3 83.2 77.6 84.3
Zhang et al. [25] 95.7 80.8 82.4 75.5 83.7
MODAS [26] 92.3 83.7 81.2 68.3 81.4
PSSS-PSSM [27] 96.6 87.1 83.0 78.9 86.6
Our study 97.3 91.2 87.2 81.2 89.3

1189 AADP-PSSM [18] 69.1 83.7 85.6 35.7 70.7
AATP [19] 72.7 85.4 82.9 42.7 72.6
AAC-PSSM-AC [20] 80.7 86.4 81.4 45.2 74.6
SCPRED [21] 89.1 86.7 89.6 53.8 80.6
RKS-PPSC [2] 89.2 86.7 82.6 65.6 81.3
Zhang et al. [23] 92.4 87.4 82.0 71.0 83.2
Ding et al. [24] 93.7 84.0 83.5 66.4 82.0
Zhang et al. [25] 92.4 84.4 84.4 73.4 83.6
MODAS [26] 92.3 87.1 87.9 65.4 83.5
PSSS-PSSM [27] 94.2 88.4 85.3 71.8 85.0
Our study 94.6 91.4 88.2 77.1 87.9

methods that provide the overall accuracy over 85%. One
is our method, and the other is PSSS-PSSM. However,
our result is 2.9% higher than PSSS-PSSM. In this study,
PSSMFs are designed to reflect sequence order infor-
mation and evolutionary difference information between
amino acid pairs. Overall accuracies obtained by PSSMFs
are 76.6% and 76.3% on 25PDB and 1189 datasets (see
Table 3), which are obviously higher than those of the
similar methods M1. Likewise, it can be seen from Ta-
bles 3 and 4 that the proposed predicted secondary struc-
ture based features (SPINEF1s+SPINEF2) also obtains

competitive prediction accuracies when compared to the
similar methods M2. Particularly, the overall accuracy
of 1189 dataset is 85.2%, which is 1.6% higher than the
next best one proposed by Zhang et al. [25]. Therefore,
we attribute the high prediction accuracy achieved by our
method to the carefully designed integrated feature model
which effectively characterizes a protein from different
aspects.

Among the predictions of four structural classes, the
predictions of the α/β and α + β classes are relatively
difficult. In order to further demonstrate the effectiveness
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Table 5. The accuracies of differentiating between the α/β
and α +β classes.

Dataset Method Accuracy(%)
α/β α +β Overall

25PDB SCPRED [21] 76.0 83.2 80.1
RKS-PPSC [2] 86.4 82.8 84.4
PSSS-PSSM [27] 84.1 88.4 86.5
Our study 89.0 92.7 91.1

1189 SCPRED [21] 88.6 63.1 77.9
RKS-PPSC [2] 83.8 81.3 82.8
PSSS-PSSM [27] 87.4 77.2 83.1
Our study 90.3 80.4 86.2

of the proposed method in differentiating between the
α/β and α +β classes, another experiment is performed
and the results are listed in Table 5. Similar to RKS-
PPSC, we generate a subset for each benchmark dataset
by removing all the proteins in the all-α and all-β classes
to avoid any potential outside effects. Then we predict the
accuracies of the α/β and α +β classes on these reduced
subsets instead of the whole dataset. To differentiate with
25PDB and 1189 datasets, 25PDBs and 1189s are used to
denote the corresponding subsets. As can be seen from
Table 5, our method outperforms all the compared meth-
ods on both datasets. The increments of overall accuracies
are 4.6% and 3.1%, respectively. In addition, the MCC
values of the α/β and α + β classes are also computed.
As for 25PDB dataset,the MCC values of the two classes
are all 0.819. As for 1189 dataset, the MCC values of
the two classes are all 0.715. The above results clearly
shows that our method is essential to achieve good pre-
diction performance for differentiating between the α/β
and α +β classes.

3.3. Comparison with Different Classification
Algorithms

To evaluate the prediction performance of different
classification algorithms, we consider other five classi-
fication algorithms which are based on complementary
model types: Naive Bayes, linear logistic regression, k-
Nearest Neighbor with k = 3, linear discriminant analysis
and decision tree. The selection is motivated by their prior
successful applications in the context of the structural
class predictions, i.e., Naive Bayes based classifier was
used in [56], logistic regression in [5, 35], nearest neigh-
bor in [12, 57], linear discriminant analysis in [2] and de-
cision tree [58, 59]. All experiments are performed using
jackknife test, and the overall accuracies as well as the ac-
curacies for each structural classes are listed in Table 6. It
can be seen that linear logistic regression, linear discrimi-
nant analysis and SVM obviously outperform other three
classification algorithms, and SVM are shown to perform
best among all the classification algorithms. Although k-
nearest neighbor algorithms obtains the highest α/β class
accuracies on both datasets, the overall accuracies and the

α +β class accuracies are much lower. These experimen-
tal results indicates that the SVM is more suitable for pro-
tein structural class prediction, which is consistent with
the successful prior application of this classification algo-
rithm.

3.4. Discussion on the Relationship Between
Feature Patterns of PSSMF or SPINEF1 and
Protein Structural Class

In order to describe the long-range correlation from
PSSM and SPINE-M, different distant factors g are
adopted to extract PSSMF or SPINEF1 features. Here
each feature groups with a g can be considered as a fea-
ture pattern. In this section, we discuss the the relation-
ship between the feature patterns and protein structural
class. Based on the protein structural class Cj (all-α , all-
β , α/β and α +β ) to which the proteins belong, we first
divide the datasets into two subsets, one subset consists of
proteins from structural class Cj as positive samples, the
other contains proteins which not from structural class Cj
as negative samples. Then, we predict the protein struc-
tural class Cj as binary classification using different fea-
ture pattern PSSMF(g)(SPINEF1(g)) with varying dis-
tance factor g, and the results are listed in Tables 7 and
8. Here we use the MCC value since this measure, in
contrast to accuracy, takes into account the unbalanced
nature of the datasets. It can be seen that the PSSMF fea-
tures corresponding to g = 2 perform best to predict all
the four structure classes for 25PDB dataset. As for 1189
dataset, PSSMF features corresponding to g = 2 achieve
the highest MCC value for the all-α class, g = 1 fea-
tures achieve the highest MCC value for the all-β class,
and g = 3 features perform best for the α/β and α + β
classes. Hence, it can be concluded that the PSSMF fea-
tures corresponding to smaller distance factors are more
effective to predict the protein structure class. When the
SPINEF1 features are tested, the trend is somewhat differ-
ent. The SPINEF1 features corresponding to g = 6,7,8,9
always perform well to predict the structure class for two
datasets. Hence, the SPINEF1 features corresponding to
bigger distance factors are more effective to predict the
protein structure class. As for the profile-based protein
features are less explicit than the sequence-based protein
features, further investigations about the relationship be-
tween the feature patterns of PSSMF or SPINEF1 and
some specific sequence characteristics will constitute an
interesting subject for our future work.

4. Conclusions

Prediction of protein structural class for low-similarity
sequences is a challenging problem. This study proposes
a computational method that aims to employ both PSI-
BLAST profile based features and predicted secondary
structure based features to improve the protein struc-
tural class prediction accuracy. Based on comprehensive
experimental comparison with the state-of-the-art struc-
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Table 6. Performance comparison of different classification algorithms on the 25PDB and 1189 datasets.

Dataset Method Accuracy(%)
All-α All-β α/β α +β Overall

25PDB k-nearest neighbor 93.4 91.4 94.5 46.3 80.6
Naive Bayes 94.1 88.7 84.6 69.8 84.3
Decision tree 90.5 85.9 77.3 60.5 78.7
Linear logistic regression 95.0 91.8 87.2 79.4 88.4
Linear discriminant analysis 94.0 87.5 88.7 82.5 88.2
SVM 97.3 91.2 87.2 81.2 89.3

1189 k-nearest neighbor 90.6 90.8 94.9 43.3 81.5
Naive Bayes 95.1 88.7 82.5 65.0 82.9
Decision tree 87.4 87.7 79.8 60.0 79.1
Linear logistic regression 91.9 93.2 88.5 70.8 86.6
Linear discriminant analysis 89.2 88.7 87.9 77.1 86.0
SVM 94.6 91.4 88.2 77.1 87.9

Table 7. The prediction quality of PSSMF features on the 25PDB and 1189 datasets (g ranges from 0 to 9).

Dataset Class g =0 g =1 g =2 g =3 g =4 g =5 g =6 g =7 g =8 g =9
25PDB All-α 0.744 0.752 0.791 0.761 0.76 0.723 0.723 0.722 0.724 0.716

All-β 0.651 0.671 0.7 0.666 0.652 0.669 0.643 0.645 0.631 0.622
α/β 0.67 0.687 0.691 0.691 0.683 0.657 0.643 0.639 0.623 0.642
α +β 0.425 0.433 0.461 0.439 0.397 0.443 0.386 0.396 0.42 0.398

1189 All-α 0.744 0.761 0.791 0.732 0.724 0.726 0.705 0.703 0.694 0.664
All-β 0.713 0.77 0.753 0.709 0.746 0.718 0.722 0.725 0.709 0.701
α/β 0.64 0.678 0.688 0.695 0.670 0.648 0.645 0.656 0.626 0.619
α +β 0.393 0.417 0.408 0.423 0.421 0.4 0.352 0.354 0.343 0.319

Table 8. The prediction quality of SPINEF1 features on the 25PDB and 1189 datasets (g ranges from 0 to 9).

Dataset Class g =0 g =1 g =2 g =3 g =4 g =5 g =6 g =7 g =8 g =9
25PDB All-α 0.864 0.887 0.873 0.873 0.887 0.886 0.893 0.885 0.887 0.881

All-β 0.788 0.788 0.792 0.791 0.797 0.806 0.81 0.817 0.818 0.824
α/β 0.538 0.594 0.594 0.593 0.641 0.644 0.667 0.688 0.693 0.67
α +β 0.498 0.508 0.516 0.527 0.545 0.566 0.575 0.579 0.576 0.571

1189 All-α 0.797 0.839 0.832 0.827 0.836 0.85 0.851 0.851 0.87 0.856
All-β 0.807 0.826 0.837 0.839 0.831 0.831 0.834 0.831 0.846 0.863
α/β 0.608 0.621 0.611 0.63 0.623 0.659 0.68 0.638 0.671 0.658
α +β 0.333 0.403 0.37 0.423 0.428 0.447 0.482 0.448 0.47 0.471

ture class prediction methods on two widely-used low-
similarity benchmark datasets, the proposed method is
shown to be an effective computational tool for protein
structural class prediction on low-similarity protein se-
quences. The outstanding performance of the proposed
method can be attributed to the effective usage of the
integrated features as well as well-trained SVM. Since
user-friendly and publicly accessible web-servers repre-
sent the future direction for developing practically more
useful models, simulated methods, or predictors [53, 60],
we shall make efforts in our future work to provide a web-
server for the method presented in this paper.
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