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The optimal number of doctors and appointment in-
terval for an outpatient appointment system in a class
of individual block/fixed interval are determined using
an adaptive-penalty Genetic Algorithm. The length of
service time for doctor consultation, the time required
for the laboratory tests, and the time deviating from
the appointment time are modelled by random vari-
ables. No-show patients are also included in the sys-
tem. Using the adaptive penalty scheme, optimization
constraints are automatically and numerically han-
dled. The solution methodology is readily applicable
to other appointment systems. The study has a signif-
icant implication from the viewpoint of economic and
risk management of health care service.
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1. Introduction

Healthcare plays a fundamental and essential role in
daily life. Demanding on outpatient service is persis-
tently high. It is widely recognized that the utilization of
an appointment system is a systematic and cost-effective
way for outpatient service. A typical appointment sys-
tem that has been globally used is the class of individual
block/fixed interval [1]. Outpatient departments are of-
ten provided with a number of doctors. Liu and Liu [2]
considered two to five doctors in their simulation study
of block appointment systems. Yeon et al. [3] investi-
gated the scheduling problem with multi-doctor sharing
resources.

Major problems in providing satisfactory healthcare
service are the shortage of doctors and the lack of ap-
propriate pre-specified appointment interval for consult-
ing outpatients. The doctor shortage is a direct result from
the economic constraints in training new doctors, which
takes time and is costly. Therefore, the optimal assign-
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ment of suitable doctors to each hospital is required thor-
ough consideration. The appropriate appointment interval
is still an interest issue because it can drastically affect the
service quality [4]. Consequently, the optimal determina-
tion of number of doctors and appointment interval for an
appointment system is a crucial aspect when designing or
revising an appointment system.

The research on appointment systems has received in-
tensive attention since the pioneering work from Bai-
ley [5]. A comprehensive review of the literature on ap-
pointment systems can be found in [1]. The appointment
system which is considered here is a typical system used
in the hospitals in Thailand and belongs to the class of
individual block/fixed interval [1]. Parallel number of
doctors is assigned to the system. However, only the pa-
tients with the appointments will be exclusively consid-
ered and the disturbance against the appointment times
from such randomly walk-in patients is thus eliminated.
The patient punctuality is defined in terms of the differ-
ence between the time of appointment and the time of pa-
tient arrival. The arrival times of the appointed patients
can be random around the appointed times. Regarding
the presence status of an appointed patient, it is possible
that some patients will not actually show up for the ap-
pointments, i.e. no-show patients. As no-show cases are
unavoidable, it is also incorporated into the model of the
appointment system. In addition, some patients require
second consultation to the same doctors after their labo-
ratory tests. The fact of multiple doctors, no-show pa-
tients, and second consultation is simultaneously consid-
ered with the objective to simulate real service situations.
To reflect the uncertainty, the length of the service time for
a doctor consultation, the time required for the laboratory
tests, and the time deviating from the appointment time
are modelled by random variables. The consideration of
uncertainty significantly improves the risk management of
health care service.

Various techniques were employed in the optimal de-
sign of appointment systems. Fries and Marathe [6] used
dynamic programming to determine the optimal block
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sizes for the next period given that the number of pa-
tients remaining to be assigned is known. Liao et al. [7]
applied dynamic programming to determine the optimal
block sizes when service times are Erlang. Liu and Liu [8]
developed a dynamic programming formulation to find
the optimal block sizes in their study on a queuing sys-
tem with multiple doctors with random arrival times. Peg-
den and Rosenshine [9] applied a Markov-chain based
procedure to compute the optimal appointment intervals.
Robinson and Chen [10] formulated the problem of find-
ing the optimal appointment times as a stochastic lin-
ear program and solved it using Monte-Carlo integration.
Denton and Gupta [11] presented a two-stage stochastic
linear programming model to determine the optimal ap-
pointment intervals. Vanden Bosch et al. [12] proposed a
fathoming approach to solve the same problem as that of
Liao et al. [7]. Kaandorop and Koole [13] introduced a
local search procedure to determine the optimal schedule
with a weighted average of expected waiting times of pa-
tients, idle time of the doctor and tardiness as objective.
Giiler [14] solved the schedule assignments of the resi-
dents and the senior academic staff to outpatient clinics
using a hierarchical goal programming. The optimization
is integrated into the scheduling of chemotherapy outpa-
tient appointments [15]. However, the treatment time is
assumed to be deterministic. In addition, the deviation
from the appointment time is not considered, i.e. assum-
ing punctuality for patient arrival. The problem aspects
are thus not reflecting real situation. A dynamic appoint-
ment scheduling is considered in [16]. The so-called col-
umn generation is proposed to solve the problem. The
method is, however, limited to the considered problem.

This paper investigates the issue of resource manage-
ment. There are two novel contributions from the present
paper. Firstly, the paper considers the determination of
the optimal number of doctors and appointment interval
for an outpatient appointment system. The first contribu-
tion has not been considered by the literature. Yet, this
contribution aspect is especially crucial in practice when
the number of doctors needs to be known for the operation
of new hospitals or for the financial planning of existing
hospitals. Secondly, it is shown in this paper that the com-
plicate nature of the present problem in terms of patient
punctuality, patient no-show, two-time examination, lab-
oratory test, and uncertainty can be effectively tackled by
a straightforward but powerful optimization tool.

The determination is formulated within the framework
of a constrained optimization problem in which the num-
ber of doctors and the appointment interval are two de-
sign variables. According to the reviewed techniques
above, those techniques were applied to the scheduling-
type problem and their applicability is limited to those
problems. Genetic Algorithm (GA) is proposed herein as
an optimization tool.

GA is a class of global search techniques that are in-
spired by evolutionary theory in biological sciences [17].
A GA was proposed for solving the surgery scheduling
problem by Wang et al. [18]. A GA for solving a multi-
objective problem of scheduling of radiotherapy treat-
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ments for categorized cancer patients was described by
Petrovic et al. [19]. A combination of simulation method
with GA was used for adjusting the schedule of the nurses
in a hospital emergency department by Yeh and Lin [20].

GA is, however, utilized herein for another different as-
pect, i.e. for determining optimal number of doctors and
appointment interval. Since the considered problem in-
volves a number of complicate optimization constraints,
an adaptive-penalty GA [21] that can handle multiple and
complicate constraints are employed. Such an adaptive-
penalty GA has proved its high capability in handling
complicate constraints in an effective and efficient man-
ner [22].

The structure of the paper is below. Section 2 presents
the modelling of appointment system and definitions of
terms relevant to system characteristics and performances.
The description of GA and its application to the optimal
design towards desirable performances of appointment
systems are described in Section 3. Section 4 conducts
a numerical example to elucidate the methodology. The
conclusion is finally drawn in Section 5.

2. Problem Formulation
2.1. Definition of Appointment System

The following definitions, characteristics, and rules are
applied to the appointment system of present interest.

1) The appointment system is in the class of parallel
individual block/fixed interval.

2) There are np parallel doctors. It is assumed all doc-
tors have same skills and knowledge. For a given number
of patients Npgsiens» the patients will be distributed to each
doctor as uniformly as possible. For example, when nD
is 3 and Npgsiens is 18, the number of patients assigned to
each doctor is equal to 6. However, when np is 3 and
Npatien: 1s 20, two doctors take care of 7 patients and one
doctor is responsible for 6 patients. The number of pa-
tients assigned to the j;; doctor is denoted as NO;.

3) It is possible that an appointed patient may be ab-
sent. The absence probability of each patient is equally
designated to pgps.

4) It is possible that an appointed patient can have labo-
ratory tests. Each patient has an equal probability of hav-
ing laboratory tests of pj,,. After the tests, that patient
needs another consultation. The second consultation is
considered as another additional appointment case under
the same doctor. Accordingly, a patient who has labo-
ratory tests creates two consultation cases. If the patient
that needs the second consultation arrives at the doctor
room before the appointed patient in the schedule, the
second-time patient is given a priority to see the doctor.
Otherwise, the second-time patient can see the doctor af-
ter the appointed patient in the schedule has finished the
consultation. In other words, the First-Come-First-Serve
(FCFS) principle is used when there is the interruption in
the original schedule from second-consultation patients.
All present patients have at least one consultation, i.e.
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Fig. 1. A part of an appointment system for a doctor.

their first consultation cases.

5) Each doctor may have different number of appoint-
ment blocks. Each block consists of only one consultation
case. NP; is the total number of consultation cases, in-
cluding both first and second consultations, under the j,
doctor. This number counts each second consultation as a
case of treatment. Consequently, NP; > NO;.

6) The appointment interval is denoted by Afppcr. The
appointment time at the beginning of the #;;, appointment
block is designated to #;. Without loss of generality, #; is
set equal to zero.

7) The office hour is ended at .

The graphical representation of an appointment system
is shown in Figs. 1 and 2. Fig. 1 shows an appoint-
ment system belonging to a doctor. The system shown
in Fig. 1(a) does not include the no-show and second-
consultation patients. Fig. 1(b) depicts an appointment
system with a no-show patient. Fig. 1(c) includes both no-
show and second-consultation patients. It is noted that the
original ranks of appointed patients have been changed
due to the interference from the patients requiring second
consultations. The ranks of the patients subjected to the
change are expressed in a format of two numbers. For ex-
ample, 13(12) means that this patient is originally at the
12" rank in the queue but is then shifted to the 13" rank
because of the interference. Fig. 2 represents an appoint-
ment system with multiple doctors, no-show patients, and
patients requiring second consultations.

The variables and terms that are related to the service
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Fig. 2. An appointment system with multiple doctors, no-
show patients, and patients requiring second consultations.

and performance indices are below.

A;j: arrival time of the i;-block of consultation case (ei-
ther first or second) under the j;; doctor in the ap-
pointment system,

L;j: length of service time for the iy;-block of consulta-
tion case (either first or second) under the j;;, doctor
in the appointment system,

B;;j: starting service time of the i;,-block of consultation
case (either first or second) under the j;, doctor in
the appointment system,

E;;: ending service time of the i;-block of consultation
case (either first or second) under the j,; doctor in
the appointment system.

The arrival time of each consultation case is classified
into two types. For the first consultation case, the arrival
time is related to the appointment time as follows:

Aij=ti+0, « . . . ..o oo (D

where /\;; is the time deviating from the appointment time
t;. The deviation time can be random and thus treated as a
random variable. The punctuality of an appointed patient
is interpreted from the condition

<0 early arrival
Ajjs =0 punctualarrival . . . . . . . (2)
> (0 late arrival

When considering that the earliness or waiting prior to
appointment time is not a consequence of the appointment
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system as in [1], then A\;; is defined as

3)

~ J=0 early and punctual arrival
Y1>0 late arrival

For the second consultation case, the arrival time is
given by

Aij:EE'j—l—TL,'j. O ()

where EF;; is the ending service time after the first con-

sultation and T'L;j is the time required for the laboratory

tests of that patient, respectively. The ending service time

after the first consultation can be computed from Eq. (6).
The starting service time B;; is obtained from

Bjj = max(Aij,E;_py;);i=2,--- ,NP; . . . (5a)
Bijj =max(Aj,t1), . . . . . . . . .. (5b

which reflects the fact that the first patient to each doc-
tor can have the health care service only after the starting
office hour.

The ending service time of each consultation case, i.e.
first or second consultation, is defined as

Ej=Bjj+L; . . .. .. ... .... (6

L;; is equal to zero if the i;;,-block patient under the jij,
doctor is absent or no-show. In addition, when the patient
under consideration requires the second consultation and
E;; corresponds to the ending service time after the first
consultation, then Ej; is further used as EF;; for the com-
putation of the arrival time for the corresponding second
consultation case. That is

EFj=Ej . . .. ... .......0

for its used in Eq. (4). It is noted that the length of service
time L;; is separated into two cases in all mathematical
expressions. In the first consultation case, the length of
service time for the first consultation L1;; must be used
for L;j, i.e. setting
L,'j:Llij e e e e e e e e e e e (83)
Lij=L2%; ... ... ... ..... (8)

The second consultation case fixes the length of service
time for the second consultation L2;; for L;;.

2.2, Indices of System Performance

In this section, the relevant performance indices will
be defined. First, the waiting time W;; of the iy-block
of consultation case (either first or second) under the j;;,
doctor is

VV,‘j = maX(O,B,‘j —A,‘j) e e e e e e e (9)
The total waiting time corresponding to the service
from the j;;, doctor W; is

NP,
Wj=Y Wi .

i=1

. (10)
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The total waiting time in the appointment system Wr is
thus

nD
Wr=Y W;. . (11)
j=1
The average waiting time of a patient Wy is
1
Wy = Wr, « o o oo o000 .12
A anD T, ( )
where
nD
Np=Y NP - (13)

j=1
The overtime of the j;;, doctor OT) is obtained from

OTJ‘ = max(O,ENRj — l‘f)7 - (14)

where Eyp; is the ending service time of the last con-
sultation case under the j;;, doctor. The definition of the
Jin-doctor overtime implies that there is no overtime if the
doctor finishes the work before the office hour.

The total overtime in the appointment system OTr is

nD
OoTy =) 0T . - (15)
j=1
The average overtime for a doctor OTy is
1
OTy = —OTr . - (16)
np

The j;;, doctor idle time incurred just before the arrival
of the i;;-block of consultation case (either first or second)
is

IT;; = max(0,A;; — E_y);; i=2,...,NP;  (17a)
ITy; = max(0,A;;—11) (17b)
The total idle time of the j;; doctor IT] is
NP;
Y 1T ; OT; >0
Iy =% . (18)

IT;;+|0T;| ; OT; <0
i=1
The inclusion of the overtime term into the computation
of the total idle time suggests that the free time of the
doctor before the end of the office hour be considered as
an idle time as well.
The total idle time in the appointment system /77 is

nD
ITr =Y IT; - (19)
j=1
The average idle time for a doctor 17} is
1
ITy = —ITr . (20)
np

As mentioned in the previous sections, a number of ap-
pointed patients may not appear at the times of appoint-
ment and some appointed patients need to have laboratory
tests and thus their second consultation. In addition, the
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patient punctuality, i.e. the deviation time from the ap-
pointment time, can be random. The framework of prob-
ability theory will be utilized in this study to model and
measure the uncertainty. The inclusion of these random
events makes the defined performance indices become un-
certainty too. The measurements of the uncertain perfor-
mance indices will be then carried out using probabilistic
measures. Accordingly, the performance of the appoint-
ment system is measured through the expected total cost
of appointment system E[Cr] as defined by

E[CT] = CWE[W — T} —Q—COTE[OTT} +C1TE[ITT], (21)

where cy, cor, and ¢;T are the cost per time units associ-
ated to Wr, OTr, and ITr, respectively. The symbol E[V]
denotes the expectation of the random variable V.

2.3. Optimization of Appointment System

The optimization problem of the appointment system is
formulated as follows:

Minimize ,, ny, o = E [Cr (np, Dtpiock)] ‘Npalienl
= cwE[Wr(np, Atpiock)] ‘Npalienl
+corE[OTr (np, Atpiock)) |Npatient
+errE[ITr (np, Atpiock )] ‘]V])utient
(22)
Subject to

81(np, Atprock) = E[Wa(np, Atoiock) N pggin, — O <0

82(np, Atprock) = E[OTa (np, Atpiock)||N pggiens — S0 <0
@24

83(np, Atprock) = E[ITa (1D, Atbiock)]Npgyiens — Orr < 0,

. (25)

where  O(np,Dtpoer) is  the objective function.

81(np, Atpiock),  82(np, Atpiocr), and g3 (np, Atpiock)
are the inequality constraints. &y, dor, and &7 are the
thresholds of the average waiting time of a patient, the
average overtime for a doctor, and the average idle time
for a doctor, respectively.

The design variables that minimize the objective func-
tion (22) and at the same time satisfy the constraints (23)
to (25) will be referred to as the optimal number of doc-
tors ny, and the optimal appointment interval At;, . .

3. Genetic Algorithm (GA)

3.1. General on GA

GA is a class of global and stochastic search tech-
niques that are founded in the mechanism of natural selec-
tion. The GA procedure starts with an initial set of ran-
domly selected trial solutions, namely population. Each
individual in the population is encrypted and referred to
as a chromosome which represents a possible solution
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to the optimization problem. The chromosomes evolve
through successive iterations, called generations. In each
generation, the fitness of each chromosome is evaluated.
The fitness of each chromosome reflects the potential
to be the optimal solution. Each chromosome is repro-
duced according to its fitness value. Fitter chromosomes
have higher probabilities to be selected for reproduction
whereas weaker chromosomes tend to die off. The chro-
mosome selection and reproduction are carried out in a
reproduction process. The chromosomes resulting from
the reproduction process form a mating pool and are col-
lectively referred to as offspring. The offspring are later
undergone genetic operations. The exploration of search
space is carried out through the genetic operations where
genetic operators are applied to existing chromosomes
and transform them into new chromosomes. The genetic
operators-derived chromosomes represent new trial solu-
tions in the search space. The resulting chromosomes
then form the new generation of population. It should be
noted that GA works in two spaces alternatively. The se-
lection process is performed in the space of original vari-
ables while the genetic operations are done in the space of
coded variables. Both spaces are referred to as the solu-
tion and coding space, respectively [14]. The GA search
is terminated when a prescribed number of generations
have elapsed.

3.2. Chromosome Representation

GA encrypts each trial solution into a sequence of num-
bers or strings and denotes the sequences as a chromo-
some. A simple binary coding [16] is widely known and
will be employed for coding the optimal number of doc-
tors np and the appointment interval Atyocr.

3.3. Reproduction Process

Reproduction in GA is a process in which individual
chromosomes are copied according to their fitness values.
This operation imitates the survival of the fittest or the nat-
ural selection following Darwin’s principle [23]. Fitness
in an optimization by GA is defined by a fitness function.
Based on the optimization problem as described by the
objective function (22) and the set of constraints (23) to
(25), the fitness function F(x) of a chromosome repre-
senting a vector x of design variables in the solution space
is defined as

O(x) ; x is feasible

_ NC
Fx)= O(x)— Y kjvj(x) : x isinfeasible, (26)
=1

where v;(x) is the violation magnitude of the j;, con-
straint, k; is the penalty parameter for the j,, constraint
defined at each generation and NC is the number of con-
straints.

An adaptive penalty scheme which is introduced by
Barbosa and Lemonge [24] and improved by Obadage
and Hampornchai [21] is modified in handling the con-
straints. The improved adaptive penalty scheme shows its
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excellent capability in handling a very large number of
constraints [22]. This adaptive scheme is given by

< Vj(x) >
C
[<wi(x) >]

kj = |max(0™ (x))| @7

=

2

N
Il
-

where max(O™/(x)) is the maximum of the objective
function values in the current population in the infeasible
region, Vv;(x) is the violation magnitude of the j;, con-
straint. < v;(x) > is the average of v;(x) over the current
population. The violation magnitude is defined as
W@_{mw;aw>o

. . (28)
0 ; otherwise

The reproduction operator may be implemented in a
number of ways. The easiest and well-known approach
is the roulette-wheel selection [25,26]. According to the
roulette-wheel scheme, the j;;, chromosome will be repro-
duced with the probability of

E;
~ NB,

Y i
I=1

where Np,, is the population or sample size. The fitness
value Fj is obtained from Eq. (26).

P;

. (29)

3.4. Genetic Operators

GA utilizes two genetic operators, namely crossover
and mutation. Both operators have different mechanisms
but aim at the same task which is exploring the solution
space in order to attain optimal values. The crossover
operator involves the swapping of genetic material (bit-
values) between the two parent strings. This operator ran-
domly chooses a locus (a bit position along the two chro-
mosomes) and exchanges the sub-sequences before and
after that locus between two chromosomes to create two
offspring.

A simple binary crossover with two cut points, namely
two-point crossover performs the search by randomly se-
lected two cut points along the chromosomes. The strings
in between the cut points of both chromosomes are then
exchanged each other. The crossover rate P, is defined
as the ratio of the number of chromosome that will be
crossovered to the population size.

Mutation randomly flips or alters one or more bit values
at randomly selected genes in a chromosome. The values
of the selected genes are then converted either from O to 1
or from 1 to 0. The mutation rate P,, is defined as the ratio
of the number of genes that will be mutated to the popu-
lation size. The mutation operation also assists the explo-
ration for potential solutions which may be overlooked by
the crossover operation.
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Table 1. Definition of random variables in the numerical
example.

Random Variable Distribution (minutes)

L1;; Uniform (10,20)
L2;; Uniform (7,12)
TL;; Triangular (10,20,30)
D;; Uniform (0,10)

Length of service time for the 1st-consultation (L1;;), length of service
time for the 2nd-consultation (L2;;), time required for the laboratory tests
(TL;j), time deviating from the appointment time (D;;).

Table 2. Threshold values in case of deterministic number
of patients.

Parameter Magnitude (minutes)
dw 5
dor 30
dir 30

4. Numerical Example

The appointment system described in Section 2 is con-
sidered in this section. cw, cor, and ¢;r are set equal to
100, 600, and 300, respectively. The absence or no-show
probability of each patient p, is equal to 0.20. The prob-
ability that an appointed patient will have laboratory tests
P1ap 18 equal to 0.40. The ending time of the office hour
t7 is equal to 180. All random variables are assumed sta-
tistically independent and their descriptions are given in
Table 1.

The values of the thresholds are given in Table 2.

The distributions in Table 1 and the threshold values in
Table 2 can be obtained from data collection and statis-
tical analysis. The data collection can be obtained from
existing hospitals in the health care system.

GA search employs the population size of 100. The
number of generations used in the search is 100. The em-
ployed population size and the generation number yield
stationary result in the average of the feasible solutions.
Monte Carlo Simulation (MCS) is run for each individ-
ual chromosome to obtain its corresponding value of the
fitness function. A two-point crossover is utilized. P;
consists of 0.6, 0.7, 0.8, 0.9 where as B, includes 0.005,
0.004, 0.003, 0.002, 0.001. Table 3 summarizes nj, and
Aty for different values of Npgsien: including the corre-
sponding GA parameters.

It is obvious that the constraints in this numerical ex-
ample are complicated and can be obtained in terms of
numerical values only. Nevertheless, the adaptive scheme
can handle the constraints in an automatic manner and
thus avoid the need of a priori knowledge about the char-
acteristics of the constraints. The numerical results show
that the optimal number of doctor nj, play more important
role than the optimal appointment interval At;, . since
Aty i 18 considerably less sensitive, compared with nj,
to the change in the expected number of patients Npgsien: -
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Table 3. Optimal appointment systems for various number
of patients.

Npulienl P Pn nZ) At;;l()ck
50 0.7 0.001 5 15
100 0.7 0.002 10 14
200 0.8 0.002 20 12
300 0.8 0.002 30 14
400 0.8 0.002 40 12

Table 4. Optimization results using fixed penalty parame-
ters for Npasiens = 50.

k](J = 17273) E[CT(nD7AtZlock)]
0.1 191599
1 191599
10 191599
100 191599

In this regards, the production of doctors requires a pru-
dent planning from the viewpoint of economy.

Regarding the usefulness of the adaptive-penalty GA, a
set of computations with fixed penalty parameters k;(j =
1,2,3) is carried out. Each k; is taken to be the same for
each j. The optimization results from the fixed penalty
for the case of Npgriens = 50 are shown in Table 4.

It should be noted that the optimization result from the
adaptive-penalty GA for Npusiens = 50 is 187769. There-
fore, it is obvious that the adaptive-penalty GA is su-
perior to the fixed penalty GA. At the same time, Ta-
ble 4 also implies that the difficulty in selecting appro-
priate penalty parameters can be avoided when using the
adaptive-penalty GA.

5. Conclusion

The appointment system belongs to the class of indi-
vidual block/fixed interval. The adaptive-penalty GA has
been applied in determining the optimal number of doc-
tors and appointment interval. The length of the service
time for a doctor consultation, the time required for the
laboratory tests, and the time deviating from the appoint-
ment time are uncertain and modelled by random vari-
ables. The application of the proposed methodology has
been shown through a numerical example. The numerical
result has shown that the proposed methodology could ef-
fectively determine the optimal solution under a compli-
cate objective function and the implicit constraints. Since
the methodology provides the solutions under the consid-
eration of uncertainty, the risk management of health care
service can be realized.
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