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In the 1950s, Markowitz proposed to combine dif-
ferent investment instruments to design a portfolio
that either maximizes the expected return under con-
straints on volatility (risk) or minimizes the risk un-
der given expected return. Markowitz’s formulas are
still widely used in financial practice. However, these
formulas assume that we know the exact values of ex-
pected return and variance for each instrument, and
that we know the exact covariance of every two instru-
ments. In practice, we only know these values with
some uncertainty. Often, we only know the lower and
upper bounds on these values – i.e., in other words, we
only know the intervals that contain these values. In
this paper, we show how to select an optimal portfolio
under such interval uncertainty.

Keywords: portfolio optimization, interval uncertainty,
Markowitz model

1. Formulation of the Problem

Variety of investments. There are different ways to in-
vest money: we can deposit the money in a bank, we
can buy stocks or bonds, we can buy securities, deriva-
tives, and other financial instruments. Most investments
come with risk: stocks or bounds can decrease their val-
ues, companies can go bankrupt, etc.

Usually, the less risky investments – such as depositing
money in a bank – are the least profitable, while the most
profitable schemes – such as investing in promising start-
ups – are the most risky ones.

Every investor has a certain tolerance to risk, so he/she
would like select his/her investments so as to maximize
the return within a given risk level. Sometimes, an in-
vestor needs to maintain a certain growth level for his/her
investments; in this case, out of all possible investment
strategies that guarantee such return rate, the investor
would like to select an investment that minimizes the risk.

Investment portfolios as a way to minimize (leverage)
risk. Historically, among the most profitable investments

are investments in stocks of promising technological com-
panies: investors who bought Microsoft or Apple stocks
when these stocks became available increased their orig-
inal investment many times. However, such potentially
profitable investments carry high risk, since many promis-
ing companies fail.

How to maintain high return while minimizing the risk?
A natural idea is that, instead of investing all the money
into a single stock (“putting all the eggs into one basket”),
we spread our investment between different independent
stocks. While each of these stocks can still fail, it is highly
improbable that all these stocks will fail. As a result, in
such a strategy, the risk of losing all the money is much
smaller.

How to describe an investment portfolio: reminder.
On the qualitative level, portfolios are clearly better than
investing all the money into a single financial instrument.
It is desirable to select a portfolio that makes the maximal
use of this leveraging idea. For that, we need to be able to
describe such portfolios in precise terms.

To specify a portfolio, we need to decide which por-
tion of our money to invest in different available instru-
ments. Let us denote the overall number of available fi-
nancial instruments by n, and let us denote the portion that
we invest in the i-th instrument by wi ≥ 0. Different in-
vestments should cover the whole amount, i.e., we should

have
n
∑

i=1
wi = 1.

Let us denote by ri the return of the i-th investment.
When the wi-th part of the original money is invested in
the i-th instrument, then the return from this part is equal
to wi · ri and thus, the overall return r per unit investment

is equal to r =
n
∑

i=1
wi · ri.

How to estimate the investment risk. The risk associ-
ated with investments is due to the fact that it is not pos-
sible to predict the return ri of each investment i. We can
observe how this investment fared in the past; usually, in
some years, this instrument grew, in others, grew less or
even decreased in value. We can count the numbers of
years with different increase and thus, estimate the prob-
abilities of different return values. In other words, we can
view the return ri of the i-th instrument as a random vari-
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able – a variable that may take different values with dif-
ferent probabilities.

The portfolio’s return r is a linear combination of a
large number of random variables ri – i.e., a sum of a large
number of random variables wi · ri. The leverage works
when the investments are reasonably independent, and
when each of these investments gets a reasonably small
portion of the overall amount. Thus, r is a sum of a large
number of small independent random variables wi · ri.

It is known that for large n, the distribution of the sum
of n small independent random variables is close to Gaus-
sian (normal). This fact is known as the Central Limit
Theorem; this is the main reason why normal distributions
are ubiquitous in nature; see, e.g., [1]. Thus, the portfo-
lio’s return r can be viewed as a normally distributed ran-
dom variable.

To describe a normally distributed random variable r,
it is sufficient to describe two parameters: its expected
value μ = E[r] and its variance σ2 = E[(r− μ)2]. Thus,
these two parameters are sufficient to describe the behav-
ior of an investment portfolio: the expected return μ and
the standard deviation σ . In economics, the portfolio’s
standard deviation is also called its volatility.

To formulate and solve the corresponding optimization
problem, we need to be able to describe these two param-
eters μ and σ2 in terms of the allocations wi and of the
parameters describing individual investments and the rela-
tion between them. For the mean, the situation is simple:
the mean of the linear combination is equal to the linear

combination of the means. Thus, we have μ =
n
∑

i=1
wi ·μi,

where μi = E[ri] is the expected return of the i-th invest-
ment. Therefore,

r−μ =
n

∑
i=1

wi · ri −
n

∑
i=1

wi ·μi =
n

∑
i=1

wi · (ri −μi)

and hence,

(r−μ)2 =
n

∑
i=1

n

∑
j=1

wi ·w j · (ri −μi) · (r j −μ j).

So,

σ2 = E
[
(r−μ)2]=

n

∑
i=1

n

∑
j=1

wi ·w j ·σi j,

where

σi j
def= E [(ri −μi) · (r j −μ j)]

is the corresponding covariance matrix.
Summarizing: to predict the expected return and

volatility of each portfolio, we need to know the expected
returns μi of each instrument and the covariance matrix
σi j describing the volatility of individual instruments and
relation between these instruments.

Markowitz’s result: main assumptions and formula-
tion of the problems. The main assumption behind the
original Markowitz paper [2] is that we do know the exact
values of the quantities μi and σi j. Under this assumption,

we can formulate the following two reasonable problems.
The first problem is related to the fact that each investor

has a certain tolerance to risk. In precise terms, for each
investor, there is the maximum value of volatility σ0 that
this investor can tolerate. Within this limit, we need to
select a portfolio with the largest possible value of ex-
pected return μ . Of course, the larger risk an investor
tolerates, potentially the larger the expected return, so it
makes sense to always select a portfolio with the largest
possible value of volatility. In precise terms, we thus need
to solve the following problem:

Maximize
n

∑
i=1

wi ·μi

under the constraints
n

∑
i=1

n

∑
j=1

wi ·w j ·σi j = σ2
0 ;

n

∑
i=1

wi = 1.

In some situation, the investor is interested in achieving
a certain level of average return μ0. In this case, among all
the portfolios that guarantee this level of expected return,
we need to select a portfolio that minimizes the risk. In
precise terms, we thus need to solve the following prob-
lem:

Minimize
n

∑
i=1

n

∑
j=1

wi ·w j ·σi j

under the constraints
n

∑
i=1

wi ·μi = μ0;

n

∑
i=1

wi = 1.

Markowitz’s result: algorithms. To solve each of these
constraint optimization problems, we can use the La-
grange multiplier method (see, e.g., [3]) to reduce each
of these problem to an easy-to-solve unconstrained opti-
mization problem. For the first optimization problem, the
Lagrange multiplier method leads to the problem of opti-
mizing the function

n

∑
i=1

wi ·μi −α ·
(

n

∑
i=1

n

∑
j=1

wi ·w j ·σi j −σ2
0

)
−

β ·
(

n

∑
i=1

wi −1

)
,

(where α and β are Lagrange multipliers), or, equiva-
lently, the problem of optimizing the function

n

∑
i=1

wi ·μi −α ·
n

∑
i=1

n

∑
j=1

wi ·w j ·σi j −β ·
n

∑
i=1

wi. . (1)

For the second problem, we get the problem of optimizing
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the function
n

∑
i=1

n

∑
j=1

wi ·w j ·σi j −α ′ ·
(

n

∑
i=1

wi ·μi −μ0

)
−

β ′ ·
(

n

∑
i=1

wi −1

)
,

or, equivalently, the problem of optimizing
n

∑
i=1

n

∑
j=1

wi ·w j ·σi j −α ′
n

∑
i=1

wi ·μi −β ′ ·
n

∑
i=1

wi.

If we divide this functional by −α ′, we get the expres-
sion (1) with α = 1/α ′ and β =−(β ′/α ′). Thus, for both
problems, we need to optimize the expression (1).

Differentiating this expression by wi and equating the
derivatives to 0, we conclude that

2 ·
n

∑
j=1

σi j ·w j = α ·μi +β .

Thus, we have

wi = α ·w(1)
i +β ·w(2)

i , . . . . . . . . . (2)

where w(k)
i (k = 1,2) are the solutions to easy-to-solve

systems of linear equations

2 ·
n

∑
j=1

σi j ·w(1)
j = μi

and

2 ·
n

∑
j=1

σi j ·w(2)
j = 1.

The values α and β can be determined from the cor-
responding constraints. For the second problem, the con-

straints
n
∑

i=1
wi ·μi = μ0 and

n
∑

i=1
wi = 1 take the form of an

easy-to-solve system of two linear equations with two un-
knowns:

α ·μ(1) +β ·μ(2) = μ0;

α · s(1) +β · s(2) = 1,

where μ(k) def=
n
∑

i=1
wi · μ(k)

i and s(k) def=
n
∑

i=1
w(k)

i . Once we

find the values α and β , we can use the formula (2) to
find the desired values wi.

For the first problem, we get the constraints

α2 · t11 +2α ·β · t12 +β 2 · t22 = σ2
0 ; . . . . (3)

α · s(1) +β · s(2) = 1,

where tk�
def=

n
∑

i=1

n
∑
j=1

w(k)
i ·w(�)

j ·σi j. We can use the second

equation to express β as a linear function of α , as

β =
1

s(2) −α · s(1)

s(2) . . . . . . . . . . . . (4)

Substituting this expression into the first equation of the

system (3), we get an easy-to-solve quadratic equation,
from which we can find α . Based on this α , we can use
the formula (4) to find β and then the formula (2) to find
the desired values wi.

Remaining problem. Markowitz’s formulas assume that
we know the exact values of expected return and variance
for each financial instrument, and that we know the exact
covariance of every two instruments. In practice, we only
know these values with some uncertainty.

Often, we only know the bounds of each of these val-
ues – i.e., in other words, we only know the intervals that
contain these values. This means that instead of the ex-
act values of the expected returns μi, we only know the
bounds μ

i
≤ μi ≤ μ i, i.e., we only know the intervals

[μ
i
,μ i] that contain the actual (unknown) values μi. Sim-

ilarly, instead of the exact values of σi j, we only know the
bounds σ i j ≤ σi j ≤ σ i j, i.e., we only know the intervals[
σ i j,σ i j

]
that contain the actual (unknown) values σi j.

How can we select an optimal portfolio under such in-
terval uncertainty? This is a question that we answer in
this paper.

Comment. In addition to the intervals, we may have ad-
ditional information about the values μi and σi j: partial
information about the probabilities of different possible
values from these intervals, fuzzy information about the
degree of possibility of different values, etc. Several pa-
pers (see, e.g., [4, 5]) generalize Markowitz’s ideas to sit-
uations when we have such additional information. In this
paper, we assume that intervals is all we know.

2. Formulation of the Problems in Precise
Terms

Towards the formulation of the first problem: con-
straint on volatility. In the first problem, we assume that
an investor has a volatility threshold σ0. In other words,
we assume that the investor only considers investments
for which the variance does not exceed the value σ2

0 .
In our situation, this means that we select the portfolio

for which, for all possible combination of values σi j from
[σ i j,σ i j], we must have

n

∑
i=1

n

∑
j=1

wi ·wi ·σi j ≤ σ2
0 .

Towards the formulation of the first problem: what do
we maximize? In the first problem, we maximize the ex-

pected return μ =
n
∑

i=1
wi · μi. In the idealized case, when

we know the exact values of expected returns μi for differ-
ent instruments, we can use the above formula to uniquely
determine the return corresponding to a given portfolio
(w1,w2, . . . ,wn). In contrast, in the case of interval uncer-
tainty, we may have different values of the return, depend-
ing on the actual values μi ∈ [μ

i
,μ i].

We argue that the investor should base his/her selec-
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tions on the smallest possible return value. Indeed, this
is the only expected return value that we can guarantee –
anything above that comes with an additional risk that it
will not happen.

Resulting formulation of the first problem. Thus, we
arrive at the following “maximin” problem:

Maximize min
μi∈[μ i,μ i]

∑
i=1

wi ·μi

under the constraints
n

∑
i=1

n

∑
j=1

wi ·w j ·σi j ≤ σ2
0 for all σi j ∈

[
σ i j,σ i j

]
;

n

∑
i=1

wi = 1.

Towards the formulation of the second problem. In
the second problem, we want to guarantee the return rate

μ =
n
∑

i=1
wi ·μi to be at least μ0. The actual return rate de-

pends on the values μi ∈ [μ
i
,μ i], so the only way to guar-

antee that the actual return rate is greater than or equal to

μ0 is to make sure that all possible values of μ =
n
∑

i=1
wi ·μi

are greater than or equal to μ0.
Under this constraint, we want to minimize the risk σ2.

Again, the actual value of the risk depends on the values
σi j ∈ [σ i j,σ i j]. Minimizing the risk usually minimizing
the worst-case risk, i.e., minimize the maximum value of
the risk.

Resulting formulation of the second problem. Thus, we
arrive at the following “minimax” problem:

Minimize max
σi j∈[σ i j,σ i j]

n

∑
i=1

n

∑
j=1

wi ·w j ·σi j

under the constraints

∑
i=1

wi ·μi for all μi ∈
[
μ

i
,μ i

]
;

n

∑
i=1

wi = 1.

3. Analysis of the Resulting Problems

Analyzing the first problem. In the first problem, the
objective function is min

μi∈[μ i,μ i]
∑

i=1
wi · μi. Since all the al-

locations wi are non-negative, the expression ∑
i=1

wi ·μi is

a monotonic (non-strictly increasing) function of the val-
ues μi. Thus, its minimum is attained when each value
μi attains its smallest possible value μ

i
. So, the objective

function takes the form ∑
i=1

wi ·μ i
.

The first constraint is that
n
∑

i=1

n
∑
j=1

wi ·w j ·σi j ≤ σ2
0 for all

σi j ∈ [σ i j,σ i j]. This inequality is equivalent to

max
σi j∈[σ i j ,σ i j]

n

∑
i=1

n

∑
j=1

wi ·w j ·σi j ≤ σ2
0 .

Since the allocations wi are non-negative, the function
n
∑

i=1

n
∑
j=1

wi ·w j ·σi j is a monotonic (non-strictly increasing)

function of the values σi j. Thus, its maximum is attained
when each value σi j attains its largest possible value σ i j.

So, the constraint takes the form
n
∑

i=1

n
∑
j=1

wi ·w j ·σ i j ≤ σ2
0 .

Hence, the first problem takes the following form:

Maximize ∑
i=1

wi ·μ i

under the constraints
n

∑
i=1

n

∑
j=1

wi ·w j ·σ i j ≤ σ2
0 ;

n

∑
i=1

wi = 1.

We have already mentioned that the larger the allowed
risk, potentially the larger the resulting gain. Thus, when
we are maximizing the gain, it makes sense to only con-
sider situations in which the worst-case risk

n

∑
i=1

n

∑
j=1

wi ·w j ·σ i j

takes the largest possible value σ2
0 . In other words, it is

reasonable to consider the following optimization prob-
lem:

Maximize ∑
i=1

wi ·μ i

under the constraints
n

∑
i=1

n

∑
j=1

wi ·w j ·σ i j = σ2
0 ;

n

∑
i=1

wi = 1.

This is the first original Markowitz problem for μi = μ
i

and σi j = σ i j. Thus, we can use the known algorithms
for solving the first Markowitz problem for exactly known
μi and σi j to solve a similar problem corresponding to
interval uncertainty.

Analyzing the second problem. In the second prob-

lem, the objective function is max
σi j∈[σ i j,σ i j]

n
∑

i=1

n
∑
j=1

wi ·w j ·σi j.

Since all the allocations wi are non-negative, the expres-

sion
n
∑

i=1

n
∑
j=1

wi · w j · σi j is a monotonic (non-strictly in-

creasing) function of the values σi j. Thus, its maximum
is attained when each value σi j attains its largest possi-
ble value σ i j. So, the objective function takes the form
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n
∑

i=1

n
∑
j=1

wi ·w j ·σ i j.

The first constraint is that
n
∑

i=1
wi ·μi ≥ μ0 for all μi from

[μ
i
,μ i]. This inequality is equivalent to

min
μi∈[μ i,μ i]

n

∑
i=1

wi ·μi ≥ μ0.

Since the allocations wi are non-negative, the function
n
∑

i=1
wi · μi is a monotonic (non-strictly increasing) func-

tion of the values μi. Thus, its minimum is attained when
each value μi attains its smallest possible value μ

i
. So,

the constraint takes the form ∑
i=1

wi ·μ i
≥ μ0.

Hence, the second problem takes the following form:

Minimize
n

∑
i=1

n

∑
j=1

wi ·w j ·σ i j

under the constraints
n

∑
i=1

wi ·μ i
≥ μ0;

n

∑
i=1

wi = 1.

As we have mentioned earlier, the higher return we want,
potentially the higher the corresponding risk. Thus, when
we are minimizing the gain, it makes sense to only con-
sider situations in which the worst-case gain ∑

i=1
wi · μ

i

takes the smallest possible value μ0. In other words, it
is reasonable to consider the following optimization prob-
lem:

Minimize
n

∑
i=1

n

∑
j=1

wi ·w j ·σ i j

under the constraints

∑
i=1

wi ·μ i
= μ0;

n

∑
i=1

wi = 1.

This is the second original Markowitz problem for
μi = μ

i
and σi j = σ i j. Thus, we can use the known al-

gorithms for solving the second Markowitz problem for
exactly known μi and σi j to solve a similar problem cor-
responding to interval uncertainty.

4. How to Select an Optimal Portfolio in the
Case of Interval Uncertainty: Resulting
Recommendations

What information we have: reminder. We have n pos-
sible financial instruments. For each of the instruments i,

we know the bounds μ
i

and μ i on the actual (unknown)
return μi of this instrument: μ

i
≤ μi ≤ μ i.

Also, for each pairs of instruments i and j, we know the
bounds σ i j and σ i j on the covariance σi j between these
two instruments: σ i j ≤ σi j ≤ σ i j.

Comment. The original problem analyzed by Markowitz
corresponds to the case when we know the exact values of
all these quantities, i.e., when μ

i
= μ i and σ i j = σ i j for

all i and j.

Two possible situations: reminder. Similarly to the
original Markowitz problem, we consider two possible
situations:

• In the first situation, we know the highest possible
value of risk σ0 tolerated by the investor. Under this
constraint, we want to find a portfolio with the largest
guaranteed rate of return.

• In the second situation, we want to guarantee the rate
of return μ0. Under this constraint, we want to find
the portfolio with the smallest risk.

Our recommendation. The above analysis shows that
in both situations, to find the optimal portfolio, we must
solve the original Markowitz problem for μi = μ

i
and

σi j = σ i j.

Discussion: general case. This mathematical recommen-
dation makes perfect sense: we do not want to add addi-
tional risk, so we operate under the worst-case conditions.
From the viewpoint of gain, the worst-case situation is
when the gain is the smallest, i.e., when μi = μ

i
. From

the viewpoint of risk, the worst-case situation is when the
risk is the largest, i.e., when σi j = σ i j.

Discussion: important special case. When happens if
we do not have any specific knowledge about the n finan-
cial instruments? To be more precise, what if:

• we only know the same bounds for all expected re-
turns μi: μ ≤ μi ≤ μ , and

• we know the same bounds for the elements σi j of the
covariance matrix: σdiag ≤ σii ≤ σdiag for all i and
σnd ≤ σi j ≤ σnd for all i �= j?

In this case of high uncertrainty, according to our main
result, the optimal portfolio can be obtained by solving
the original Markowitz problem with μi = μ

i
= μ and

σi j = σ i j = σdiag for i = j and σi j = σ i j = σnd for i �= j.
One can see that this original Markowitz problem is in-
variant with respect to arbitrary permutation of the n in-
struments. Thus, the resulting optimal weights wi should
also be invariant under all such permutations. Therefore,

we should have wi = w j for all i and j. Since
n
∑

i=1
wi = 1,

we hence conclude that n ·wi = 1, i.e., that wi = 1/n.
So, in the above case of high uncertainty, the optimal

weights are wi = 1/n for all i. This explains why the “1/n
rule” – allocating your money equally to each of n in-
struments – was shown to be efficient in many practical
financial situations with high uncertainty; see, e.g., [6, 7].

Vol.19 No.5, 2015 Journal of Advanced Computational Intelligence 579
and Intelligent Informatics



Yuan, M. et al.

Acknowledgements
This work was supported in part by National Science Foundation
grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center
of Excellence) and DUE-0926721. The authors are thankful to the
anonymous referees for valuable discussions.

References:
[1] D. J. Sheskin, “Handbook of Parametric and Nonparametric Sta-

tistical Procedures,” Chapman & Hall/CRC, Boca Raton, Florida,
2011.

[2] H. Markowitz, “Portfolio selection,” J. of Finance, Vol.7, No.60,
pp. 77-91, 1952.

[3] D. P. Bertsekas, “Nonlinear Programming,” Athena Scientific,
Cambridge, Massachisetts, 1999.

[4] D. Berleant, L. Andrieu, J.-P. Argaud, F. Barjon, M.-P. Cheong,
M. Dancre, G. Sheble, and C.-C. Teoh, “Portfolio manage-
ment under epistemic uncertainty using stochastic dominance
and Information-Gap Theory,” Int. J. of Approximate Reasoning,
Vol.49, No.1, pp. 101-116, 2008.

[5] M. Salahi, F. Mehrdoust, and F. Piri, “CVaR Robust Mean-CVaR
Portfolio Optimization,” ISRN Applied Mathematics, Article ID
570950, 2013.

[6] V. DeMiguel, L. Galappi, and R. Uppal, “1/N,” Proc. of the 33rd
Annual Meeting of the European Finance Association EFA’2006,
Zurich, Switzerland, August 23-26, 2006; available at
http://ssrn.com/abstract=911512

[7] G. Gigerenzer, “Rationality for Mortals: How People Cope with
Uncertainty,” Oxford University Press, New York, 2008.

Name:
Meng Yuan

Affiliation:
Graduate School of Information, Production, and Systems, Waseda
University
Address:
2-7 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
Brief Biographical History:
2014 Received the M. Sc. from Waseda University
Main Works:
• Her research interests include investment model and model building.

Name:
Xu Lin

Affiliation:
Graduate School of Information, Production, and Systems, Waseda
University
Address:
2-7 Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
Brief Biographical History:
2015 Received the M.Sc. from Waseda University
Main Works:
• His research interests include investment model and forecasting.

Name:
Junzo Watada

Affiliation:
Professor, Graduate School of Information, Pro-
duction, and Systems, Waseda University

Address:
2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
Brief Biographical History:
1972- Senior Systems Engineer, Fujitsu Co. Ltd.
1983-2003 Lecturer and Associate Professor, Ryukoku University, and
Professor, Osaka Institute of Technology
2003- Professor of Knowledge Engineering and Soft Computing at
Graduate School of Information, Production, and Systems, Waseda
University
Main Works:
• data mining, text and web, soft computing, fuzzy data analysis
Membership in Academic Societies:
• Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT)
• The Institute for Electrical and Electronic Engineers (IEEE)

Name:
Vladik Kreinovich

Affiliation:
Professor, University of Texas at El Paso

Address:
500 W. University, El Paso, TX 79968, USA
Brief Biographical History:
1975- Institute of Mathematics, Soviet Academy of Sciences
1980- Leading Researcher, National Institute for Electrical Measuring
Instruments, Russia
1989- Visiting Researcher, Stanford University
1990- Professor, University of Texas at El Paso
Main Works:
• H. T. Nguyen, V. Kreinovich, B. Wu, and G. Xiang, “Computing
Statistics under Interval and Fuzzy Uncertainty,” Springer Verlag, Berlin,
Heidelberg, 2012.
• M. Ceberio and V. Kreinovich (Eds.), “Constraint Programming and
Decision Making,” Springer Verlag, Berlin, Heidelberg, 2014.
• C. Hu, R. B. Kearfott, A. de Korvin, and V. Kreinovich (Eds.),
“Knowledge Processing with Interval and Soft Computing,” Springer
Verlag, London, 2008.
• W. Pedrycz, A. Skowron, and V. Kreinovich (Eds.), “Handbook on
Granular Computing,” Wiley, Chichester, UK, 2008.
Membership in Academic Societies:
• Association for Computing Machinery (ACM)
• The Institute for Electrical and Electronic Engineers (IEEE)
• American Mathematical Society (AMS)

580 Journal of Advanced Computational Intelligence Vol.19 No.5, 2015
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

