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Two main issues arise in practical imitation learn-
ing by humanoid robots observing human behavior —
the first is segmenting and recognizing motion demon-
strated naturally by a human beings and the second is
utilizing the demonstrated motion for imitation learn-
ing. Specifically, the first involves motion segmen-
tation and recognition based on the humanoid robot
motion repertoire for imitation learning and the sec-
ond introduces learning bias based on demonstrated
motion in the humanoid robot’s imitation learning to
walk. We show the validity of our motion segmenta-
tion and recognition in a practical way and report the
results of our investigation in the influence of learning
bias in humanoid robot simulations.

Keywords: motion segmentation and recognition, imi-
tation learning, learning bias, humanoid robot, via-point
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1. Introduction

Humanoid robots made commercially show many
kinds of behavior, mostly through graphical user inter-
faces used to create new motion based on via-point rep-
resentation. A user defines a set of via-points, each rep-
resenting a set of joint angles defining the posture of a
humanoid robot. The robot follows via-points one by
one to generate a specific motion. The process of de-
signing and modifying motion using via-point represen-
tation is, unfortunately, difficult and time-consuming, so
imitation learning has draw attention [1-5]. These en-
able users to add and design new robot behavior. Most
imitation learning for these robots focuses on mimick-
ing the trajectory of joint angles for realizing the demon-
strated behavior. This is insufficient, however, for im-
itating demonstrated motion by following the joint an-
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gle trajectory of demonstrated motion precisely because
robot link structure and dynamics differ from those of a
human demonstrator. Robot walking needs stability to
keep the robot upright while following the demonstrated
trajectory of joint angles. Overcoming the imitation gap
between robots and human demonstrators requires addi-
tional learning to adapt imitated motion to robot body dy-
namics. Miyamoto and Kawato [1] show imitation learn-
ing through via-point representation for a tennis serve and
upswing of robot arm. Via-point representation is widely
used in may robots because it needs smaller parameters
than other representations representing complex motion.

Reinforcement learning has been studied widely in
robotics [6—8] because it enables a robot to acquire pur-
posive behavior through trial and error. Applying simple,
naive reinforcement learning to a robot, however, requires
long learning time and high cost making it is desirable to
introduce imitation into reinforcement learning to reduce
learning time and unnecessary trial and error. Takahashi
et al. [9] showed that a wheeled soccer robot enhances
behavior acquisition and recognition based on the inter-
action between behavioral learning and observation. A
robot learns several ways, including trial and error and
reading rewards of observed teammate behavior. Hama-
hata et al. [10] proposed designing reward system based
on observing a human demonstration and applying it to
learning on an inverted pendulum robot. These studies
use reinforcement learning based on estimated state val-
ues. Value-based reinforcement learning, however, may
involve issues such as the curse of dimensionality and rel-
atively long learning time.

Policy gradient methods without state value estimation
have the advantages of handling continuous state space,
a high degree of freedom and a short learning time, al-
though they do not have guarantee of convergence to the
optimal policy. Kohl and Stone [11] shows the validity
of the policy gradient method with a real 4-legged robot.
Conventional approaches based on policy gradient based
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reinforcement learning for imitation use a demonstrated
motion trajectory to initialize the motion parameters to be
learned. It is important to find good initial parameters
when setting an optimal policy within reasonable learn-
ing time. Takahashi et al. [12, 13] show that an inverted-
pendulum mobile robot acquires a good set of initial pa-
rameters from observing a demonstration by a human be-
ing for a robot learning a kicking motion. Miyamoto
and Kawato [1] used a demonstrated trajectory as an ini-
tial parameter set of via-points for learning, but it is not
clear how a demonstrated motion affected learning per-
formance if it is used as a bias of reinforcement learning
as imitation learning rather than as initial learning param-
eters.

A further point in imitation learning is available train-
ing data. Most imitation learning studies [2—5] assume
that demonstrator’s joint angles are available as training
data. Optical or mechanical motion capture is necessary
for measuring joint angles of a demonstrator. This tends to
be expensive and time-consuming preparation, however.
Powerful inexpensive motion capture systems are avail-
able, such as KINECT from Microsoft Corporation. The
KINECT device measures the positions of human joints
but does not provide joint angle information directly. It is
difficult to solve inverse kinematics in calculating joint
angles from joint positions because of redundancy and
differences in body link structure between human demon-
strators and humanoid robots. Imitation learning should
avoid unnecessary cost for solving inverse kinematics to
acquire joint-angle trajectories from demonstrations. Im-
itation learning in a practical situation does not require a
human demonstrator to declare the start and the end of a
particular motion and the robot must segment and recog-
nize motion itself.

This paper proposes two methods for practical imita-
tion learning: (1) motion segmentation and recognition
based on the motion repertoire of the humanoid robot for
imitation learning, and (2) imitation learning based on
a reasonable bias for a humanoid robot with policy gra-
dient based reinforcement learning. (1) recognizes both
the motion that the demonstrator shows and the cycle pe-
riod and phase if a human demonstrator shows a periodic
motion. (2) required that we investigate learning perfor-
mance based on bias of motion automatically segmented
in (1). A humanoid robot observes a human walking with
motion capture and acquires the joint trajectory. Mo-
tion data based on the motion repertoire of the humanoid
robot extracts only a walking sequence for imitation learn-
ing. Learning bias is designed with body link posture
trajectories calculated by joint trajectory. Learning per-
formance is investigated by strictly checking the weight
of learning bias during imitation learning. Results of ex-
periments showed that motion segmentation operates ap-
propriately and indicates that learning bias contributes to
better learning parameter exploration and motion stability
during learning.
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Fig. 1. Imitation learning flow.

2. Overview

Figure 1 shows the imitation learning flow. The hu-
manoid robot first observes a human demonstration with
a motion capture device, such as the KINECT sensor. The
device records a sequence of a human demonstrator’s joint
positions in camera coordinates. Because it is difficult
to estimate joint angles uniquely from information on the
joint positions of the body, link postures are used to com-
pare human and robot motion.

The recorded sequence of such link postures includes
motions such as standing, walking, bowing, and hand
waving. This sequence is divided into motions based on
robot motion repertories in which individual motions are
defined using the via-point representation of joint angles.
Motion segmentation is based on difference in link pos-
ture sequences between the human being and the robot.
Motion that shows the smallest difference is labeled in
the sequence of the human motion demonstrated.

The segmented sequence of human link postures is in-
troduced in motion learning as a bias for imitating behav-
ior. Basically, reinforcement learning is applied to im-
prove motion using the body dynamics of the robot itself
by updating via-points of joint motion angles. The learn-
ing bias derived from the segmented human motion se-
quence is used to improve learning performance similar
to the way in which a trainer shows a model motion to a
trainee.

3. Motion Recognition and Segmentation

A learning robot must recognize and segment observed
motion demonstrated by a human being to choose which
motions to learn as shown in Fig. 2 overview. We assume
that our humanoid robot has a set of basic motions to be
improved by imitation learning. The robot has 5 motions
— standing, walking, bowing, waving the right hand, and
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waving the left hand — each of which is described using
via-point representation, and the sequence of link postures
during motion is recorded beforehand. One of the mod-
ules shown in Fig. 2 is assigned to one motion and its link
posture sequecne.

The motion capture system is used to observe the hu-
man demonstration, measures human joint positions, and
converts position data to the robot coordinate system,
making the link posture sequence during the demonstrated
motion available. The link posture sequence is compared
to that one of each robot motion and the similarity of
link posture sequence is calculated. The motion with the
biggest similarity is regarded as the motion demonstrated
by the human being.

3.1. Link Posture Estimation

It is difficult to determine joint angles from the se-
quence of observed joint positions because of redundancy
in degrees of freedom. It takes time to find a reason-
able joint angle sequence because the exploration space
is huge. To avoid the issue, we use link posture estima-
tion instead of joint angle estimation because link posture
is calculated uniquely without the redundancy problem.

Figure 3 shows joints detected by KINECT and links
whose postures are calculated with joints. Our KINECT-
based motion capture system detects 16 joints. Links are
defined and conducted using adjacent joints as shown in
Fig. 3.
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We define camera and robot coordinate systems as
shown in Fig. 4. The motion capture system recodes joint
positions in the camera coordinate system that are then
translated in the robot coordinate system. The center of
the robot coordinate system is the center of hip joints,
HIP_L and HIP_R. The z direction in the robot coordi-
nate system is vertical upright, where as the x direction is
defined as the direction from joint HIP_L to joint HIP_R
ignoring the z direction. The y direction of the robot co-
ordinate system is defined as the cross product of z and x,
that is, y = z X x.

A link posture in the robot coordinate system is defined
with the two adjacent joints shown in Fig. 3. The posture
of link 7 consists of joints / and m as defined in Eq. (1).

P — Pn
Q= (1)
C P = pall
where p; and p,, are joint / and m positions in the robot
coordinate system. ||-|| indicates Euclidean norm. Exper-

iments that follow use the 16 joints and 11 links shown in
Fig. 3.

3.2. Similarity Based on Link Posture

The link postures sequence of human demonstrator
"@,(t) is recorded by the motion capture system. Robot
"@;(t) is recorded while the robot is actually executing the
motion based on the joint trajectory represented by via-
points. The similarity of link postures ",(t) and "@,(t)
is defined as the inner product of these postures, that is,
he,(t)-"@,(t). The similarity of the two link posture se-
quences of the human demonstrator and the robot is de-
fined as follows.

ZZ'I% IO Q)

tlll

where N and T indicate the number of links and size of
the sequence.
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Fig. 5. Schematic example of observed motion data se-

quence demonstrated by (a) a human being and (b) autocor-
relation function G(7) of sequences.

3.3. Periodic Motion Detection

The human demonstrator often shows periodic motion
such as, walking, or waving hands. A sequence of motion
data must be segmented into one cycle and the phase and
period should be defined. The autocorrelation function
reasonably finds the demonstrated motion period. The au-
tocorrelation function in demonstrated motion G(7) is as
follows:

GO == L L 0o t+1) .. )

7 indicates the shift time, 7 the length of the window for
calculating the autocorrelation, and N the number of links.
Fig. 5(a) shows a schematic example of the sequence of
the observed motion demonstrated by a human being. The
black line indicates the original sequence of the observed
posture of a link. The grey line shows the sequence shifted
with time 7. The autocorrelation function shows a local
maximum for 7 that is the period of the demonstrated
motion as shown in Fig. 5(b). 7 showing the first local
maximum of G(7) excluding 7 = 0 is defined as the cycle
period of demonstrated motion 7,,.

The phase is important for recognizing the state of mo-
tion correctly. Phase « is calculated using the correlation
between human and robot motions with time shift ¢. The
correlation function is shown in Eq. (4).

1 T—1N—-1

Se) =57 X X o0 () @

P indicates the period of one-cycle robot motion. Fig. 6(a)
shows an example of sequences of one cycle of observed
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Fig. 6. Schematic example of (a) sequences of one cycle
of observed motion data and robot motion data and (b) the
similarity function based on «.

human motion data and robot motion data. Similarity
function S(a) is maximum if phase o matches the two
motion data as shown in Fig. 6(b). Phase o showing max-
imum S(«) is regarded as the demonstrated motion phase
Oy

3.4. Trajectory Based on Via-Point Representation

The data size for representing the trajectory of raw joint
angles of one motion is too huge to learn, so via-point
representation is widely used to reduce learning param-
eter size [1]. Fortunately, many commercially available
humanoid robots, including Robovie-PC produced by Vs-
tone Co., Ltd. [14] which we use in our experiments, use
via-point representation to design motion. Fig. 7 shows
an example of via-point representation for walking. Each
number in the figure indicates the index of a via-point.
Humanoid skeletons adjacent to numbers indicate robot
postures at via-points. A set of via points represents points
on the trajectory of motion. A point between via-points is
interpolated with, for example, spline interpolation or cu-
bic curve interpolation. We use cubic curve interpolation
in this paper because our robot uses it.

One motion is defined by a set of via-points. Via-point
0,=(6!,62,...) indicates a set of joint angles of the body
at time 7. The walking we design for our experiments, for
example, has 15 via-points. Time ¢ is defined for each
via-point to control motion speed.

Figure 8 shows a joint angle trajectory represented by
via-points. The trajectory is the actual angle of the right
waist joint of the humanoid robot while it walks two steps.
Black dots indicate via-points and the solid line indicates
interpolated joint angles.
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Fig. 7. Example of via-point representation for walking:
Individual numbers indicate indexes of the via-point. Hu-
manoid skeletons indicate robot posture at via-points.
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Fig. 8. Trajectory of a joint angle represented by via-points
during walking.

0'(t) =d P +br*+ct+d . . . . ... .5
0i(t) =3d > +2bt+¢ . . . . . .. .. (6)

Egs. (5) and (6) show a cubic curve line and its deriva-
tive. Two adjacent via-points at times #; and #, maintain
specific angles 6,, and 0,,. Coefficients a', b', ¢’ and d'
are calculated by Eq. (7) if time (#1, 72), angles (9,"1 s 9,52),

and angular velocities (6} é,il) of the ith joint at the two

1 b
via-points are given.

ai t13 t12 no1 - etil
b; 317 24 10 o
= 302 j (7
Ci t2 ty b 1 9;2
d; 3 2 1 0 i

4. Imitation Learning

We use a simple policy gradient method introduced by
Kohl and Stone [11] to improve walking by updating via-
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points that represents walking. It has an initial set of via-
points representing its original walking and prepares test
sets of similar via-points by adding small disturbances.
It evaluates the test set of via-points one by one and es-
timates the gradient of the evaluation of walking based
on via-points, then it updates via-points based on the es-
timated gradient of the evaluation. The learning system
repeats this procedure and updates motion parameters to
reach the local maximum of evaluation.

4.1. Policy Gradient Method

A set of via-points for the current motion is ® =
(01,05,...) = (911,912,...,915,...), where the k and j
indicate indices of via-points and joints. The learn-
ing system prepares M motion sets of similar via-points
10.20,..M0 by adding small disturbances 8,{, 0, or —e,f
to the current angle of motion via-point ®.

"= ("0,"0,,...)=("6}" 912,...) N )]

meka9,Z+r8,{wherer6(—l,0,l) R )

It evaluates sets of via-points ”® one by one after the
robot generates walking based on the set of via-points.

Evaluation averages for disturbance 8,! are estimated as

follows:

J
° Ak,+e

mpJ ;. oJ J
rameter "0, is 6] +¢&;

is average of evaluation of policies which pa-

o A/, is average of evaluation of policies which pa-
rameter "6} is 6]
o Akﬁ ¢ 1 average of evaluation of policies which pa-
mgJ . pn/ J
rameter "6, is 6, — €;

The set of via-points for walking ® based on the aver-
ages as follows:

6/ +nj AL% >A,J<7O andALfg
0 — i

9,{ else

6] — Aiﬁg >Ai,o and Ai, e - (10)

n,{ is the update step size for parameter ij . The learn-
ing system repeats this procedure and updates the set of
via-points for motion to reach the local maximum of eval-
uation.

4.2. Evaluation of Motion

Evaluation of learning walking is designed based on
three points — how fast the robot walks, the stability of
walking, and how similar the walking is to demonstrated
walking. The similarity to demonstrated walking S,, is
defined based on the similarity S in Eq. (2) with the cyclic
period and the phase of demonstrated motion 7, and .
Walking distance D and similarity S, are measured at
each trial. Evaluation for learning E;, is defined as fol-
lows:

EL:WSSn1+WDD—PL . (11)
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Fig. 9. Recognition of the period of the cycle and phase of
observed human walking motion.

where wg and wp are weights for similarity and walking
distance. We set a constraint on weights so that wg+wp =
1. P is a penalty against falling down during walking and
zero is for when the robot does not fall down in the trial.
Similarity S, works as a bias for imitation learning and
the degree of bias is controlled by weight wyg.

Evaluation for learning E; includes similarity to
demonstrated walking as a bias of imitation learning. To
evaluate the performance of the learned walking itself, an-
other evaluation E}; is defined as follows:

EM:WDD—PM . (12)

Py is a penalty against falling during walking. Evaluation
Ey shows the pure performance of learned walking that
does not consider similarity between robot walking and
demonstrated walking.

5. Experiments

We uses the humanoid robot (Robovie-PC) simulator
that we developed instead of a real robot for exhaustive
exploration based on the weight of learning bias during
imitation learning.

5.1. Motion Recognition

Figure 9 shows recognition of the cyclic period and
phase of observed human walking motion. A human
demonstrator shows walking at various speeds, walking
fast at the beginning and slowing down every 10 seconds,
first (Fig. 9(a)). The human demonstrator then shows
slow walking and speeds up every 10 seconds (Fig. 9(b)).
Recognition results show that the period of cycle 7, and
phase o, of walking is detected well enough to imitate.

Figure 10 shows an example of motion recognition
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Fig. 10. Example of motion recognition and segmentation.

and segmentation while the human demonstrator stands,
waives his right hand, walks, bows, and stands again. Hu-
man motion is recognized successfully.

5.2. Imitation Learning

A human demonstrator shows walking at normal speed
to the humanoid robot. The learning robot segments the
demonstrated motion. Walking is selected for imitation
learning, here. The humanoid robot starts learning walk-
ing on its own based on the policy gradient method in
Section 4.1 with evaluation E; defined in Section 4.2 in-
cluding learning bias based on demonstrated walking. Ini-
tial via-point parameters for walking are original ones of
Robovie-PC walking. To investigate how learning bias ef-
fects learning, the weight for similarity wg is varied from
0.0 to 1.0. If wg = 0.0, the robot ignores the learning bias
of imitation and tries to maximize walking distance. If
ws = 1.0, the robot ignores walking distance and tries to
imitate demonstrated walking.

The robot walks 10 steps in one trial. The size of pa-
rameter sets M is 100 to update parameters of via-points
for walking in this experiment. The number of updates is
empirically set to 100 so that learning converges.

A conventional method is conducted to evaluate the
proposed method. The comparative conventional method
is conducted so that it uses motion demonstrated by a hu-
man being to set initial parameters of the via-points for
walking, then updates parameters through trial and error
as follows: the best joint parameters of each via-point for
mimicking human demonstrated walking are searched for
through trial and error which takes 10,000 trials. It then
starts to learn walking based on the same learning method
as our proposed method but without the learning bias of
imitation wg = 0.0.

Figures 11 to 14 show results of experiments. Each
learning curve is an average of 5 learnings. Fig. 11 shows
the average walking distance during learning with differ-
ent weights of similarity wg and the conventional method.
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Fig. 12. Incremental times of falling during learning.

All learning curves except the those with wg = 1.0 and
the conventional method are similar. Learning curves
with 0.0 < wg < 1.0 shows better performance than curves
ws = 0.0 or wg = 1.0. wg = 1.0 indicates that wp = 0.0
and the learning robot tries to imitate demonstrated walk-
ing ignoring walking distance. It shows a shorter walk-
ing distance than the others, but still shows better perfor-
mance than at the beginning of learning. wg = 0.0 indi-
cates that the robot ignores the learning bias of imitation
and just tries to maximize walking distance. Nonetheless,
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it shows worse performance than others with wg greater
than 0. The weight of similarity wg = 0.6 shows the best
learning performance in experiments. The conventional
method actually shows faster walking than the proposed
method. Note, however, that learning started after the best
parameters for mimicking human demonstrated walking
are found through 10,000 trials.

Figure 12 shows the cumulative number of falls during
learning. Fig. 12(a) shows results with the conventional
and proposed methods. The conventional method shows
a much bigger number of falls during learning, which
means that the conventional method shows an unstable
walking pattern during learning. The proposed method
shows many fewer falls during learning, which means that
walking during learning is stable. This is one of the big
advantages of our proposed method.

Figure 12(b) shows results without the conventional
method. If the learning robot ignores the bias of imita-
tion with motion similarity S,,, it walks unstably and often
falls. It actually shows the worst stability during learning
if it ignores the bias of imitation by wg = 0.0. The learning
robot with weight of similarity wg = 1.0 shows the best
stability performance, rarely falling during learning. If the
weight of similarity increases, stability tends to be high.
One exception, however, wg = 0.9 shows worse perfor-
mance than wg = 0.6. The weight of similarity wg = 0.6
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shows the best walking stability during learning in exper-
iment.

Figure 13 shows the evaluation of motion without the
weight of similarity, Ej, defined by Eq. (12). Weight of
similarity wg = 0.6 shows a stable learning curve whereas
ws = 0.0 shows frequent falls during learning because it
is often given a penalty for falling.

Figure 14 shows walking similarity S defined by Eq.
(2) during learning. All similarity curves except ws = 1.0
decrease during learning, indicating that walking tends to
be affected by the evaluation of walking distance rather
than similarity of walking. Fig. 11 shows that learning
bias based on walking similarity leads to better walking
parameters. Fig. 12 shows that bias contributes to walking
stability during learning, so learning bias based on walk-
ing similarity contributes to better parameter search and
motion stability during learning, although the evaluation R
of motion similarity decreases in learning.

(@)0.0s

(b)1.6s

5.3. Real Robot Experiments in Imitation Learning

We conducted real robot experiments to show the va-
lidity of our proposed imitation learning method. Figs. 15
and 16 show typical sequence of real robot walking be-
fore and after imitation learning. Walking before learning
is stable but slower (Fig. 15). Walking learned based on
walking distance and imitation similarity, wy = 0.9, shows
faster walking while also being slightly unstable.

Figure 17 shows a sequence of real robot walking
learned based on distance walking alone without the im-
itation of human walking. In general, this walking is too
unstable to continue, although walking distance is longer
than that of others. The upper body tends to swing back
and forth using dynamics for faster walking but it almost
falls down.

Figure 18 shows the sequence of real robot walking
learned based on only similarity of imitation in which
the walking distance is not considered. Despite this, it
shows faster walking than the original while showing sta-
ble walking. Walking speed is slightly slower than that
learned with walking distance and imitation similarity in
real robot experiments. Simulation results show a signif-
icant difference between them, possibly do to the differ-
ence in friction between the foot and floor and/or the dif-
ferent characteristic of servo-motor dynamics of joints.

(d)4.8s

(e)6.4s

6. Conclusions and Future Work

This paper has proposed two methods for humanoid
robot imitation learning with via-point representation.
One involves motion recognition and segmentation for
imitation learning and recognizes both motion itself and
the period and phase of the periodic motion cycle. The
other involves imitation learning that introduces the bias
of the similarity of motion demonstrated by a human be-
ing. We investigated learning performance based on the
weight of bias. Results of experiments showed that the
first method successfully recognized and segmented the

) 8.0s

Fig. 15. Real robot walking pattern sequence before learning.
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Fig. 16. Real robot walking pattern sequence after learning Fig. 17. Real robot walking pattern sequence after learning
based on the evaluation of both walking distance and imita- based on the evaluation of walking distance alone.

tion similarity.

demonstrated motion with period and phase information stability during learning.
on the periodic motion cycle and that learning bias con- Future work should extend the proposed method to the
tributes to better parameter search and learning motion imitation learning of new motion even though the method
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Fig. 18. Real robot walking pattern sequence after learning
based on the evaluation of imitation similarity alone.

we proposed in this paper focuses on motion of the robot
as one of motion repertory.
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