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We propose to handle the complexity of utility spaces
used in multi-issue negotiation by adopting a new rep-
resentation that allows a modular decomposition of
the issues and the constraints. This is based on the idea
that a constraint-based utility space is nonlinear with
respect to issues, but linear with respect to the con-
straints. This allows us to rigorously map the utility
space into an issue-constraint hyper-graph. Explor-
ing the utility space reduces then to a message passing
mechanism along the hyper-edges of the hyper-graph
by means of utility propagation. Optimal contracts are
found efficiently using a variation of the Max-Sum al-
gorithm. We evaluate the model experimentally us-
ing parameterized nonlinear utility spaces, showing
that it can handle a large family of complex utility
spaces by finding optimal contracts, outperforming
previous sampling-based approaches. We also evalu-
ate the model in a negotiation setting. We show that
under high complexity, social welfare could be greater
than the sum of the individual agents’ best utilities.

Keywords: multi-agent systems, multi-issue negotiation,
nonlinear utility spaces, hyper-graph, max-sum

1. Introduction

Realistic negotiation involves multiple interdependent
issues, yielding complex and nonlinear utility spaces.
Reaching a consensus among agents becomes more diffi-
cult as the search space and problem complexity grow. In
this paper, we propose to tackle the complexity of utility
spaces used in multi-issue negotiation by rethinking the
way in which they are represented. We hold that adopt-
ing adequate representation provides the scaling problem
with a solid ground to tackle. We do so by using a rep-
resentation that enables a modular decomposition of the
issues and constraints. This is based on the idea that a
constraint-based utility space is nonlinear with respect to
issues, but linear with respect to the constraints. This
enables us to map the utility space rigorously into an
issue-constraint hyper-graph with the underlying interde-
pendencies. Exploring the utility space reduces to a mes-
sage passing mechanism along the hyper-edges using util-
ity propagation.

Adopting a graphical representation while reasoning
about preferences is not new in the multi-issue negotiation
literature. In fact, the idea of utility graphs could poten-
tially help breaking down highly nonlinear utility func-
tions into sub-utilities of clusters of inter-related items,
as in [1, 2]. Utility graphs have been used for prefer-
ences elicitation and negotiation over binary-valued is-
sues [3]. A weighted undirected graph has been used
to represent constraint-based utility spaces [4]. Specif-
ically, a message passing algorithm has been used to
find the highest utility bids by finding the set of uncon-
nected nodes that maximize the sum of nodes’ weight.
Restricting graph and message passing to nodes of con-
straints does not however enable the representation to be
descriptive enough to exploit any potential hierarchical
structure of the utility space through a quantitative eval-
uation of the interdependencies between both issues and
constraints. Furthermore, the interdependency of issues
is captured using similar undirected weighted graphs for
when a node represents an issue [5]. This representation
is restricted to binary interdependencies whereas real ne-
gotiation scenarios involve “bundles” of interdependent
issues defined under one or more constraints. In our ap-
proach, we do not restrict interdependency to lower-order
constraints. Instead, we allow p−ary interdependencies
to be defined as hyper-edges connecting p issues. Using
such graphical representation with its underlying utility
propagation mechanism is based on the idea that negotia-
tion is, after all, a cognitive process that involves concepts
and associations performed by bounded rational agents.
Bearing in mind that cognitive processes perform some
form of Bayesian inference [6], we used a graphical rep-
resentation that serves as an adequate framework for any
preference-based space.

Using this representation has the advantage of scalabil-
ity in the sense that the problem becomes more difficult
due to its large number of issues and constraints. Decom-
posing the utility space enables us to exploit it more ef-
ficiently. Another way of looking at this “connectionist”
representation is that it can be clustered in ways that iso-
late interdependent components, thus, enabling them to
be treated separately and even negotiated independently
form the rest of the problem. Another motivation behind
hyper-graph representation is that it enables a layered, hi-
erarchical view of any given negotiation scenario [7, 8].
Such an architecture, lets us recursively negotiate over
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different layers of the problem according to a top-down
approach. Even the idea of an issue can be abstracted
to include an encapsulation of sub-issues, located in sub-
utility spaces and represented by cliques in the hyper-
graph. Search processes can then be used to help iden-
tify optimal contracts for improvement at individual leves.
This combination of separating the system into layers, and
then using utility propagation to focus attention on and
search within a constrained region can be very power-
ful in the bidding process. A similar idea of recursion
the exploring of utility space was introduced by [9], al-
though it is region-oriented and does not graphically rep-
resent the utility space. We evaluated our model in exper-
iments using parametrized and random nonlinear utility
spaces. We showed that the model can handle large com-
plex spaces by finding optimal bids while outperforming
previous sampling approaches. We also evaluated our
model in a mediated multi-lateral negotiation scenario to
assess social welfare.

The paper is organized as follows. Section 2 proposes
the basics of our new nonlinear utility space representa-
tion. Section 3 describes the search mechanism. Section 4
details the experimental results. Section 5 lists the conclu-
sions and outlines the future work.

2. Nonlinear Utility Space Representation

2.1. Formulation

We start by formulating the nonlinear multi-issue util-
ity space used in [10], meaning that an n-dimensional
utility space is defined over a finite set of issues I =
{i1, . . . , ik, . . . , in}. Issue k, namely ik, takes its values from
finite set Ik with Ik ⊂Z. Contract�c is a vector of issue val-
ues with�c ∈I and I =×n

k=1Ik.
An agent’s utility function is defined in terms of m con-

straints, making the utility space constraint-based. That
is, constraint c j is a region of the total n-dimensional util-
ity space. We say that constraint c j has value w(c j,�c) for
contract�c if c j is satisfied by �c, i.e., when contract point
�c falls within the hyper-volume defined by constraint c j,
namely hyp(c j). The utility of an agent for contract �c is
thus defined as in Eq. (1).

u(�c) = ∑
c j∈[1,m], �c∈hyp(c j)

w(c j,�c) . . . . . . . (1)

Below, we distinguish among three types of constraints –
cubic, bell and plane – as shown in Fig. 1. Constraint-
based utility formalism is a practical way of reasoning
about preferences that have restrictions, as detailed else-
where [4, 9, 11].

Such representation (Eq. (1)) produces “bumpy” non-
linear utility spaces with high points where many con-
straints are satisfied and low points where few or no con-
straints are satisfied. Fig. 2 shows an example of non-
linear utility space for issues i1 and i2 taking values in
I1 = I2 = [0,100], with m = 500 constraints.

Fig. 1. Cubic, bell and plane constraints.

Fig. 2. 2−D nonlinear utility space.

2.2. New Representation
The utility function (1) is nonlinear in that the util-

ity cannot be expressed as a linear function of the con-
tracts [10]. This is true to the extent that linearity is eval-
uated with regard to contract �c. From the same Eq. (1),
however, we can say that the utility is in fact linear,
but in terms of constraints {c1, . . . ,c j, . . . ,cm}. The util-
ity space is therefore decomposable based on these con-
straints. This yields a modular representation of the in-
teractions between the issues and how they relate locally
to each other. In fact, hyp(c j) reflects the idea that the
underlying contracts are governed by the bounds defined
by c j once contracts are projected according to their is-
sues’ components. In this case, interdependence is be-
tween constraints, not between issues. Two constraints
c1 and c2 can have one issue ik in common taking values
from interval Ik,c1 if it is involved in c1 and values in Ik,c2
if it is involved in c2, with Ik,c1 �= Ik,c2. Finding the value
that maximizes the utility of ik while satisfying both con-
straints becomes difficult because changing the value of
ik in c1 changes the instance of ik in c2 cyclically. This
nonlinearity gets worse as the number of issues, domain
sizes, and the non-monotonicity of constraints increases.

We propose to transform Eq. (1) into a modular graph-
ical representation. Since one constraint may involve one
or more issues, we use hyper-graph representation.

2.3. From Utility Space to Utility Hyper-graph
To each constraint c j, we assign factor Φ j, yielding fac-

tor set Φ = {Φ1, . . . ,Φ j, . . . ,Φm}. Utility hyper-graph G
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is defined as G = (I,Φ). Nodes in I define issues and
hyper-edges in Φ are factors (constraints). Neighbors set
N (Φ j) ⊂ I of factor Φ j represents the issues connected
to Φ j (involved in constraint c j), with |N (Φ j)| = ϕ j. In
case ϕ j = 2 ∀ j the problem collapses into a constraints
satisfaction problem in a standard graph.

ϕ j-dimensional matrix MΦ j corresponds to each factor
Φ j, where the kth dimension is Ik = [ak,bk], known as
the domain of issue ik. This matrix contains all values
that could be taken by the issues in N (Φ j). Each factor
Φ j has function u j defined as a sub-utility function of the
issues in N (Φ j), defined as in Eq. (2)

u j : N (Φ j)ϕ j → R (2)
u j(�x) �→ w(c j,�x),�x = (i1, . . . , i j, . . . , iϕ j)

We are dealing with discrete issues, so u j is the mapping
defined by matrix MΦ j . That is, u j(i1, . . . , ik, . . . , iϕ j) is
simply the (1, . . . ,k, . . . ,ϕ j)th entry in MΦ j correspond-
ing to value w(c j,�x) described in Eq. (2). The discrete
case can be extended to the continuous case by enabling
continuous issue values and defining uk as a continuous
function. We provide examples of representation in the
sections that follow.

2.3.1. Example 1

To show the mapping between 2−D utility space and
its corresponding hyper-graph G2 (Fig. 3(b)), the issue
domains are I1 = I2 = [0,9]. G2 consists of m = 10 con-
straints (red squares) where each constraint involves at
most 2 issues (white circles). Note the 6 cubic constraints,
3 plane constraints and 1 bell constraint.

2.3.2. Example 2

We consider 10−D utility space mapped onto hyper-
graph G10 = (I,Φ) with I = {i0, . . . , i9} and Φ =
{Φ1, . . . ,Φ7} on Fig. 4. Each issue ik has set Ik =⋃

ν∈N (ik) Ik,ν where Ik,ν is an edge connecting ik to
its neighbor ν ⊂ N (ik) ∈ Φ, for example, I1 =⋃

ν∈{Φ1,Φ3,Φ6} I1,ν = {[5,9], [3,4], [3,6]}. Constraints are
cubic (Φ1,Φ2,Φ3,Φ4), plane (Φ5,Φ6) and bell (Φ7).
Each constraint c j (respectively factor Φ j) is assigned a
sub-utility function u j to find the utility of a contract if it
satisfies c j by being located in hyp(c j). Depending on its
type, each constraint’s sub-utility is defined as in Eq. (3).

u j

⎧⎪⎪⎨
⎪⎪⎩

β j +
ϕ j

∑
k=1

α j,kik, β j,α j,k ∈ Z if Plane

v j if Cube
Vj if Bell

(3)

That is, plane constraint Φ j is defined using a
ϕ j−dimensional equation, while a cubic constraint is as-
signed value v j. Sub-utility Vj of bell-shaped constraints
is defined in Eq. (4). Here, δ is the Euclidean distance
from the center of the bell constraint to the contract point.

(a) Utility space

(b) Utility hyper-graph

Fig. 3. 2−D utility space and its hyper-graph.

Distances are normalized in [−1,1].

Vj

⎧⎪⎪⎨
⎪⎪⎩

β j (1−2δ 2) if δ <
1
2

β j ∈ Z

2 β j (1−δ )2 if δ < 1 β j ∈ Z

0 else

. (4)

3. Optimal Contracts

The exploration of the utility hyper-graph was inspired
by the sum-product message-passing algorithm for loopy
belief propagation [12]. The multiplicative algebra is
changed to an additive algebra, however, to support util-
ity accumulation necessary for assessing contracts. Mes-
sages circulating in the hyper-graph are simply the con-
tracts we are attempting to optimize through utility maxi-
mization.

3.1. Message Passing (MP) Mechanism
We consider issue set I and contract point �c =

(i1, . . . , ik, . . . , in) ∈ I . We want to find contract �c∗ that
maximizes the utility function (1). Assuming that u j is
a local sub-utility of constraint Φ j, we distinguish be-
tween two types of messages, those sent from issues to
constraints and those sent from constraints to issues.
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Fig. 4. Issues-constraints hyper-graph.

3.1.1. From Issue ik to Constraint Φ j

In Eq. (5), each message μik→Φ j from ik to Φ j is the
sum of constraint messages to ik from constraints other
than Φ j.

μik→Φ j(ik) = ∑
Φ j′∈N (ik)\Φ j

μΦ j′→ik(ik) . . . . (5)

3.1.2. From Constraint Φ j to Issue ik
Each constraint message is the sum of messages from

issues other than ik, plus sub-utility u j(i1, . . . , ik, . . . , in),
summed over all possible values of issues connected to
constraint Φ j other than issue ik.

μΦ j→ik(ik) = max
i1

. . .max
ik′ �=k

. . .max
in

[
u j(i1, . . . , ik, . . . , in)

+ ∑
ik′∈N (Φ j)\ik

μik′→Φ j(ik)
]

. . . . (6)

The MP mechanism starts from the leaves of the hyper-
graph, i.e., the issues. At t = 0, an initial message content
is defined based on Eq. (7), with u′j(ik) being the partial
evaluation of ik in factor Φ j.

μik→Φ j(ik) = 0 . . . . . . . . . . . . . (7)

μΦ j→ik(ik) = u′j(ik)

An optimal contract �c∗ is found at any time by collecting
optimal issue-values as in Eq. (8a).

�c∗ = (i∗1, . . . , i
∗
k , . . . , i

∗
n) . . . . . . . . . (8a)

i∗k = arg max
ik

∑
Φ j∈N (ik)

μΦ j→ik(ik) . . . . . (8b)

In a strategic encounter between agents, an agent more
commonly requires a collection, or bundle, of optimal

contracts rather than a single optimal contract. To find
such a collection, we must endow Eq. (8b) with a caching
mechanism enabling individual nodes in the hyper-graph
to store messages sent to it from other nodes. That is,
cached messages will contain summed-up utility values
of an underlying node’s instance. This is done each time
max is called in Eq. (6), so that we can store the settings
of the adjacent utility and contract that led to a maximum.
Once ordered, such a data structure could be used, for in-
stance in a bidding process.

3.2. Utility Propagation Algorithm
3.2.1. Main Algorithm

Algorithm 1 operates on hyper-graph nodes by trig-
gering the MP process. Despite the fact that we have
two types of nodes – issues and constraints –, it is pos-
sible to treat them abstractly using MsgPass (Algorithms
2 and 3). The resulting bundle is a collection of optimal
contracts with utility equal to or greater than the agent’s
reservation value rv.

3.2.2. Issue’s Messages to Constraints
The issue’s message to a factor, or constraint, is the

element-wise sum of all incoming messages from other
factors, as shown in Algorithm 2.

3.2.3. Constraint’s Messages to Issues
In Algorithm 3, the factor’s message to a targeted is-

sue is sent by recursively enumerating over all variables
that the factor references, except the targeted issue Eq. (6).
This must be performed for each value of the target vari-
able in order to compute the message. If all issues are
assigned (�i : α[i] = −1), the values of the factor and of
all other incoming messages are determined so that their
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Algorithm 1: Main Algorithm
Algorithm: Utility Propagation
Input: G = (I,Φ),rv,mode,ρ
Output: Optimal contracts (bundle)

1 begin
2 for i = 1 → (ρ ×|I∪Φ|) do
3 if mode is Synchronous then
4 foreach νsrc ∈ I∪Φ do
5 foreach νdest ∈ νsrc.Neighbors() do
6 νsrc.MsgPass(νdest)
7 end
8 end
9 end

10 end
11 bundle ← /0
12 foreach i ∈ I do
13 bundle[i]← /0
14 ι ←∪ j∈i.instances()[ j.min, j.max]
15 μ∗ ← k∗ ← −∞
16 μ ← i.getmax()
17 foreach k = 1 → |μ| do
18 if μ∗ < μ[k] then
19 μ∗ ← μ[k]
20 k∗ ← k
21 if μ∗ ≥ rv then
22 bundle[i]← bundle[i]∪ ι [k∗]
23 end
24 end
25 end
26 end
27 return bundle
28 end

sum term is compared to the prior maximum, as in Algo-
rithm 4. Resulting messages, stored in variable bundle,
contain the values that maximize the factors’ local utility
functions.

3.2.4. Optimal Issue Values
It is possible at any time in the utility propagation pro-

cess to collect the current optimal contract(s) by individ-
ually concatenating all of the optimal issue-values i∗k , de-
fined in Eq. (8b). Specifically, the summation in Eq. (8b)
is performed so as to include only overlapping evalua-
tions, depending on how issue domains are defined for
different factors. Fig. 5, for instance, shows how issue ik
has three possible evaluations depending on intervals Ik,1,
Ik, j and Ik,m with Ik,1, Ik, j, Ik,m ⊂ [0,6].

The objective function Eq. (8b) will attempt to find the
combination(s) of v1,i, vk,i and vm,i that maximize the sum.
An optimal combination is an optimal issue-value i∗k .

4. Experiments

4.1. Setup
Before evaluating the utility propagation algorithm, we

identify the criteria that could affect the complexity of a

Algorithm 2: MsgPass: Issue’s Messages to Con-
straints
Algorithm: MsgPass
Input: G(I,Φ), Φ j
Output: Updated message μ

1 begin
2 μ ← [0]×|Ik|
3 for ν ∈ N (ik)\Φ j do
4 μ ← μ +ν .GetMsg()
5 end
6 return μ
7 end

Algorithm 3: MsgPass: Constraint’s Messages to Is-
sues
Algorithm: MsgPass
Input: G(I,Φ), ik
Output: Updated message μ

1 begin
2 α ← [−1]×ϕ j
3 ι ← πik(Φ j)
4 if ι = /0 then
5 μ ← ik.GetMsg()
6 for i = 1 → len(μ) do
7 α[ι ]← i
8 μ[i]← Sum(α, ik)
9 end

10 return μ
11 end
12 end

utility space and thus the probability of finding optimal
contract(s). In addition to n and m, we distinguish p, de-
fined as the maximal number of issues involved in a con-
straint. p may be unary (p = 1), binary (p = 2), ternary
(p = 3), or p-ary in the general case. The parametrized
generation of utility spaces or utility hyper-graphs must
meet consistency condition p≤ n≤ m× p, with n,m, p ∈
N+, to avoid problems such as attempting to have 8−ary
constraints in a 5-dimensional utility space.

4.2. Utility Propagation
We start by generating the hyper-graph using Algo-

rithm 5.
We then compare the MP mechanism to the simulated

annealing (SA) approach in [10] in terms of utility and du-
ration for an optimal contract(s) search. The SA optimizer
will be randomly sampling from regions corresponding to
an overlap of constraints. Generating a random contract
satisfying c j, for instance, is performed backward through
the random generation of values from Ik, j ∀ik ∈N (Φ j).
Our comparison criteria are based on the utility/duration
performed on a set of profiles of the form (n,m, p), with
100 trials for each profile. The first version of the mes-
sage passing process, SynchMP, is synchronous. That is,
all combinations of issue evaluations are generated de-
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Algorithm 4: Sum: recursive summing
Algorithm: Sum
Input: G(I,Φ), α, ik
Output: max

1 begin
2 ι ←{i | i ∈ [1,ϕ j]∧α[i] =−1}
3 if ι = /0 then
4 ρ ← MΦ j [α]

5 for ν ∈ N (Φ j)\ik do
6 μ ← ν .GetMsg()
7 ρ ← ρ +μ[α[i]]
8 end
9 return ρ

10 end
11 else
12 max ←−∞
13 for i = 1 → dim(MΦ j(ι)) do
14 α[ι ]← i
15 σ ← Sum(α, ik)
16 if σ > max then
17 max ← σ
18 end
19 end
20 return max
21 end
22 end

Evaluations of issue ik ∈ hyp(c j)

i 0 1 2 3 4 5 6
vk,i 0 vk,1 vk,2 vk,3 vk,4 0 0

i 0 1 2 3 4 5 6
vm,i 0 0 vm,2 vk,3 vk,4 vk,5 vk,6

i 0 1 2 3 4 5 6
v1,i v1,0 v1,1 v1,2 0 0 0 0

Φ jIk, j

Φ1Ik,1

Φm
Ik,m

Fig. 5. Finding optimal issue values.

terministically. Fig. 6 shows SynchMP performance for
(10, [10,20,30],5).

The deterministic aspect of SynchMP makes it very
slow (ΔSA� ΔSynchMP) indeed compared to its SA coun-
terpart, which exploits randomization, enabling it to per-
form “jumps” in the search space. To avoid enumeration
over local nodes of G, it is possible to add randomiza-
tion to the way nodes are selected. To introduce the asyn-
chronous mode AsynchMP, we add a new mode after the
synchronous mode condition in Algorithm 1:

if mode is Asynchronous then
νsrc, νdest ← rand2([1, |V |]), νdest �= νsrc

νsrc.MsgPass(νdest)

For (40, [20, . . .100],5), Fig. 7 shows the difference in
AsynchMP performance compared to SA.

Algorithm 5: Utility hyper-graph generation
Algorithm: ParamRandHGen
Input: n,m, p
Output: G(I,Φ)

1 begin
2 [βmin,βmax]← [1,100] // constants
3 [αmin,αmax]← [0,1] // slopes
4 [bmin,bmax]← [0,9] // bounds
5 Φ ← [ /0]×m // init constraints set
6 for k = 1 → m do
7 Φ[k].θ ← rand({cube, plane,bell})
8 if Φ[k].θ = plane then
9 α ← [0]×n

10 α[ j]← rand([αmin,αmax]) ∀i ∈ [1,n]
11 Φ[k].α ← α
12 end
13 if Φ[k].θ ∈ {bell,cube} then
14 // refer to (3) or (4)
15 end
16 Φ[k].β ← rand([βmin,βmax])
17 μ ← rand([1,n]) , I ← /0
18 while |I| = μ do
19 ι ← rand([1, p])
20 if ι /∈ I then
21 I ← I∪ ι
22 end
23 end
24 for j = 1 → μ do
25 I[ j].a ← rand([bmin,bmax])

I[ j].b ← rand([I[ j].a+ ε,bmax])
26 end
27 Φ[k].I ← I
28 end
29 return Φ
30 end

4.3. Multilateral Case and Social Welfare
Next, taking i to be an agent, we assume in a multilat-

eral case that N agents use AsynchMP for bidding over n
issues with varying constraints (m) and cardinalities (p).
The general mediation protocol involves mediator M re-
ceiving bundle Bi

t from agent i ∈ [1,N] at time t ∈ [0,T ].
In round t, agent i’s bundle, described in Eq. (9), contains
ni

t bids.

Bi
t = {bi

t,1, . . . ,b
i
t,k, . . . ,b

i
t,ni

t
} . . . . . . . (9)

A bundle must respect preference order  with regard
to the agent’s subjective utility, i.e., bi

t,1  ·· ·  bi
t,ni

t
.

The feedback of M at t is contract point xt
M that agents

choose to accept or ignore by providing a new bundle.
This process is repeated until deadline T is reached with
final contract x∗M .

Due to the randomized nature of utility space, we make
mediator M use a family of sampling algorithms Eq. (10)
that attempt to consider the geometrical topology of re-
ceived bundles to generate candidate contracts. We are in-
terested here in evaluating social welfare [13, 14] yielded
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(a) Utility

(b) Durations ΔSA and ΔSynchMP for m ∈ {10,20,30}

Fig. 6. SynchMP vs. SA for (10, [10,20,30],5).

(a) Utility

(b) Durations ΔSA and ΔASynchMP for m ∈ [20,100]

Fig. 7. AsynchMP vs. SA for (40, [20, . . . 100],5).

by individual uses of AsynchMP coupled with sampling
algorithms xM . We start by defining the family of algo-
rithms Eq. (10),

xM

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1
M = c({bi

t,ni
t
, i ∈ [1,N]})

x2
M = c({N (bi

t,ni
t
), i ∈ [1,N]})

x3
M = c({c(Ci

t) ∀i ∈ [1,N]})
x4
M = c({ f (Ci

t) ∀i ∈ [1,N]})
. (10)

with Ci
t being the convex hull of bundle Bi

t and N (x) the
neighbor set of x in Rn. Functions are defined as follows:
c returns the centroid of a convex hull of a set of contract
points, f , defined in Eq. (11), picks a random contract
within a convex hull x⊂Rn, g, defined in Eq. (12), returns
a random point from a segment [x,y] ∈ Rn×2, h picks a

random simplicial facet from a convex hull.

f (x) =
{

x if x ∈Rn

g(c(x), ( f ◦h)(x)) else . (11)

g(x,y) = αx+(1−α)y,α ∈ [0,1] . . . . . (12)

If the final contract is x∗M , we want to evaluate social wel-
fare using a set of social welfare functions (SWF). Specif-
ically, Eqs. (13a) and (13b) assigning high weights to low
utilities and low weights to high utilities. Most impor-
tantly, we define a differential SWF in Eq. (13c). WD
evaluates the difference between what the mediator pro-
poses to the agents (x∗M ) and what the agents’ subjective
best options (x∗i , ∀i ∈ [1,N]) are.

WU =
N

∑
i=1

ui(x∗M ) . . . . . . . . . . (13a)

WαU =
N

∑
i=1

αiui(x∗M ) . . . . . . . . . (13b)

WD =
N

∑
i=1

ui(x∗M )−
N

∑
i=1

ui(x∗i ) = WU −Wparts (13c)

Fig. 8 shows SWFs for N = 100 agents, bidding over
10 issues with (m, p) = (50,5) ∀i ∈ [1,N], where M
uses x1

M , x2
M , x3

M and x4
M . Note that, interestingly,

WD > 0 ∀x j
M , j = 1,3,4, reflecting the fact that, on av-

erage, agents get more than they expected to get, with
WU > Wparts. This is due in fact to the complexity of indi-
vidual utility spaces and that one single agent cannot en-
tirely explore her utility space to find all high-utility bids.
By using the mediation mechanism, however, all agents’
bids are filtered collectively by the mediator to find opti-
mal bids that increase social welfare. In other words, the
problem comes to appear as if agents are searching the
same utility space and attempting to find all the Pareto-
dominant bids. In case WU ≤Wparts, agents get less then
expected on average due to individual concessions or to
bad contracts being reinforced by M and depending on
the algorithm used, (x2

M ). WU �= Wparts generally cor-
roborates the assumption of nonlinearity by reflecting the
idea that the nonlinearity of the (individual) agent’s util-
ity space is propagated from the issue-constraint level up
to the agreement level by means of mediation (operators
xM ).

The convex aspects of algorithms Eq. (10) and the non-
linearity of utility space could in fact show a lack of
structure and correlation among the different SWFs in
Fig. 8. That is to say, adopting convex representation
when searching for optimal contracts is not appropriate if
the utility space is highly nonlinear despite the efficiency
of local optimizers (AsynchMP).

5. Conclusions

We have introduced a new representation of utility
spaces based on hyper-graphs that enables the modular
decomposition of constraints and issues. The exploration
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Fig. 8. Social welfare.

and search for optimal contracts is performed based on
a message passing mechanism outperforming sampling
based optimizers. We also evaluated the model in a mul-
tilateral setting to evaluate social welfare resulting from
mediated negotiation.

In future work, we intend to exploit the hyper-graph
structure to induce hierarchical negotiation. We would
also like to evaluate the importance of issues within a
specific domain, and to determine how one issue could
affect the optimality of contracts. Being able to order is-
sues by importance could result in a sequential negotia-
tion model whereby issues are negotiated by importance
and relevance to the domain in hand.
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