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A heuristic algorithm named the leader of dolphin
herd algorithm (LDHA) is proposed in this paper to
solve an optimization problem whose dimensionality
is not high, with dolphins that imitate predatory be-
havior. LDHA is based on a leadership strategy. Using
the leadership strategy as reference, we have designed
the proposed algorithm by simulating the preying ac-
tions of dolphin herds. Several intelligent behaviors,
such as “producing leaders,” “group gathering,” “in-
formation sharing,” and “rounding up prey,” are ab-
stracted by LDHA. The proposed algorithm is tested
on 15 typical complex function optimization problems.
The testing results reveal that compared with the par-
ticle swarm optimization and the genetic algorithms,
LDHA has relatively high optimization accuracy and
capability for complex functions. Further, it is al-
most unaffected by the inimicality, multimodality, or
dimensions of functions in the function optimization
section, which implies better convergence. In addition,
ultra-high-dimensional function optimization capabil-
ities of this algorithm were tested using the IEEE CEC
2013 global optimization benchmark. Unfortunately,
the proposed optimization algorithm has a limitation
in that it is not suitable for ultra-high-dimensional
functions.

Keywords: leader of dolphin herd algorithm, heuristic
algorithm, trial function convergence

1. Introduction

Inspired by the various creatures in nature, humans
have designed series of heuristic algorithms by constantly
summarizing the survival rules and daily routines of ani-
mals and plants. For example, particle swarm optimiza-
tion (PSO) algorithm [1], ant colony algorithm [2], fish
swarm algorithm [3], bacterial foraging algorithm [4],
leapfrog algorithm [5], bee colony algorithm [6], bats
algorithm [7], monkeys algorithm [8], and wolves algo-
rithm [9]. These algorithms are designed by simulating
the predatory behaviors of birds, ants, fishes, Escherichia
coli, frogs, bees, bats, monkeys, and wolves, respectively.

Based on niche ideas, Back proposed dolphin partner

optimization [10]. However, neither did he fully exploit
the concept of dolphin echolocation and the decision mak-
ing process of the leader, nor did he discuss the conver-
gence of the algorithm. In view of the insufficiency of his
theory, this paper designs a heuristic algorithm, which is
named leader of dolphin herd algorithm (LDHA) and is
based on a leadership strategy. The algorithm is designed
by using the echolocation of bats algorithm and abstract
dolphins as well as the behaviors of information sharing,
producing leaders, rounding up food, and food distribu-
tion as reference. We prove LDHA’s good convergence
and verify its high optimization capability and efficiency
by testing this algorithm on 15 typical complex function
optimization problems.

2. Leader of Dolphin Herd Algorithm (LDHA)

The preying ability of dolphins is not only stunning but
also highly technological. Their superior wisdom enables
them to be the leader among all mammals, except human
beings. They communicate and prey through echoloca-
tion, which is similar to the manner in which bats prey.
According to the investigation record, dolphins echolo-
cate using ultrasound waves that have a frequency of more
than 200–350 kHz. The hearing range for a human is
between 16–20 kHz, and therefore, humans cannot hear
the ultrasound waves emitted by dolphins for echoloca-
tion. Dolphins can determine the target distance, loca-
tion, shape, using echolocation. Echolocation is a com-
plex and highly evolved process in which dolphins estab-
lish their surrounding sound-image through an analysis of
the echoes of the ultrasound waves generated by them. By
analyzing the echoes, the dolphins can estimate the dis-
tance to nearby obstacles as well as find fishes and other
food for them to prey on. From the echoes, dolphins can
identify the sizes, shapes, and the direction of the move-
ment of the fishes, making the predation very accurate.

2.1. Some Definitions About LDHA
Sounds enable dolphins to find their paths, acquire

food, and communicate with each other. They prey
through cooperation. Some basic principles in the process
of dolphin preying are as follows.
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Fig. 1. Dolphin prey model.

Determining Leaders: In order to determine the opti-
mal position in the determining predatory space, dolphins
build a three-dimensional scene around them through
echolocation, the time delay between producing echoes
and detecting echoes, and the binaural time difference as
well as the change in the loudness of echoes. The dol-
phin in the global optimal position is the leader of the en-
tire group and manages some challenging tasks, respon-
sible for group gathering, division of labor, and provid-
ing global information for information exchange among
group members.

Group Gathering: After the group leader conveys cer-
tain related information about the location of food, the
entire group gathers at the center where the leader lies.
Thus, a predator group gradually comes into being. In
this virtual dynamic team, each one does the same thing
to become the leader. Therefore, anyone in the optimal
position can be a leader in each preying event.

Information Sharing and Rounding up Food: In the pro-
cess of group gathering, the members exchange informa-
tion with each other, encircle the prey, and gain the max-
imum benefit of preying through echolocation. Simulta-
neously, the dolphin receiving information transfers it to
its partners. This communication can be repeated and ex-
tended continuously, making the entire group share the
information. After information sharing, all the members
collaborate, optimize the division of labor, and then prey
through depending on the changes in the pulse loudness
and emission rate.

Optimizing the Division of Labor: According to the in-
formation acquired from all directions, whether a dolphin
can be a team leader or an ordinary member depends on
the comparison of itself with other team members . In
general, the one with the optimal location, the nearest dis-
tance, and the best bodily functions becomes the leader of
the entire group.

2.2. The Basic Idea of LDHA
LDHA adopts a bottom-up design method focusing on

artificial dolphins and a collaborative search path struc-
ture based on the division of responsibilities. As shown
in Fig. 1, the entire preying process of dolphin herds is
finally realized through each dolphin’s probing into the

features of food and environmental information, artificial
dolphins’ mutual information sharing and interactions, as
well as individual behavioral decision making concerning
its duties.

When the acoustic detection beam emitted by a dol-
phin encounters fishes or other targets, echoes are pro-
duced. Once they return to the dolphin, these echoes are
received by the dolphin’s sense organs. Through an anal-
ysis of the loudness of echoes, the change in frequency,
and the time interval between the produced echoes and
the received echoes, dolphins can estimate the distance to
the probe target, the size of the fish, and the run away ve-
locity. They adjust their direction and speed from time to
time. The nearer they are to the food, the quicker is the
emission of the acoustic detection beams, reaching hun-
dreds of times per second. As a result, dolphins can prey
with a high accuracy.

LDHA iterates the information received through the
echolocation to determine the optimal position in the dol-
phin herds constantly, which is also the solution of the
optimization problem sought in this study. To solve this
problem, dolphins take five steps, namely initializing dol-
phins, optimizing the division of labor, information shar-
ing, group following, and rounding up food and food dis-
tribution.

2.3. Decomposition Process
2.3.1. Initializing Dolphins

The purpose of this phase is to distribute each member
in the group evenly in the domain of the objective func-
tion. N and D denote the scope of the dolphins and the
dimension of the search space, respectively. Then, the lo-
cation of artificial dolphin i can be derived as

Xi = (xi1, . . . ,xid, . . .xiD)
xid = xmin + rand× (xmax − xmin) . . . . . . (1)

In this formula, rand is a random number distributed
evenly in the interval [0, 1], while xmax and xmin are the
corresponding upper and lower limits of the search space.

2.3.2. Optimizing the Division of Labor
Anyone can act as the “guide” in the dolphins’ preda-

tory space. In the beginning, the entire group is distributed
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randomly at any position of the space. If one of them finds
food, the “guide” will transfer the food information to oth-
ers correspondingly through the strategy of echolocation.

After the dolphins acquire information, they will find
their own team members to form virtual teams. In order
to achieve the most accurate optimization result, define
each dolphin Xi (i = 1,2, . . . ,n) as the center and calcu-
late the distance Xi j between dolphin Xj ( j = 1,2, . . . ,n)
and dolphin Xi (this distance can be calculated according
to the location formula of two dolphins). Next, rank the
distances of two dolphins in an ascending order. Then,
according to the result, select the nearest m dolphins for
each individual to form its virtual team. The distance be-
tween the two dolphins is calculated as follows:

Xi j =
√−−−−→

Xi −Xj ·−−−−→Xi −Xj , (i, j ∈ 1,2, . . . ,n) . (2)

More than one virtual team exists in the entire dolphin
herd, and each team has its own local leader. Compared
with each other, the team leader is decided among the
leaders of the members. According to LDHA, the leader
of each virtual team is determined by the local optimal
value of the fitness function, whereas the leader of the en-
tire herd is generated from each virtual team by constant
iteration. When the value reaches the maximum number
of iterations in the process of food gathering, the leader
of the entire herd is decided (namely, the global optimal
value of the fitness function).

2.3.3. Information Sharing

After the leader is decided, the leader can exchange
information with its group members to determine their
best locations and fitness values. This type of commu-
nication can be realized several times, and the dolphins
with excellent characteristics can be accepted easily by
other members. Therefore, information sharing enables
dolphins to approach food, form encirclement gradually,
and then, prey in an ordered manner under the leader’s
top-down guidance.

2.3.4. Group Following and Rounding Up Food

When the leader receives food information from the
“guide” it notifies other members to surround and assem-
ble at it’s location through echolocation. For ordinary
members, an effective location update is the critical step
in the entire process of preying.

As for location update, if the value of rm, a random
number generated in the interval [0, 1] is smaller than that
of θ (a predetermined threshold), the i-th dolphin does not
need to update its location. Otherwise, it has to update
its location and round up food centering on the leader.
Here, we use the pulse loudness A(i) and emission rate
R(i) to update the process of iteration. In general, while
approaching food, the pulse loudness decreases and emis-
sion rate increases gradually. If A(i) = 0, the i-th dolphin
finds a prey and will stop making any sound temporarily.
Eqs. (3) and (4) are update equations of the pulse loudness

and emission rate, respectively.

At+1(i) = αAt . . . . . . . . . . . . . (3)

Rt+1(i) = R0(i)× [1− exp(−γt)] . . . . . . (4)

In the above formulas, a and y are constants (1 < α <
1, γ > 0). It is not difficult to find that as t → ∞,At(i) =
0,Rt(i) = R0(i), the updated location Xt+1

i can be calcu-
lated as

Xt+1
i =

{
Xt

i rm < θ
Xt

i + εAt(i) rm < θ . . . . . (5)

where, ε denotes a D-dimensional random vector belong-
ing to the interval [0,1] and At(i) denotes the pulse loud-
ness at time t.

For ordinary members, they may not locate food.
Therefore, after rounding up food, the coordinates of dol-
phins are updated as follows

xt+1
id =

{
xmax xt+1

id > xmax
xmin xt+1

id < xmin
. . . . . . . (6)

Having determined leader’s position,the leader in the
dolphin herd exchanges information with its members to
inform them about its location and fitness value, so that
all the members can adjust their own locations according
to the leader’s fitness value. This is the only manner in
which the herd can form the encirclement in an orderly
manner, make the overall situation optimal, and get the
maximum benefit of preying.

2.3.5. Food Distribution and States Recovery

After forming the encirclement, the dolphins update
their locations, narrow down the scope, and then prey col-
laboratively. The food is not distributed as per their cred-
its. Instead, the dolphin, in the optimal position of the
encirclement both globally and locally, stops to wait for
subsequent dolphins’ gathering, and then, prey together.
After completing the entire process, dolphins recover to
their random states in the predatory space to prepare for
the next prey.

3. Calculation Steps of LDHA

Based on the above methods and algorithms of dolphin
preying, the calculation steps of LDHA are designed as
follows:

Step 1: Initialize the dolphin herd. Initialize its total
number n and the maximum number of iterations
maxh. According to Eq. (1), the locations of dol-
phins can be initialized.

Step 2: Optimize the division of labor. Form each dol-
phin’s virtual team according to the distance for-
mula, determine the optimal location of the team
by comparing the fitness value of each team, and
then elect the leader of each virtual team. Finally,
generate the global optimal value by comparing
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Fig. 2. Algorithm flowchart of LDHA.

the fitness value of each team and produce the
leader of the entire herd.

Step 3: Exchange information. Having determined its lo-
cation, the leader communicates with its mem-
bers through echolocation to acquire some in-
formation about location and fitness value. Ex-
changing information helps them to update loca-
tions in the next step.

Step 4: Round up food. Eq. (6) is used to deal with cross-
border situations among ordinary members, and
Eq. (5) is applied to iterate the locations of group
members, form encirclement, and update loca-
tions.

Step 5: Perform iterations in a circular manner until it
reaches the maximum number of iterations. Once
the condition is satisfied, exit the loop, and record
the result. Otherwise, skip to Step 2.

Specific algorithm flowchart of LDHA is shown in
Fig. 2.

The optimization process diagram of the algorithm sim-
ulating dolphin preying is shown in Fig. 3.

Fig. 3. Optimization process diagram of the algorithm
analoging dolphin prey.

4. Analysis of the Convergence of LDHA

Theorem 1: The sequence solutions in LDHA are finite
homogeneous Markov chains.

Proof: LDHA initializes the location of the dolphin
herd randomly and repeats location iteration and prey con-
stantly. Because each step in the process of optimiza-
tion has no aftereffect, the race sequence of LDHA is a
Markov chain. Let Hk = {X1,X2, . . . ,XN} denote the dol-
phin group in the k-th iteration step, in which N denotes
the total number of dolphins and Xi denotes the location
of the i-th dolphin.

The finiteness of dolphin herd Hk makes itself a finite
homogeneous Markov chain. Because dolphins behave
independently and randomly in collaborative moving and
rounding up prey, and each time the updated dolphin lo-
cations inherits the winning choice, the emergency of the
(k + 1)-th generation of dolphin herds (Hk+1) can only
depend on the k-th generation (Hk). It is not related to
the transition probabilities of the dolphin herd and alge-
bra k. Therefore, the sequence of optimal solutions of Hk
through constant updates is a finite homogeneous Markov
chain.

Theorem 2: The finite homogeneous Markov chains
composed of the sequence solutions of LDHA are ergodic
chains.

Proof: Suppose that the state transition matrix of
Markov chain in LDHA is Pi j = P{Hk+1 = j|Hk = i,k ≥
1}. As the probability only relates to the state of i, j,
and Hk > 0, P is a positive definite matrix. According to
Definition 1 in [9], the sequence solutions in LDHA are
irreducible Markov chains. Besides, they are aperiodic
chains taking Definition 2 in [9] and Pi j ≥ 0 into con-
sideration. Define D as the search space of the dolphin
herd and make ε = max{Pi j : ∀i, j ∈ D}. As 0 < Pi j < 1,
ui = ∑∞

k=1 kPk
i j ≤ ∑∞

k=1 kεk < ∞ can be deduced according
to the Canchy–Riemann equation and Lemma 2 in [9].
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Table 1. Unimodal functions.

Function Expression Dimension Ranges Theoretical optimal
solution

Easom f (X) = −cos(x1)cos(x2)× exp
(−(x1 −π)2 − (x2 −π)2) 2 [−100,100] min f = −1

Matyas f (X) = 0.26
(
x2

1 + x2
2
)−0.48x1x2 2 [10,10] min f = 0

Trid6 f (X) =
D
∑

i=1
(xi −1)2−

D
∑

i=2
xixi−1 6 [−36,36] min f = −50

Sumsquares f (X) =
D
∑

i=1
ix2

i 10 [−10,10] min f = 0

Sphere f (X) =
D
∑

i=1
x2

i 30 [−1.5,1.5] min f = 0

Table 2. Multimodal functions.

Function Expression Dim Ranges Theoretical opti-
mal solution

Booth f (X) = (x1 +2x2 −7)2 +(2x1 + x2 −5)2 2 [−10,10] min f = 0

Bohachevsky1 f (X) = x2
1 +2x2

2 −0.3cos(3πx1)−0.4cos(4πx2)+0.7 2 [−100,100] min f = 0

Eggcrate f (X) = x2
1 + x2

2 +25(sin2 x1 + sin2 x2) 2 [−π,π] min f = 5.5281 ×
10−53

Schaffer f (X) = 0.5+

(
sin
√

x2
1+x2

2

)2−0.5

(1+0.001(x2
1+x2

1))2 2 [−100,100] min f = 0

Six Hump
Camel Back

f (X) = 4x2
1 −2.1x4

1 +1/3x6
1 + x1x2 −4x2

2 +4x4
2 2 [−5,5] min f = −1.0316

Bohachevsky3 f (X) = x2
1 +2x2

2 −0.3cos(3πx1 +4πx2)+0.3 2 [−100,100] min f = 0

Bridge f (X) = sin
√

x2
1+x2

2√
x2

1+x2
2

+ exp
(

cos2πx1+cos2πx2
2

)
−0.7129 2 [−1.5,1.5] max f = 2.0174

Rastrigin f (X) =
D
∑

i=1
[x2

i −10cos(2πxi)+10] 60 [−10,10] min f = 0

Quadric f (X) =
D
∑

i=1

(
1
∑

k=1
xk

)2

120 [−30,30] min f = 0

Ackley f (X) = −20exp
(
−0.2

√
1
D

D
∑

i=1
x2

i

)
− exp

(
1
D

D
∑

i=1
cos2πxi

)
+20+ e 200 [−32,32] min f = 8.8818 ×

10−16

Therefore, the finite homogeneous Markov chains com-
posed of the sequence solutions of LDHA are ergodic
chains. According to Theorem 2, the Markov chains com-
posed of the sequence solutions of LDHA are ergodic
chains and satisfy the condition in [11] that the evolu-
tionary algorithm converges to the optimal solution with
the probability of 1. Therefore, according to Theorem 4
in [9], the optimal solution in LDHA is converged with
the probability of 1.

5. Experiments and Analysis

In order to fully test the performance optimization of
LDHA, in this study, we conduct experiments using the
standard test functions in [12–14]. The results are shown
in Tables 1 and 2. The five standard complex functions
in Table 1 are unimodal functions, and the 10 standard
complex functions in Table 2 are multimodal functions.
Figs. 4–6 shows the characteristics of the local optimum
and global optimum of test functions in various types (fit-
ness functions). The experiments are conducted by us-
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Fig. 4. Representation of function Easom.

Fig. 5. Representation of function Bridge.

Fig. 6. Representation of function Booth.

ing a PC equipped with the simulation program written
in MATLAB2012b, Windows 7 operating system, AMD
Athlon 640 quad-core processor, and 3 GB RAM.

5.1. Analysis of Standard Test Functions
A simple analysis of the above mentioned standard

functions is as follows:
The only extreme in the definition domain of a uni-

modal function is the global optimum, such as function
Easom and function Ackley. Fig. 4 shows the figure of
function Easom. There exist multiple extremes in the def-
inition domain of multimodal functions, and its general
algorithm can easily generate the local optimum or fluctu-
ate among local extremes. Multimodal functions are often
used to test the global search capacity of the algorithm.

Functions can be classified as separable and non-
separable functions. If a function has N variables and can

be expressed by the sum of N single variable functions,
it is a separable function. Otherwise, it is non-separable.
Fig. 6 illustrates function Booth, which is a multimodal
separable function. In Fig. 5, function Bridge is multi-
modal and non-separable. Due to the complexity among
the variables in non-separable functions, it is relatively
more difficult to realize function optimization than in the
case of separable functions.

Besides, the indicator of the dimension function is
of great importance to test intelligent optimization al-
gorithms. Some functions have a very good low-
dimensional effect; however, they have poor high-
dimensional effect. Therefore, the test functions in Ta-
ble 1 can be used to test the performance of LDHA fully
and comprehensively.

5.2. Comparative Analysis of Algorithms
In order to compare the performance of LDHA, which

is based on leadership strategy, we test other heuristics,
including genetic algorithm (GA) [18–20] and PSO [21–
23]. In this study, we adopt the standard GA algorithm
without any elitist strategy, and the probabilities of muta-
tion and crossover in GA are 0.05 and 0.95, respectively.
Further, we use the standard version of PSO whose learn-
ing parameter α is 2 and inertia is 1. Approximately 1000
function values are involved in each implementation, and
the running time is less than 5 s. Moreover, having at-
tempted a number of population quantities ranging from
n = 2 to n = 200, we proved that the value of n generated
from 10 to 50 is sufficient for most questions. Therefore,
a fixed value of n = 40 is applied to all simulations. Ta-
ble 2 shows the values of test functions in the form of
“mean ± standard deviation” (seeking the success rate of
global optimum).

As can be seen from Table 3, PSO is superior to GA,
and GA is superior to any other algorithms in terms of the
accuracy and efficiency of calculation. However, LDHA
improves the rate optimization and accuracy of calcula-
tion by citing echolocation and iterating through the pulse
loudness and emission rate.

In order to visualize the comparison among LDHA,
GA, and PSO, Figs. 7–11 show the convergence curves
of iterations and values of objective functions by testing
five different standard functions with the same nature.

It is apparent from Figs. 7–11 that LDHA outperforms
other algorithms in terms of the calculation accuracy and
the convergence rate.

If the frequency change is replaced by the entity set
A(i) = 0 and R(i) = 1 of a random parameter, LDHA is
transformed into PSO. Similarly, if the pulse loudness and
emission rate are fixed, say A(i) = R(i) = 0.65, LDHA is
almost degraded to a simple harmony search (HS). This is
attributed to the fact that the change in wavelength or fre-
quency acts as a change in pitch in essence, and the radia-
tion pulse in LDHA is similar to the harmonic acceptance
rate in HS (here, somewhat distorted). LDHA compares
the maximum values directly and generates the optimal
value by comparing the local optimal values through the
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Table 3. Comparison between LDHA and GA, POS, and DPO.

Function GA PSO DPO LDHA
Easom 19239± 3307 (92%) 17273± 2929 (90%) 3528± 265 (99%) 4519± 405 (99%)
Matyas 52124± 3277 (98%) 69224± 573 (98%) 4923± 448 (98%) 7923± 645 (98%)
Trid6 55723± 8901 (90%) 32756± 5325 (98%) 34657± 3675 (99%) 33756± 5345 (100%)
Sumsquares 25412± 1237 (100%) 17040± 1123 (100%) 2156± 317 (100%) 1152± 245 (100%)
Sphere 227329± 7572 (95%) 14522± 1275 (97%) 15378± 6780 (99%) 5715± 678 (100%)
Booth 89325± 7914 (95%) 43219± 439 (97%) 43579± 537 (100%) 4315± 439 (100%)
Bohachevsky1 33929± 1567 (98%) 53247± 472 (90%) 6573± 457 (100%) 5379± 472 (100%)
Eggcrate 524579± 3369 (97%) 45237± 432 (99%) 9765± 613 (99%) 8928± 732 (100%)
Schaffer 70925± 7652 (90%) 55970± 4223 (92%) 7657± 4312 (99%) 6957± 2317 (100%)
Six Camel Back 54077± 4997 (89%) 23992± 3755 (93%) 6789± 4532 (100%) 14537± 3479 (100%)
Bohachevsky3 45796± 2254 (98%) 34578± 342 (93%) 78935± 4537 (99%) 7543± 2096 (100%)
Bridge 55643± 4456 (99%) 45329± 235 (94%) 4537± 457 (100%) 1068± 756 (100%)
Rastrigin 110523± 5199 (77%) 79491± 3715 (90%) 8967± 6857 (99%) 9792± 5430 (100%)
Quadric 67453± 2199 (89%) 37193± 205 (97%) 25789± 4321 (99%) 11756± 3409 (99%)
Ackley 32720± 3327 (90%) 23407± 4325 (92%) 67534± 5674 (100%) 27860± 4325 (100%)

Fig. 7. Convergence curve comparison of function Eggcrate.

Fig. 8. Convergence curve comparison of function Bridge.

fitness function. Besides, LDHA does not adopt entity
set or random parameters, nor does it use fixed loudness
or frequency. Instead, LDHA generates these values ran-
domly, which is more practical and significantly improves
the optimization accuracy.

Fig. 9. Convergence curve comparison of function Booth.

Fig. 10. Convergence curve comparison of function Ackley.

5.3. Optimization Test by Ultra-High-Dimensional
Function

To validate the algorithm used in the different dimen-
sion functions, especially ultra-high-dimensional func-
tions in [23] As shown in the following Eq. (7), this al-
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Fig. 11. Convergence curve comparison of function Easom.

gorithm was tested. The results are shown in Table 4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (Z) =
|S|
∑
i=1

ωi

[
−20exp

(
−0.2

√
1
D

D

∑
j=1

x2
i j

)

−exp

(
1
D

D

∑
j=1

cos2πxi j

)
+20+ e

]

S = {50,50,25,25,100,100,25,25,50,

25,100,25,100,50,25,25,25}

D =
|S|
∑
i=1

Si = 1000

y = x− xopt

yi = y
(
P[Ci−1+1] : P[Ci]

)
, i ∈ {1, . . . , |S|}

zi = Λ10T 0.2
asy (Tosz(Riyi)) , i ∈ {1, . . . , |S|}

Ri : a |Si|× |Si|
x ∈ [−32,32]D, f (xopt) = 0

(7)

As shown in Table 4, the calculation precision of
LDHA algorithm is higher, operation time can be ac-
cepted, in the function of no more than 200 d dimension.
Unfortunately, the test time is more than 253 h and the cal-
culation error algorithm is relatively large for ultra-high-
dimensional function optimization; this leads to sense-
less results. Therefore, the algorithm is not suitable for
ultra-high-dimensional function optimization (more than
200 d). This is a limitation of the algorithm.

6. Conclusion

According to the behavioral characteristics of dolphin
herd preying, a global optimization algorithm based on
leadership strategy is proposed in this paper. In order to
survive, the whole herd preys under the guidance of ar-
tificial dolphins. Through the process of searching for
food, transforming roles, and rounding up food, the dol-
phin herd realizes the aim of global optimization step by

step. The result of testing this algorithm on 15 basic func-
tions as well as the comparison of two classic intelligent
algorithms proves the good convergence and optimization
capability of LDHA. As for complex functions, LDHA is
almost unaffected by the unimodality, multimodality, or
dimensions of functions. Moreover, this algorithm is con-
cise and efficient as the parameters needed in LDHA are
extremely few. The limitation of the algorithm is that it
is not suitable for high-dimensional function optimization
problems.
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