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A hierarchical force-directed graph drawing is pro-
posed for the analysis of a neural network structure
that expresses the relationship between multitask and
processes in neural networks represented as neuron
clusters. The process revealed by our proposal indi-
cates the neurons that are related to each task and the
number of neurons or learning epochs that are suffi-
cient. Our proposal is evaluated by visualizing neu-
ral networks learned on the Mixed National Institute
of Standards and Technology (MNIST) database of
handwritten digits, and the results show that inactive
neurons, namely those that do not have a close rela-
tionship with any tasks, are located on the periphery
part of the visualized network, and that cutting half
of the training data on one specific task (out of ten)
causes a 15% increase in the variance of neurons in
clusters that react to the specific task compared to the
reaction to all tasks. The proposal aims to be devel-
oped in order to support the design process of neural
networks that consider multitasking of different cate-
gories, for example, one neural network for both the
vision and motion system of a robot.

Keywords: neural network, network structure, multi-task
learning, clustering, visualization

1. Introduction

For multitask learning by neural networks with deep
layers, encouraging classification accuracy is studied [1,
2], where lower layers close to the input layer of a neu-
ral network are formed via unsupervised learning for the
purpose of feature extraction, and then the entire neural
network is learned via a combination of those partially
structured lower layers with higher layers. Some parame-
ters, such as iteration times of unsupervised learning and
number of neurons in each layer, have to be determined
by two methods without any guidance from clear criteria.
One is an empirical decision that chooses the most plau-
sible number between the upper and lower layers. An-

other is a pruning method that deletes neurons connected
to weak weights. The former requires an experiment and
trial-and-error. The latter can determine a suitable size,
which is lower than the initial size, through pruning, but
it cannot identify the role of deleted neurons in multitask.
Moreover, the high learning cost of deep neural networks
and time required for trial-and-error result in significant
computational costs for determining a suitable neural net-
work structure. It is necessary to visualize the neurons
in a task-related pattern as guiding criteria for adjusting
network size.

Therefore, a hierarchical force-directed graph drawing
is proposed for neural network structure analysis by cre-
ating neuron clusters in 2D Euclidian spaces, in which
the placement of neurons is determined using connection
weights between neurons. Explained in detail, an attrac-
tive force acts on neurons located on two adjacent layers,
and a repulsive force acts on neurons in each layer. The
force applied between neurons is used to update neuron
lactations during iteration, and constructed neuron distri-
butions are defined as the neuron cluster. The variance of
neurons in clusters that react to input data is designed as
the criteria for adjusting the number of neurons in each
layer.

By applying our proposal, those with insufficient expe-
rience designing neural network structures can check the
clusters of visualized neurons and use their variance as
the criteria for determining the neural network structure.
Given a specific task, the trial-and-error process for de-
termining its network structure also benefits from a lower
computational cost.

The proposal is evaluated by experiments with neural
networks learned on the Mixed National Institute of Stan-
dards and Technology (MNIST) database that contains
70,000 handwritten digits of ten categories. In the first ex-
periment, the average variance of the neurons in clusters
that react to the input data is calculated in each layer to
show its relationship with the status of the learning pro-
cess. In the second experiment, the training data of one
specific task (i.e., digit “1”) is cut in half, and the variance
of neurons in clusters that react to this task is calculated
in the middle layer, which is adjacent to the input layer of
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Fig. 1. INeuron cluster in 2D Euclidean representation of
each layer in neural network.

the network, and the value is compared with the average
variance of neurons in the cluster that corresponds to all
tasks in the same layer.

The visualization method for showing neuron clusters
in each layer and the evaluation criteria for network size
are proposed in Section 2. Evaluation experiments that
use handwritten digits to show the relationship between
evaluation criteria with each task are covered in Section 3.

2. Neuron Cluster and Evaluation for Neural
Network Structure

2.1. Visualizing Neurons into Clusters by Hierar-
chical Force-Directed Graph Drawing

To clarify the correspondence between neural network
processing and its structure, the relationship between neu-
rons in each layer is expressed in the 2D Euclidian space
by assigning their location using a force-directed graph
drawing [3], and the proposed visualization in Fig. 1 is
utilized to generate a clustering algorithm for a hierarchi-
cal structured network.

As a preprocessing step, the weights in the neural net-
work are normalized. Then, the following two steps are
iterated until the neuron movement velocity is reduced to
a certain value.

(1) Forces related to neural network weights are calcu-
lated and applied to neurons.

(2) Neuron velocity and location are updated using ap-
plied forces.

First, for equitable comparison of neurons with different
ratio between their weights and biases, the connection
weight Wi j between neuron i and neuron j is normalized
using bias bi of neuron i as

Wi j :=
Wi j

1+ I (bi)
, . . . . . . . . . . . . (1)

I (bi) =

{
bi if bi > 0
0 otherwise

. . . . . . . . . (2)

This normalization process is based on the idea that neu-
ron firing is discriminated by whether its value is higher
than the bias. If bi is less than or equal to zero, neuron
i fires regardless of the state of neuron j. However, if bi
is a positive value, the ratio of Wi j to bi is important in
deciding the state of neuron i.

Second, an attractive force is applied on neuron pairs
in adjacent layers, and a repulsive force is applied on neu-
ron pairs in the same layer. For two neurons on adjacent
layers with weight W and distance d, their connection is
regarded as a stretched spring. Attractive force Fa is cal-
culated based on Hooke’s law as

Fa =

{
−Wd if d < d1

−Wd1 otherwise
, . . . . . . . . (3)

where d1 is a limitation that prevents excessive increase
in the velocity and divergence of neuron positions, and
d1 is set to one from experience. The repulsive force Fb
applied on neuron pairs on the same layer is calculated in
reference to the cubic function approximation of the van
der Waal force as

Fb =

⎧⎨
⎩

(
5
4

d3− 19
8

d2 +
9
8

)
if d < 1

0 otherwise
, . . (4)

Force Fb is designed as a local repulsive force that works
in a radius range of one. If the distance between two neu-
rons is over the range, the value of Fb is set to zero in order
to avoid a negative value.

Finally, the velocity and position of all neurons are up-
dated using Eqs. (3) and (4) by

V := θ [V +dt (Fa +Fb)] , . . . . . . . . (5)

x := x+dtV, . . . . . . . . . . . . . (6)

where θ is a decay coefficient, and dt is a short period of
time.

Neuron distributions are suitably constructed as clus-
ters by iterating Eqs. (3) to (6) until velocity change de-
creases to a termination threshold. In this paper, θ , dt,
and the termination threshold are set to 0.7, 0.1, and 0.01,
respectively.

2.2. Neural Network Structure Evaluation from its
Cluster

The size of a neural network and its learning process
are estimated using neuron clusters in the 2D Euclidian
space obtained in Section 2.1.

Neural network processing is supposed to be performed
by firing the neurons that react to an input signal, and
these neurons pass their information to the neurons in the
upper layer via positive weights. At the same time, the
information via negative weight is used to inhibit other
neurons. Then, the weights converge to specific values
during the learning progress.
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Fig. 2. Ten number image examples in MNIST dataset.

In the neural network that learned a task, the neurons
that react to the task receive stronger information from a
neuron in the lower layer, and these neurons are located in
the vicinity and create clusters. For the same reason, the
neurons not related to any tasks are connected by weak
weights and are removed from the clusters. Therefore,
the neural network size in each layer is estimated by the
variance of the neurons in the clusters that react to the
tasks. Furthermore, the neurons located sparsely around
the clusters are marked as unnecessary in the estimation
process.

3. Neural Network Estimation Experiments
from Cluster Reaction

3.1. Preparation of MNIST Database and Neural
Network Parameters

The proposal is evaluated by the clusters in a visual-
ized neural network that already learned multitask, where
multitask means the serial data, and each task is managed
individually. To evaluate the proposed estimation meth-
ods for learning the progress and size of neural networks,
we confirm that the neurons located sparsely around clus-
ters are not necessary because these neurons do not react
to any tasks, and the variance of neurons in a cluster that
reacts to a task is reduced in accordance with the decrease
in learning error. In addition, the relationship between
each visualized cluster and its corresponding task is also
confirmed by an experiment in which training data on one
specific task is cut in half, and the variance of neurons in
the cluster that reacts to that task is studied.

The MNIST database [4] commonly used in multitask
learning is an image database of handwritten digits, as
shown in Fig. 2. In the database, each example has a 784-
pixel (28×28) binary image and number labels (from zero
to nine). The database has a training set of 60,000 exam-
ples, and a test set of 10,000 examples. MINST is a subset
of a larger set available from NIST. Each digit has been
normalized in size and centered in an image with fixed
size. In this paper, one task is characterized by identifica-
tion of the number label to each input image, and 10,000
examples are retrieved from the training data and used as
validation data to evaluate the variance of neurons in the
2D Euclidean space, and calculate the learning error that
represents learning progress.

A denoising autoencoder [5] is used as the neural net-
work model for multitask learning. In this paper, learning

rate, learning decay, momentum, and mini-batch size are
set to 1, 0.98, 0.5, and 50, respectively. The number of
neurons is fixed to 784 in the input layer and ten in the
output layer.

3.2. Neural Network Structure Estimation from its
Cluster

The neural network structure and its learning progress
are evaluated through experiments confirmed by the re-
action of the neuron cluster expressed in the 2D Eu-
clidean space, where the four-layered neural network is
used to verify correspondence between clusters in upper
and lower middle layers.

Before evaluating the proposal, we show how a neural
network is visualized during the training set learning in
Fig. 3. In Fig. 3, three neural networks consist of the same
size 784-500-200-10, and Figs. 3(a), 3(b), and 3(c) are in
the different epochs of one, five, and 50 trial times where
the neural network is learning the training set. The neu-
rons are divided into four layers arranged in order from
the input layer side, and the clusters are visualized circles
filled in monochrome according to the firing frequency
that reacts to the validation set. (In other words, neurons
that do not react to any tasks are painted in white. Con-
versely, neurons that react independently of the task are
painted in black.)

Through the learning progress shown in Figs. 3(a) to
3(c), specific neurons fire more frequently, which is ob-
served by that the neurons in center is darker than other
neurons in the surrounding. In addition, the weight be-
tween inactive neurons not related to any tasks becomes
lower, which is observed by the whitecolored neurons lo-
cated sparsely around the center, and their arrangement
becomes uneven given that their weight is not sufficient
to work as an attraction force (too weak). From these re-
sults, the trend of changes in the neural network state can
be represented in the 2D Euclidean space.

In the first experiment, visualization of the neural net-
work is evaluated by visualizing the neural network ac-
cording to the neuron reaction to all tasks (i.e., the dig-
its from “0” to “9”). Furthermore, the relationship be-
tween the error rate and variance of the neurons on each
layer (strongly related with suitable neural network size)
is shown with a learning progress.

To discuss more details of the relationship between the
visualized neural network and its size in each layer, three
layers (one input layer and two middle layers) of the visu-
alized neural network from Fig. 3(c) are shown in Fig. 4
for clarity. Figs. 4(a), 4(b), and 4(c) are the input layer,
lower middle layer, and upper middle layer, respectively.
In the two middle layers, neurons with similar color depth
are arranged collectively, and their cluster approximates
a slightly distorted round shape. On the other hand, neu-
rons in the input layer have uniform color in the center,
and they are not constructed as a clear cluster, but as a
nearly round form. The reason for this is that the neu-
rons that correspond to the center of the input image react
equally to any tasks and are connected evenly to the neu-
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(a) (b) (c)
Fig. 3. Euclidean positions of neurons (a) epoch = 1, (b) epoch = 5, (c) epoch = 50.

(a) (b) (c)
Fig. 4. Clusters on two middle layers (a) input layer, (b) lower middle layer adjacent to output layer, (c) upper middle layer adjacent
to input layer.

rons in the lower middle layer. In addition, the neurons
that correspond to the corners of the input image are re-
moved from the clusters.

To summarize, we confirm by the color gradation in
clusters that neurons with similar firing frequency on tasks
are arranged in a group as a cluster, and that neural net-
work size is thus discriminated to be smaller in the given
case.

Furthermore, to show the relationship between neuron
clusters and the learning process, the average variance of
the neurons in clusters that react to all tasks is calculated
in the two middle layers for epochs one to 12, and the
trend of the variance obtained is compared with that of
the learning error calculated by supervised data based on
the standard cross-validation method shown in Fig. 5. In
Fig. 5, the variances of both middle layers are gradually
reduced after an initial rise on their curves, and the learn-
ing error also decreases gradually with some local oscil-
lation. However, the variance tendency decrease in the
upper middle layer is more remarkable than that of the
lower middle layer. This is attributed to the characteristic

Fig. 5. Epoch variances of neurons in each layer compared
with error rate based on cross-validation.

of the back propagation learning method, in which weight
changes are sufficiently weak in layers farther from the
output layer.

To summarize, the overall trend of the learning progress
can be presented indirectly by the variances of neurons
in each layer without help of supervised data, but only
an approximate change in the learning progress can be
obtained using variance as criteria.
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(a) (b) (c) (d) (e)

Fig. 6. Neuron clusters in one neural network colored according to their reaction to each specific task from five tasks, five images
in first row are examples of input images of each number task, five neuron clusters in second row are expressed reacting neurons to
each task in upper middle layer, and five neuron clusters in third row are expressed reacting neurons to each task in lower middle
layer. (a) task0, (b) task1, (c) task6, (d) task7, (e) task9.

In the second experiment, reaction of neurons to each
task is evaluated by neuron clusters, where task0 to task9
correspond to identifications of the digit numbers from
“0” to “9,” respectively. Furthermore, neuron clusters that
react to one specific task and their neuron variance trend
are shown with reduced training examples by comparison
of (a) and (e) in Fig. 6.

To observe the relationship between neuron clusters
and tasks, the neurons that react to specific tasks in the
two middle layers of Fig. 3(c) are shown in Fig. 6, where
Figs. 6(a), 6(b), 6(c), 6(d), and 6(e) express the neurons
that react to task0, task1, task6, task7, and task9, respec-
tively; a higher reacting frequency is indicated with lower
color depth. In addition, the learning error that corre-
sponds to each task in Fig. 6 is also listed in Table 1. By
checking the mutual distances of reacting neurons in the
lower layer in Fig. 6, the neurons that react to a specific
task are arranged into the same cluster. In particular, the
neurons that react to taks0, which share the lowest learn-
ing error in Table 1, are clearly divided by neuron color
depth in Fig. 6(a). On the other hand, the neurons that
react to task7, which are of the highest learning error in
Table 1, form a dispersive cluster in the 2D Euclidean
space, especially in the upper middle layer.

The two neuron clusters that react to task7 and task9,
for which both handwritten digits are similar in their vi-
sual perception, share an overlapping part intermediately
in the lower middle layer. On the other hand, the two neu-
ron clusters that react to task0 and task1, for which both
handwritten digits are different in their visual perception,
do not have a significant overlapping part. Thus, the task6
cluster of reacting neurons in the lower layer is similar to
a combined cluster by task0 and task1, and it is consis-
tent with the shape of the handwritten digits. However, in

Table 1. Error rate in each task from Fig. 6.

task0 task1 task6 task7 task9
0.0245 0.0317 0.0428 0.1031 0.0763

the upper layer, three clusters are not overlapped, which
means that clusters in the upper layer are more specific to
the corresponding tasks than in the lower layer. We also
confirm that the neurons located sparsely around the cen-
ter are unrelated to any tasks, and thus such neurons are
possible candidates for deletion.

We conclude that neuron clusters configured by learned
neurons are constructed from lower to upper layers that
correspond to the identification process of handwritten
digits, and that neuron clusters configured by neurons un-
der learning are detected when the variance of the neurons
in the cluster becomes large, e.g., “7” in Fig. 6.

In order to check how neuron clusters change in accor-
dance with the size of the training data for related tasks,
the neuron cluster in the lower middle layers of two neu-
ral networks trained on the entire training set and lacking
training set, respectively, are shown in Fig. 7.

Figures 7(a) and 7(b) show the neuron clusters that re-
act to task0 and task1 in the same neural network trained
on the entire training set (50,000 images of handwritten
digits) in 12 epochs. Figs. 7(c) and 7(d) show the neuron
clusters that react to task0 and task1 in the neural net-
work trained on a reduced training set (47,500 images of
handwritten digits with images from digit “1” cut in half,
namely, 2,500 images of “1”) of 12 epochs. By compar-
ing Figs. 7(a) and 7(c), we can see that the neuron clus-
ters show a similar cluster. However, in the comparison of
Figs. 7(b) and 7(d), the neurons that react to task1 have
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(a) (b)

(c) (d)
Fig. 7. Neurons on second middle layer response to partic-
ular task. (a) response to task0, learning with entire data, (b)
response to task1, learning with entire data, (c) response to
task0, learning with lacking task1 data, (d) response to task1,
learning with lacking task1 data.

Fig. 8. Three neuron variances in each cluster react to
Figs. 6(a), 6(b), and ten tasks in each epoch.

a more dispersive cluster in Fig. 7(d) than in Fig. 7(b).
This is because the neurons that correspond to task1 have
not learned with sufficient data, given the data shortage,
in comparison to task0. To show the change of the neuron
clusters that react to all tasks compared with those that
react to one specific task using the reduced training data
set, the variance of the neurons in the clusters is calcu-
lated from a neural network that learned on a training set
(47,500 images for ten digits) where the images for task1,
namely digit “1,” is cut in half (2,500 images), and it is
repeated from epochs one to 12, as shown in Fig. 8. In
Fig. 8, the average variance of neurons in the cluster that
reacts to task0 shares almost the same trend with that of
neurons that react to all tasks. However, the variance of
neurons in the cluster that reacts to task1 is always greater
than the average variance of neurons by approximately
15%. To summarize, a relationship between tasks learned
by neural network is inferred by the variance of neurons in
the clusters that react to specific tasks in the 2D Euclidean
space.

3.3. Discussion Regarding Calculation Cost
and Relationship with Network Structure

In the experiments, a period longer than 46,000 sec is
required for the learning process of the neural network
learning with a predefined size (784-500-250-10) under
an environment where i7 CPU (3.5 GHz), 8GB RAM, and
MATLAB are used. Furthermore, the calculation time for
visualization is longer than 282 sec in the same environ-
ment. Therefore, there is a significant computational cost
when finding a more suitable network size through trial-
and-error. On the other hand, it is possible to reduce the
computational cost using our proposal, which detects un-
necessary neurons for learning during the learning pro-
cess.

Incidentally, one of the difficulties for neural networks
learning multitasking is caused by task processing con-
ducted in a black box. When performing a task using a
neural network, the task is processed in cooperation with
a neuron simple calculation by the summation and activa-
tion functions. Therefore, the relationship between neu-
ron and task is unclear, and it is difficult to identify the
neuron role in the network process. If neurons are associ-
ated by their processing and tasks, they can realize more
efficient learning. For example, a neuron is assigned to
learn a specific task, and those neurons that have com-
pleted their learning are excluded from the ongoing learn-
ing process. Furthermore, our proposal aims to be applied
so that the learning process is accomplished in less time
by identifying the tasks that are not advancing, and learn-
ing intensively on such tasks.

4. Conclusion

In the identification task for handwritten digits using
the MNIST database, we confirmed through the charac-
teristics of neurons in the 2D Euclidean space that the
neural network size in each layer is estimated as reason-
able based on whether its clusters are sparse or dense,
and that the learning progress for each layer is evaluated
through variance reduction in the neuron clusters that re-
act to tasks. Furthermore, we also verified that the neu-
ron cluster represents the characteristics of each learned
task by the neuron clusters that react to that task, and the
variance of the neurons in the clusters that react to a spe-
cific task is 15% larger than the average variance when
the training data for that task is cut in half.

From these results, we can state that in neural net-
work learning experiments on general character identifi-
cation, the proposal clarifies the network size, learning
progress, and relationship among tasks. Thus, the pro-
posal shows the criteria that make neural network struc-
ture design easier for those with insufficient experience
designing the neural network structures, and the trial-and-
error process for determining network structure also ben-
efits from lower computational cost.

The proposal aims to be developed in order to support
the design of neural networks that consider multitasking
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of different categories by managing neuron clusters re-
lated with each task. As a longterm objective, the pro-
posal aims to be applied to multitasking identification in
the real world, such as the visual and situation cognition
tasks of a robot.
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