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In this paper, a switched Kalmanfilter (KF) is used to
predict the status of feature points leaving the field of
view (FOV), which is one of the most common con-
straints in FOV. By using the prediction of status to
compensate for the real state of feature points, non-
holonomic robots conduct visual servoing tasks effi-
ciently. Results of simulation and experiments verify
the effectiveness of the proposed approach.
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1. Introduction

Visual servoing is a robot control strategy that uses vi-
sual feedback to drive a robot moving from its initial posi-
tion to a desired one. Visual servoing involves many con-
straints. One of the most common being the field of view
(FOV). The FOV constraint, i.e., keeping feature points in
the field of view, is a basic requirement for capturing fea-
ture points used to achieve visual feedback control [1].
Traditionally, the studies on visual servoing have been
concentrated in the six-degree-of-freedom robot manipu-
lators [2–4], in which FOV constraints have been studied
by many experts, Mezouar and Chaumette [5], for exam-
ple, proposed a potential method for generating a path in
image space and then using an IBVS algorithm to enable
a six-degree-of-freedom (6 DOF) manipulator to track the
generated path on the image plane. In [6] Chesi and Hung
exploited a path planning approach for robot manipulators
that took the FOV constraint into account by minimizing
a cost function.

In contrast, we subjected a mobile robot to nonholo-
nomic constraints, which brings greater challenges to our
servoing task [7]. This problem of the mobile robot has
been addressed by experts. For example, in [8] López-
Nicolás and Bhattacharya proposed a switched servoing
controller to construct an optimal servoing trajectory for
the robot under the FOV constraint, this contoller com-
bines a straight line and a T-curve. One disadvantage of
this approach is that T-curve is usually oversensitive to
visual measurement disturbance. In [9] Fang et al fixed
an active camera on the mobile robot, then developed an

adaptive camera tracking controller to keep feature points
within the FOV of camera. However this technique re-
quires that the camera spin 360◦ a function is not available
for all nonholonomic robots. Robustness and efficiency
issues also limit the applications of these methods.

Many methods relies on temporal-filtering (TF), specif-
ically, a Kalman-filter (KF) to address robustness and ef-
ficiency issues. A 3-D pose and its time rate constitute
a 12-D state vector to be estimated in real time, mean-
ing that many of these filtering methods, such as parti-
cle filters [10], can not model true distribution well in
real time. A true 3-D pose estimation using Kalman filter
(KF) for RVS has been realized in [11]. With KF, pho-
togrammetric equations are formed by first mapping ob-
ject features in the camera frame, then projecting them
onto the image plane. KF is then applied to provide an
implicit, recursive solution of pose parameters. The fil-
ter output model for RVS is nonlinear in system states, so
an extended KF (EKF) is usually applied, in which case
output equations are linearized for the current state esti-
mates. The use of a KF in RVS is motivated by its several
advantages, including its recursive implementation, ca-
pability of statistically combining redundant information
(such as features) or sensors, temporal filtering, possibil-
ity of using lower number of feature points, and the possi-
bility for changing the measurement set without disrupt-
ing operation [11, 12]. An EKF-based platform [13] was
proposed, for instance, to integrate a range sensor with
a vision sensor for estimating robust poses in RVS. Ad-
ditionally, EKF implementation also facilitates dynamic
windowing of features of interest by estimating the next
time-step feature location. This enables only small win-
dow areas to be processed in image-parameter measure-
ment and significantly reduces image-processing time. It
has been shown that, in practice, an EKF provides near-
optimal estimation [11]. Despite its advantages, its main
constraint, the FOV constraint, remains to be solved.

Inspired by the above studies, we propose a visual ser-
voing approach for helping solve the FOV problem. i.e.,
a switched EKF (SEKF). The SEKF both enhances ser-
voing control robustness and improves the efficiency of
the servoing process while satisfying FOV constraints.
Results of simulation and experiments prove that even
though some feature points leave the camera FOV, it re-
mains highly possible for the robot to accomplish visual
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Fig. 1. Perspective camera model.

servoing tasks by using the EKF prediction function.
The remainder of this paper is organized as follows: In

Section 2, we analyze camera models in our system. In
Section 3, we detail the improved EKF. In Section 4 we
demonstrate how simulation and experiment results show
the effectiveness of our approach.

2. Model Analysis

2.1. Camera Model

The perspective camera model in Fig. 1 is commonly
used, as detailed in [14, 15].

As shown in Fig. 1, Oc is considered to be the optical
center of the pinhole camera. Coordinates {Oc,xc,yc,zc}
are the camera frame. Coordinates {Oi,μ,ν} are the im-
age frame, and pi on the plane are the projections of fea-
ture point pi. The relationship between Pi {Oc,xc,yc,zc}
and pi{Oi,μ,ν} is described as follows:

pi = K [R|t]Pi . . . . . . . . . . . . . (1)

Where R, t are rotation and translation between world co-
ordinates and camera coordinates generally called extrin-
sic camera parameters. K is the camera parameter matrix
of intrinsic parameter, which is defined as follow:

K =

⎡
⎢⎢⎢⎣

Fku Fkucotϕ μ0

0
Fkv

sinϕ
ν0

0 0 1

⎤
⎥⎥⎥⎦ . . . . . . (2)

Where ku and kv are the pixel numbers per unit of dis-
tance. {μ0, ν0} are the origin coordinates of the camera
frame in pixels, generally defined as {0,0}. ϕ is the angle
between axes μ and ν in the image frame. F is the focal
distance of the camera. These intrinsic camera parame-
ters are acquired and calibrated in advance. Without loss
of generality, we assume that these intrinsic parameters
have been determined as follows: ϕ = π/2, μ0 = ν0 = 0,
i.e., the principal point coincides with the origin of the
image coordinate, and ku = kv = 1. The matrix K value is

acquired as follows:

K =

⎡
⎣ F 0 0

0 F 0
0 0 1

⎤
⎦ . . . . . . . . . . . (3)

So we get:

[
μ
ν

]
= F

⎡
⎢⎣

xc

zc
yc

zc

⎤
⎥⎦ . . . . . . . . . . . (4)

2.2. Dynamics Model
A well-known equation [16], [17] describes the rela-

tionship between camera coordinate {Oc,xc,yc,zc} and
system input u = [ υ ω ]T .⎡

⎣ ẋc
ẏc
żc

⎤
⎦ = −υ −ω ×

⎡
⎣ xc

yc
zc

⎤
⎦ . . . . . . . (5)

In which υ is linear velocity and ω is the angular ve-
locity of the robot. In the DDRs system, however, there
is only two degrees of freedom (DOFs) for control i.e.,
υz, ωy, so the dynamics model of the DDRs system is ex-
pressed as follows:⎡

⎣ ẋc
ẏc
żc

⎤
⎦ =

⎡
⎣ 0 zc

0 0
−1 −xc

⎤
⎦[

υz
ωy

]
. . . . . (6)

3. Switched Extended KF

3.1. Extended KF
To estimate coordinate values of feature points in the

camera frame, the state vector of robot system is defined
as follows:

x =
[

xc yc zc
]T . . . . . . . . . . (7)

The discrete dynamic model is describe as follows:

xk = f (xk−1,uk−1)+ γk−1 . . . . . . . . (8)

γk is the input disturbance noise vector assumed to be a
zero-mean Gaussian distribution with covariance Qk, i.e.,

E [γi] = qi, E
[
(γi −qi)(γi −q j)T ]

= Qi . . . (9)

Where qi true mean and Qi are and true moments concern-
ing the mean of input noise sequences. It is reasonable to
assume that the relative gradient of a state vector is con-
sidered constant during every small sample period only if
the sample period is sufficiently small.

f (xk−1,uk−1) = xk−1 +T ẋk−1 . . . . . . . (10)

T is the sample period and k is the sample step. Using
Eq. (6), the state model equation is expressed as follows:

f (xk−1,uk−1) =

⎡
⎣ xck−1 +Tωyk−1zck−1

yck−1
zck−1 −T

(
υzk−1 +ωyk−1xck−1

)
⎤
⎦(11)
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After using the projection model given by Eqs. (1) and
(2), it is reasonable to define the output model in terms of
state vector xk as follows:

yk = g(xk)+νk . . . . . . . . . . . . (12)

With measurement for feature point pi

yk = [ μ ν ]T . . . . . . . . . . . . (13)

And

g(xk) = F
[ xck−1

zck−1

yck−1

zck−1

]T

. . . . . . . (14)

In which xc, yc, and zc are state variables given by Eq. (7).
νk is image parameter measurement noise. Similar to γi,
νk is assumed to a zero-mean Gaussian distribution with
covariance Rk, i.e.,

E[νi] = ri,E
[
(νi − ri)(νi − ri)T ]

= Ri . . . . (15)

Where ri are true mean and Ri are and true moments con-
cerning the mean of measurement noise sequences. From
Eqs. (8) and (12), we know that the DDRs system is non-
linear. To solve this nonlinearity, we use a linearization
process at each step to approximate the DDRs system an
approach called KF extension (EKF).

As defined in Eq. (7), xk is the state vector, so we de-
fined x̂k,k−1as an a priori state estimate at step k by using
information at the end of step k−1. x̂k,k denotes an a pos-
teriori estimate at step k by using measurement yk. We
define a priori and a posteriori estimate errors, and their
corresponding covariances as follows:

ek = xk − x̂k,k, Pk,k = E
[
ekeT

k
]

. . . . (16)

ek,k−1 = xk − x̂k,k−1,Pk,k−1 = E
[
ekeT

k−1
]

. . (17)

EKF mainly consist of three parts i.e., linearization, pre-
diction and estimation. EKF estimation process is de-
scribed as follows:

Linearization:

Âk =
∂ f (xk,uk)

∂ xk
|x=x̂k,k ,Ĉk =

∂ g(xk)
∂ xk

|x=x̂k,k−1 . (18)

Prediction:

x̂k,k−1 = Âk−1x̂k−1,k−1

Pk,k−1 = Âk−1Pk−1,k−1ÂT
k−1 +Qk−1 . . . . (19)

Update Kalman gain:

Kk = Pk,k−1ĈT
k

(
Rk +ĈkPk,k−1ĈT

k
)−1

. . . . (20)

Update the estimation:

x̂k,k = x̂k,k−1 +Kk(yk − y(x̂k,k−1))

Pk,k = Pk,k−1 −KkĈkPk,k−1 . . . . . . . . (21)

Here, Kk are Kalman gains at step k. From [11], in-
put disturbance noise and measurement noise covariances
Qk and Rk are considered constants during the servoing
process. Both Qk and Rk are acquired through experi-
ments [18]. This is done to estimate the state of only
one feature point pi. Similar to this approach, we acquire

states of multipoint states.

3.2. Improvement
Without improvement, the EKF technique can only en-

hance the precision of state measurement. To eliminate
the FOV constraint, we must make the best use of the pre-
diction function of EKF, so we define state flags Ii to in-
dicate whether feature point Pi is captured by the camera:

Iik =
{

0; if Pi is not captured at step k
1; if Pi is captured at step k (22)

When Pi is captured, we use the EKF in the usual way. If
Pi is not captured, we use the prediction function of EKF
to predict state vector xk of Pi. So new Kalman filter gain
Kk is defined as follows:

Kk = Iik Pk,k−1ĈT
k

(
Rk +ĈkPk,k−1ĈT

k
)−1

. . . (23)

Updating estimation:

x̂k,k = x̂k,k−1 +Kk
(
yk − y(x̂k,k−1)

)
. . . . . (24)

Pk,k = Pk,k−1 −KkĈkPk,k−1 . . . . . . . . (25)

It is clear that when the feature point is not captured, x̂k,k
equals prediction value x̂k,k−1, and Pk,k equals Pk,k−1. Re-
sults of simulation and experiments in the next section
verify the effectiveness of our method.

4. Simulation and Experiments

4.1. Simulation
Simulation results are provided to validate the proposed

approach. The landmark consists of 10 feature points not
located on the same vertical plane. The initial position and
the desired position are respectively chosen as follows:

x0 = 1; y0 = 2; θ0 =
π
2

xd = 0; yd = 0; θd =
π
2

. . . . . . . . (26)

From [18] noise covariance matrices were approximated
using offline tuning with q = 10−5:

Q = diag [0, q, 0, q, 0, q, 0, q, 0, q] . . . . (27)

And r = 0.01 for:

R = diag [r, r, r, r, r, r, r, r, r, r] . . . . . (28)

The camera intrinsic matrix is chosen as the parameters of
a real calibrated camera. Simulated images are captured
with 10 frames/s with a resolution of 720 × 720 pixels.

Figure 2 shows the motion trajectory of the mobile
robot in a 3-D scene. The visual servoing strategy we
used is epipolar-based visual servoing proposed by Gian
Luca Mariottini [19].

Figure 3 shows the corresponding 2D image trajectory
of feature points in the pixel coordinate, where blue tri-
angles denote the position of image features in the initial
image, and red rounds denote those in the desired image.
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Fig. 2. 3-D trajectory of the mobile robot.

Fig. 3. Image trajectories of feature points.

Fig. 4. Estimations of state vector x.

Even if feature points escape beyond the FOV, the robot
still accomplishes the servoing task.

Figure 4 show estimation of the state vector generated
in simulation. The robot obtains the state vector during
all the servoing processes.

Table 1 indicates the computation cost for different
temporal-filtering based algorithms used for state vector
estimation. The Matlab 5 tic toc option has been used for
flops calculation, and computational time was acquired
using a 2.20 GHz PC with 4.00-GB RAM. Compared to

Table 1. Computational cost of state vector estimation.

Method Flops CPU time
PF 3036 0.0017

EKF 2997 0.0012
SEKF 3012 0.0015

Fig. 5. Mobile robot used for the experiments.

Particle Filter (PF), SEKF takes less time for computation.
Although EKF takes least time in these three methods,
EKF can not accomplish the servoing task if feature points
leave beyond the field of view. Taken together, SEKF ac-
complishes the servoing task effectively.

4.2. Experiments
As shown in Fig. 5, the mobile robot in our system

consists of the following components: a differential drive
mobile robot with an Samsung ARM S3C 2410, a kinect
camera that captures 30 frames per second with an 8-bit
RGB image at 640 × 480 resolution, and a Intel core i5 in
the PC operating under the Ubuntu 10.04 operating sys-
tem, a Linux kernel based operating system. Internal mo-
bile robot controller Samsung ARM S3C 2410 hosts the
control algorithm written in Linux-C/C++. The first PC
is used for image processing. The kinect camera is pro-
duced by Microsoft.

Results of experiments are illustrated in Fig. 6, where
(a) is the initial robot configuration and the picture cap-
tured by the camera. The rest is the picture during the
servoing process. Feature points are outside the camera
FOV in (d) and (e), the virtual task is accomplished.

To illustrate the advantage of SEKF, we also tested the
PF and EKF performance and records total time for visual
servoing as shown in Table 2.

As shown in Table 2, PF take more time for visual ser-
voing. EKF cannot accomplish the servoing task. SEKF
shows better performance than PF and EKF.

4.3. Extension
The proposed temporal-filtering method is applied di-

rectly in other differential visual servoing control such
as the homography-based Visual Servo proposed by
Yongchun Fang [20] because they share the same math-
ematical model.
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(a) (e)

(b) (f)

(c) (g)

(d)

Fig. 6. Visual servoing process and real-time camera picture.

Table 2. Total servoing task time.

Method Total time
PF 10 min 26 sec

EKF Not accomplished
SEKF 7 min 51 sec

For the 6 DOF robot systems, we must first build the
mathematical model, then use the idea proposed in this
paper to accomplish the servoing task.

5. Conclusions

We have proposed a switched Kalman filter using the
prediction function to solve the FOV problem. When fea-
ture points are captured, we use EKF in the usual way.
When feature points go beyond the camera FOV, we use
the EKF prediction function to predict the state vector.
Results of Simulation and experiments confirmed that the
mobile robot accomplishes the servoing task with FOV
constaints.
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