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In the speed-sensorless induction motor drives system,
Model Reference Adaptive System (MRAS) is the most
common strategy. However, speed estimation using re-
active power based MRAS has the problem of insta-
bility in the regenerating mode of operation. Such es-
timation technique is simple and has several notable
advantages, but is not suitable for induction motor
drives. To overcome these problems, a suitable Arti-
ficial Neural Networks (ANN) is presented to replace
the adjustable model to make the system stable when
working at low speed and zero crossing. Simultane-
ously, in order to enhance the ANN convergence speed
and avoid the trap of local minimum value of algo-
rithm, we used the modified Particle Swarm Optimiza-
tion (PSO) to optimize the weights and threshold val-
ues of neural networks. Then the ANN-based MRAS
was used to identify the speed of motor in the indirect
vector control system. The results of the simulation
show that, by this method, the speed of motor can be
identified accurately in different situations, and the re-
sult is reliable.

Keywords: vector control, speed-sensorless, model
reference adaptive system (MRAS), artificial neural
networks(ANN), modified particle swarm optimization
(PSO)

1. Introduction

Sensorless vector controlled induction motor drives are
being vigorously developed for high performance indus-
trial drive systems. Since the elimination of the speed sen-
sor reduces the costs and increases the overall system re-
liability. On the other hand, the stability at the low speed
operation range and the parameter sensitivity can be the
main drawbacks of sensorless control [1].

Model Reference Adaptive System (MRAS) is the most
common strategy employed due to its relative simplicity.
The MRAS is broadly classified as : 1) Rotor Flux (RF),
2) Back-EMF, 3) reactive power, methods. Rotor Flux
scheme suffers from stator resistance sensitivity and pure
integration problems which may cause DC drift and initial
condition problems [2]. Y.Yusof et al. [3] proposed Low-

Pass Filters (LPF) with very low cut-off frequency to re-
place the pure integrator, but it introduces phase and gain
errors due to its natural delay. B. Karanayil et al. [4] used
a three stage programmable cascaded LPF for the accurate
estimation of the rotor flux, whereas it reduces the scheme
simplicity. Nonlinear feedback integrators for drift and
DC offset compensation have been proposed in [5]. To
avoid the problems associated with rotor flux schemes,
Back EMF and reactive power schemes have been pro-
posed. Although Back-EMF based techniques avoid pure
integration, it may have stability problems at low stator
frequency and show low noise immunity [6]. A specially
constructed reactive power (Q-MRAS) is presented in [7].
It formulated with instantaneous reactive power in the ref-
erence model and steady-state reactive power in the ad-
justable model. So, it does not require any derivative
operations and the flux computation. Moreover, the Q-
MRAS is inherently independent of stator resistance vari-
ation. However, the Q-MRAS has instability problem in
the regenerating mode of operation, as reported in [8]. M.
Hinkkanen et al. [9] modifies the error signal to improve
the stability in the regenerating mode. A fictitious quan-
tity defined by the outer product of voltage and currents is
used in [10] to overcome instability problem under regen-
eration.

Currently, the Artificial Neural Networks (ANN) [11–
14] may be used to improve the performance of the sen-
sorless drives. Shady M.Gadoue et al. [15] proposed a
stator current MRAS scheme for speed identification for
induction motor drives. This method is complicated be-
cause of the application of two neural networks observers.
One is current observer and the other is flux observer. The
ANN based RF-MRAS is also found in [16]. In [16],
the reference model is replaced by an ANN. Generally,
the Grads Descend Method (GDM) learning algorithms is
used to adjust the neural network weights and threshold
values [17]. An algorithm based on Least Mean Square
(LMS) method for the training of linear neuron is found
in [18]. All the methods mentioned above have the de-
fects of plunging into the local minimum easily, low con-
vergence of rate and bad generalization.

Recently, Zhang Wenli et al. [19] used the Genetic Al-
gorithm (GA) to train the ANN. Particle Swarm Opti-
mization (PSO) is an optimization algorithms based on
collective intelligent theory, famous for its strong points
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Fig. 1. The schematic diagram of sensorless indirect vector control system.

as follows: quick convergence rate, strong global search
ability, omitting the process of gradient computing, and
shortening the training time of networks without evolu-
tion operation such as: selection, variation etc.

In this paper, firstly, we use a well trained ANN to
replace the adjustable model to improve the Q-MRAS
scheme performance. The ANN generates accurate re-
active power and improved the stability when working at
low speed and zero crossing. The proposed method has
good speed identification under the regenerating mode.
Secondly, we use the modified PSO to optimize the
weights and threshold values of ANN. This method can
increases the convergence rate and enhance the precision.
And finally, the effectiveness of this method is proved by
the simulation experiments.

2. The Principle of Q-MRAS Speed Observer

The block diagram of a model based sensorless indirect
vector control scheme is shown in Fig. 1. Based on ter-
minal voltages and currents, the rotor speed is estimated
through the proposed ANNbased MRAS. The estimated
rotor speed is used for coordinate transformation and to
close the speed loop.

The basic concept of MRAS is the presence of a ref-
erence model which determines the desired states and an
adjustable model which generates the estimated values of
the states. The error between these states is fed to an adap-
tation mechanism to generate an estimated value of the ro-
tor speed which is used to adjust the adaptive model. This
process continues till the error between two outputs tends
to zero. The structure of the Q-MRAS is shown in Fig. 2.

The building blocks of such Q-MRAS are as follows.
Reference model: The reference model computes in-

stantaneous reactive power in stationary reference frame

Fig. 2. Q-MRAS speed observer.

using Eq. (1).

Q = usβ isα −usα isβ . . . . . . . . . . (1)

The computation of reactive power in stationary frame
does not involve any coordinate transformation. So, the
reference model is free from machine parameters.

Adjustable model: Different expressions of reactive
power for adjustable model are derived. S. Maiti et al. [2]
proposed a detail expressions can be written as :

Q̂ = σLsωe
(
i2sd + i2sq

)
+ωe

L2
m

Lr
i2sd . . . . . (2)

Where: actual speed of rotor flux ωe = ω̂r + ωsl , ω̂r
is the estimated rotor speed, and slip speed ωsl =
(Rrisq)/(Lrisd); σ is the leakage coefficient; isd and isq are
the d and q components of the stator current vector; Rr is
the rotor resistance; Ls, Lm and Lr are the stator, mutual
and rotor inductances respectively.

Such Q-MRAS is influenced by the variation of ma-
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chine parameters (e.g., rotor resistance) and has unsta-
ble when working at low or zero speed operation range.
Therefore an artificial neural network is proposed to re-
place the adjustable model Eq. (2) to improve the Q-
MRAS scheme performance at low or zero speed.

Error signal processing: In Fig. 2, the reactive power
error εQ is processed through A, which functions accord-
ing to the sign of speed error εω and reactive power er-
ror εQ. The speed error is calculated according to εω =
ω∗

r − ω̂r. The working principle of A is as follows:

If sign(εQ) = sign(εω), then v = εQ, . . . (3)

If sign(εQ) �= sign(εω), then v = −εQ, . . (4)

where εQ, εω are the inputs and v is the output of the
block A. The block is designed to satisfy the Popov’s
hyper-stability criteria, which tells that the feedforward
path gain should be strictly real positive for all speed.

Adaptation mechanism: The reference model Eq. (1)
is independent of the motor speed, while the adjustable
mode Eq. (2) is speed-dependant. To obtain a stable non-
linear feedback system, a speed tuning signal v and a PI
controller are used in the adaptation mechanism to gener-
ate the estimated speed. The estimated speed expressions
can be written as :

ω̂r =
(

kp +
ki

s

)
v, . . . . . . . . . . (5)

where kp and ki are the proportional coefficient and inte-
gral coefficient respectively.

3. ANN for the Computation of Q̂QQ

3.1. The ANN Structure Design and Signal Compu-
tations

As expressed in Eq. (2), it is observed that Q̂ is a func-
tion of isd , isq, ω̂r and ωsl .

Q̂ = f1(isd, isq, ω̂r,ωsl). . . . . . . . . (6)

The need of isd and ωsl may be avoided in the computation
of Q̂, so the following Eq. (7) is used instead of Eq. (6).

Q̂ = f2(isq, ω̂r). . . . . . . . . . . . (7)

The nonlinear function f2(·) is unknown to the users.
However, the inputs and the corresponding outputs are
known. So, the problem relies on the realization of the
nonlinear function f2(·) through input-output mapping.
ANN is a well-known tool, which may be used for such
purpose.

To obtain good estimation accuracy, the inputs to the
network are the present and past values of the q-axis sta-
tor current and the estimated rotor speed. To estimate the
reactive power in the adjustable model, a 4-13-1 multi-
layer feedforward neural network is proposed as shown in
Fig. 3. Variable values like present isq(k), ω̂r(k) and one
time step in the past isq(k-1), ω̂r(k-1) are treated as the in-
puts of the ANN. The d-axis stator current isd and ωsl are
not considered as inputs. Generally speaking, The initial

Fig. 3. Structure of the ANN used in the adjustable model.

value of q (the number of nodes of hidden layer) can be
obtained according to the empirical formula: q ≥ 2p + 1
(p is the number of nodes of input layer). Finally we make
q as 13 through the experiment. The outputlayer consists
of only one neuron representing the reactive power for ad-
justable model.

The various signals at different stages of the network
are computed as follows.

Consider a neuron j in a layer m with n inputs in the
(m−1) layer, the net input to the neuron is given by:

net j =
n

∑
k=1

w jkxk +b j

= w j1x1 +w j2x2 + · · ·+w jnxn +b j. . (8)

Where w jk is the weight from n inputs in the (m−1) layer
to the neuron j, xk is the k-th output signal in the (m− 1)
layer to the neuron j, b j is threshold of the neuron j.

The neuron output is given by:

y j = g(net j) = g

(
n

∑
k=1

w jkxk +b j

)
, . . . (9)

where g(·) is the activation function or the neuron trans-
fer function. The commonest activation functions are:
sigmoidal, linear, logsigmoid and tansigmoid activation.
Here, we used sigmoidal function in the hidden layer neu-
ron, the neuron transfer function can be written as:

y j =
1

1+ exp(−net j)
, . . . . . . . . . (10)

whereas, linear function is considered for the output layer
neuron.

3.2. Modified PSO Algorithms
In this paper, a modified PSO training method is pro-

posed. The modified PSO algorithms increases the con-
vergence rate, enhance the precision and avoid the local
minimum. The particle in the swarm trails 2 extremum
(one optimal solution is found by the particle itself and the
other is found by the swarm) in the process of every itera-
tion search to adjust its own position and velocity, finally
finishing the optimization. The basic PSO algorithms are
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as follows:

vk+1
id = wvk

id + c1 × randk
1

(
pbestk

id − xk
id

)
+c2 × randk

2

(
gbestk

d − xk
id

)
. . . . (11)

xk+1
id = xk

id + vk+1
id . . . . . . . . . . . . (12)

w: inertia weight, usually 0.4 ∼ 1.2;

vk
id : the d dimensional velocity of the particle i for

the k time;

c1,c2: acceleration factor, which adjust the longest
step width toward the best global particle and
the best individual particle. Proper c1,c2 can
accelerate the convergence rate and not get
into the local optimum. Usually c1 = c2 = 2;

randk
1,2: any value among [0,1];

xk
id : the d dimensional position of the particle i for

the k time;

pbestk
id: the d dimensional position of the individual

extreme point of the particle i for the k time;

gbestk
d: the d dimensional position of global extreme

point of the whole swarm for the k time;

vd : value range is −vd max to +vd max in order to
prevent the particle from staying away from
the search space. If vd max is too large, the
particle will fly away the best solution; If too
small, the particle will get into the local op-
timum. If the d dimension of search space
is defined as [−xd max,+xd max], then vd max =
kxd max, 0.1 ≤ k ≤ 1.

For practical optimization problems, we often consider
the global search first, and make the search space fast
enough to converge to an area. Then, we make a care-
ful local search to obtain the high accuracy solution. The
study finds that a larger w can strengthen the global search
ability, while a smaller w strengthen the local search
ability. In this paper, a linear descending algorithms is
adopted. w reduces linearly along with the increasing
number of iteration. In this way the global search abil-
ity is greatly improved. The formula for w is as follows:

w = wmax − wmax −wmin

itermax
× iter. . . . . . (13)

wmaxwmin: maximal and minimal inertia weight, usually
wmax = 0.8 ∼ 1.2, wmin = 0.4;

itermax: the maximum number of the iteration set;

iter: the current number of iteration.

3.3. The ANN Based on Modified PSO Algorithms
In the process of optimizing ANN, the position vector x

is defined as the connection weights and threshold values

of the whole ANN. Initialize x and search for the optimal
position in the modified PSO method to get theminimal
error of mean square:

J = E =
1
N

N

∑
i

∑
j

(di j − yi j)2. . . . . . . (14)

di j: the expected output value of the particle i through
the output layer node j;

yi j: the real output value of the particle i through the
output layer node j;

N: the number of sample in the training set.

So, the fitness function is defined as:

f =
1
J
. . . . . . . . . . . . . . . . (15)

The searching procedures of the proposed modified
PSO were shown as below:

Step 1. Initialize the structure of ANN, and set the num-
ber of neuron of input, hidden and output layer.

Step 2. Generate initial condition of each agent. Initial-
ize inertia weight w, acceleration factor c1,c2,
max iteration Nmax. Velocity of each agent are
usually generated randomly within the allowable
range. The current searching point is set to pbest
for each agent. The best-evaluated value of pbest
is set to gbest and the agent number with the best
value is stored.

Step 3. The fitness value is calculated for each agent. If
the value is better than the current pbest of the
agent, the pbest value is replaced by the current
value. If the best value of pbest is better than
the current gbest, gbest is replaced by the best
value and the agent number with the best value is
stored.

Step 4. Update the position and velocity of each parti-
cle. The current searching point of each agent is
changed using Eqs. (11) and (12).

Step 5. Checking the exit condition. If reach to the max-
imum iteration number Nmax or the expected pre-
cision, then exit. Otherwise, continue iteration.
Go to Step 3.

Step 6. The individual that generates the latest is the op-
timal parameters of the connection weights and
threshold values.

To generate the input and output training datas, the vec-
tor controlled induction motor running at different speed
commands and subjected to various load torques is sim-
ulated. 4800 groups of data were obtained and are used
to train the ANN. The training is performed off-line using
four different algorithms. When the rotate speed ω∗

r is
set as 50 r/min, the largest training times is 2000, and the
smallest allowable error is 0.005. Comparing modified
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Table 1. Error comparing in different algorithms.

Algorithm Training Times System Error
GDM-ANN 2000 0.1229
GA-ANN 2000 0.0071
PSO-ANN 2000 0.0065
Modified PSO-ANN 2000 0.0043

Table 2. Weights and bias values.

WI{1,1}

0.8539 0.1292 −0.2856 0.7625;
0.6291 0.9815 −0.0154 0.6772;
0.6630 −0.0410 0.5890 −0.9853;

−0.4256 0.1751 0.6573 0.8426;
0.5587 −0.1293 0.1372 −0.6971;
0.9365 0.0977 −0.1663 −0.9136;

−0.2059 0.1182 0.8119 0.8220;
0.0360 −0.3363 0.8573 −0.3187;
0.2238 0.3745 0.3548 −0.9741;

−0.2708 0.2653 0.6189 0.9858;
−0.6604 0.6228 −0.0913 0.5713;
−0.7660 0.9770 −0.8056 0.9374;

0.8147 0.1565 −0.6526 0.1671;
WL{2,1} 0.7091 0.3674 −0.5289 0.7849 −0.5464

−0.0163 0.9845 −0.4055 −0.7826 0.6576
0.3896 −0.8098 0.1437

b{1} 0.9080 −0.2026 0.5942 0.2109 −0.9495
−0.2869 −0.1726 0.0527 −0.6473 0.4079

0.2270 −0.0168 0.0202
b{2} −0.3607

PSO-ANN with the Gradient Descent with Momentum to
optimize ANN (GDM-ANN), Genetic Algorithm to opti-
mize ANN (GAANN) and the basic PSO-ANN, it’s easy
to obtain the conclusion that modified PSO-ANN is the
best of all. It has a smaller net error and quick convergent
rate under the same iterating times. The comparing result
is shown in Table 1.

The ANN is trained using modified PSO, the optimized
parameters of ANN are shown in Table 2.

Where WI{1,1} are the weights to the hidden layer 1
from input 1, WL{2,1} are the weights to the output layer
2, b{1} and b{2} are the bias to the hidden layer 1 and
output layer 2 respectively.

The well-trained ANN is used in the adjustable model
of the Q-MRAS to deliver accurate reactive power under
all operating conditions. This will benefit from the fol-
lowing advantages: fault tolerance, noise immunity and
fast processing speed.

4. System Simulation Results

In this section, the software Matlab is used to simu-
late the whole system to examine the performance of the
ANN-based Q-MRAS. Through a lot of experiments, the
parameters of modified PSO used in the simulation exper-
iments are as followings: ωmax = 0.9, ωmin = 0.4, c1 = 2,
c1 = 1.8, the number of the particles is 40, the dimen-
sion of particles is 79. For a induction motor, with the
following parameters: Pn = 2.2 kW, Un = 380 V, p =

Fig. 4. Real and estimated speed at low speed.

Fig. 5. Speed error curve at low speed.

Fig. 6. Electromagnetic torque at low speed.

2, fn = 50 Hz, Rs = 0.435 Ω, Rr = 0.816 Ω, Ls = Lr =
2.08 mH, Lm = 69.4 mH, J = 0.18 kg·m2.

In the simulation, the error of the speed estimation
through the ANN is checked. The following several cases
include low and high speed, slow zero crossing, and oper-
ation in the regenerating mode. Simultaneously, the dis-
turbance of the load is considered. The estimated speed
and real speed curves of the method are given, and the
electromagnetic torque curves are also presented.

4.1. Low Speed and Zero Crossing Operation
Figures 4–6 show the simulation results of command

speed ω∗
r change from 50 r/min to −50 r/min at 0.3 s.

The load disturbance set at 15 N·m suddenly at 0.2 s.
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Figure 4 is the comparison between the real speed and
estimated speed. Fig. 5 is the speed error curve. It is
observed that the estimated speed follows the real speed
with good accuracy. Even in the instant load, it reflects
negligible speed estimation error. In the dynamic process,
the slow zero crossing has taken place at 0.31 s, and the
estimated speed error does not exceed −2.5 r/min. The
results reveal satisfactory performance around zero cross-
ing. The performance of the Q-MRAS around zero cross-
ing is improved when the djustable model is replaced by
the well trained ANN. The well trained ANN generates
accurate reactive power at regeneration. As a result, the
proposed method also has good speed identification at low
speed and zero crossing.

Figure 6 is the electromagnetic torque curve. The elec-
tromagnetic torque is matched with the load torque. The
estimated speed and torque follow the command speed
and torque with sufficient accuracy, which reveals that the
drive enters into the generating mode stability.

4.2. Dynamic and Static Characteristics
Figures 7–9 show the simulation results of speed

change from static to 1100 r/min. The load disturbance
set at 85 N·m suddenly at 0.4 s, and unloading at 0.6 s.

Figure 7 is the comparison between real speed and esti-
mated speed in high speed. It is noticed that both of them
are closely following. Fig. 8 is the speed error curve. By
analyzing the waveforms, although there are errors always
in the dynamic process, the estimated speed error does not
exceed -3.4%, and the estimated speed can rapidly track
the real speed. When reached a speed of 1100 r/min, the
estimated speed is very precise in steady state. Small de-
viation between the real speed and estimated speed is no-
ticed only in the instant heavy load at 0.4 s. When re-
moving the load at 0.6 s, the estimated speed is in good
accordance with the real speed. So the proposed method
has high accurate and strong robustness in high speed.

Figure 9 is the electromagnetic torque curve. From 0.4
to 0.8 s, the torque keeps balance. Although there are tiny
amplitude vibrates in the steady state, the electromagnetic
torque is matched with the load torque.

5. Conclusions

Speed estimation using reactive power based MRAS
has the problem of instability in the regenerating mode
of operation. In this paper, a suitable ANN to replace the
adjustable model to make the system stable when working
at low speed and zero crossing. Furthermore, in order to
enhance the ANN convergence speed and avoid the trap
of local minimum value of algorithms, we used a modi-
fied PSO to optimize the weights and threshold values of
neural networks. Results show that, the well trained ANN
estimates rotor speed accurately at regeneration. In the
dynamic and static respond process, the new strategy has
accurate speed estimation, as well as enhances the robust-
ness in the sensorless indirect vector control system.

Fig. 7. Real and estimated speed at high speed.

Fig. 8. Speed error curve at high speed.

Fig. 9. Electromagnetic torque at high speed.

Further research should focus on some new evolution-
ary computing approaches to optimize the ANN param-
eters, such as artificial fish swarm algorithm, ant colony
optimization, and so on. Simultaneously, the evolution-
ary computation should be combined with other intelli-
gent control method to solve some practical problems.
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