
Matsuo, T., Inuiguchi, M., and Masunaga, K.

Paper:

Comparison of Knowledge Acquisition Methods for
Dynamic Scheduling of Wafer Test Processes

with Unpredictable Testing Errors
Tsubasa Matsuo∗, Masahiro Inuiguchi∗, and Kenichiro Masunaga∗∗

∗Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

E-mail: {matsuo@inulab., inuiguti@}sys.es.osaka-u.ac.jp
∗∗Renesas Electronics Co.

2-6-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
E-mail: kenichiro.masunaga.te@renesas.com

[Received April 20, 2014; accepted August 25, 2014]

The scheduling of semiconductor wafer testing pro-
cesses may be seen as a resource constraint project
scheduling problem (RCPSP), but it includes uncer-
tainties caused by wafer error, human factors, etc. Be-
cause uncertainties are not simply quantitative, esti-
mating the range of the parameters is not useful. Con-
sidering such uncertainties, finding a good situation-
dependent dispatching rule is more suitable than solv-
ing an RCPSP under uncertainties. In this paper
we apply machine learning approaches to acquiring
situation-dependent dispatching rule. We compare ob-
tained rules and examine their effectiveness and use-
fulness in problems with unpredictable wafer testing
errors.

Keywords: semiconductor manufacturing, simulation,
genetic-based machine learning

1. Introduction

The semiconductor manufacturing process is divided
into front-end and back-end. Front-end manufacturing
is the process of making integrated circuits from blank
wafers. Back-end manufacturing involves tests, assem-
bly and packaging, in which the completed wafer is split
into individual chips. Semiconductor manufacturing is
known as high-mix low-volume manufacturing. Much
time is needed to complete a product, which is why just-
in-time inventory systems cannot be applies to the semi-
conductor industry. Semiconductor production lead time
is about three months and the product life cycle is about
six months. This means that the product process is re-
designed at short intervals and not stable. The key to
semiconductor manufacturing is effective, efficient pro-
cess management.

Three major scheduling approaches are taken to gen-
eral flexible manufacturing systems with uncertainty [1].
The first method is completely reactive scheduling such

as using dispatching rules, which set the priority for jobs
waiting for machine processing. No firm schedule is gen-
erated in advance and decisions are made locally in real
time. The second method is predictive-reactive schedul-
ing, which makes a schedule in advance and revises it
in response to real-time events. The third method is ro-
bust proactive scheduling, which sets predictive sched-
ules predictably satisfying performance requirements in
a dynamic environment. Several methods have been pro-
posed to deal with semiconductor manufacturing schedul-
ing in flexible manufacturing systems. Ovacik and Uz-
soy dealt with the final-test process using multiple test
equipment [2]. They modeled the process using a dis-
junctive graph and decomposed it. They solved a con-
stituent problem using Rolling Horizon, showing that us-
ing decomposition and Rolling Horizon is more suitable
than using simple dispatching rules. Shen and Leachman
discussed the scheduling problem in the wafer fabrication
process [3], assuming that uncertainties arise in demand
forecast, yield and equipment capacity. They proposed
robust solution methodology based on stochastic linear
quadratic (SLQ) optimal control theory and used simu-
lation to compare it to LP Rolling Horizon and simple
dispatching rules. SLQ theory was best for minimizing
standard variation in yield. These two studies deal with
small-scale problems, so treat large-scale problems, Wu
and Chien proposed using a greedy algorithm, i.e., a se-
quence of dispatching rules and simulations [4]. They
used a genetic algorithm (GA) [5] to obtain a sequence
of dispatching rules and compared it to simple dispatch-
ing rules, showing that the proposed approach is the best
among them.

In this paper, we examine a scheduling problem in the
wafer test process, which is the final process of front-end
manufacturing. The more desired function and perfor-
mance are enhanced, the higher the cost of the wafer test
process. This is because test time expands and test equip-
ment becomes more expensive with increasing requested
integration degree and memory size of the chipset. We
must conduct several tests to check wafer properties in the

58 Journal of Advanced Computational Intelligence Vol.19 No.1, 2015
and Intelligent Informatics

https://doi.org/10.20965/jaciii.2015.p0058

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/

Knowledge Acquisition for Wafer Test Process Scheduling

wafer test process. The test equipment is not identical. In
other words, some jobs (products) cannot be tested with
the same equipment used to test others. We thus must
ensure both the suitability and status of test equipment.
The two jigs required for testing depend on how equip-
ment and jobs are paired, in other words, jigs must be
selected to match the equipment and job. Setup time is
necessary to regulate temperature and to replace jigs. The
scheduling problem in the wafer test process is eventu-
ally considered a resource constraint product scheduling
problem (RCPSP). Wu and Chien [4] proposed approach-
ing this problem heuristically. As stated, their method is
designed to handle large-scale problems, and they pro-
pose using a greedy algorithm to select test equipment and
jigs, along with a sequence of dispatching rules to assign
a job. The sequence for dispatching rules corresponds
to the chromosome in GA. A chromosome is evaluated
by simulation. By using numerical experiments in a de-
terministic environment, Wu and Chien proved that their
proposed method performed better than simple dispatch-
ing rules. Real-world problems include the uncertainty
of testing errors, however, the advantage in a determin-
istic environment will not necessarily be preserved in a
nondeterministic environment. Matsuo et al. [6] used the
Pitts approach [7], i.e., a genetic-based machine learning
(GBML) approach, to obtain a situation-dependent dis-
patching (SDD) rule [8], which is the approach used in
the real-world scheduling problem in wafer testing. Un-
like the rescheduling approach to uncertainty, the SDD
rule approach may be seen as a trouble-resolution-free ap-
proach. That is the rescheduling approach must resolve
the scheduling problem if an accident happens. In con-
trast, the SDD approach applies dispatching rules based
on the situation. The SDD rule acquired by the Pitts ap-
proach performed better than simple dispatching rules if a
testing error occurred.

In the sections that follow, we apply three machine
learning methods to find an appropriate SDD rule, execut-
ing the machine learning method in a deterministic envi-
ronment. This execution is done for problems formulated
by using real-world data. We show that the SDD rule ob-
tained works well even in nondeterministic environments.

This paper is organized as follows: in Section 2, we
present the problem setting. In Section 3, we explain job
allocation based on a given SDD rule and the dispatching
rules considered in this study. In Section 4, we introduce
an application of C4.5, the algorithm used for generat-
ing a decision tree. In Section 5, we present an improved
way of applying the Pitts approach. In Section 6, we ap-
ply genetic programming (GP). In Section 7, the perfor-
mances of approaches are examined and analyzed in nu-
merical experiments using real-world data. In Section 8,
we present concluding remarks.

2. Problem Setting

Figure 1 shows the wafer test process, in which prod-
ucts must be tested several times, and some kinds of prod-

Fig. 1. Wafer test process in semiconductor manufacturing.

ucts are trimmed in the mid-flow. In the wafer test pro-
cess, we must decide how and when to allocate operations
and jigs to test equipment. A batch of wafers is processed
in an operation. The jigs we used in the wafer test pro-
cess are probe cards and performance boards. The jigs
used depend on the combination of test equipment and op-
erations. Operations include information on the product
class. Equipment processes only single batch at a time.
Replacing jigs takes about 10 minutes. If required pro-
cess temperatures differ between consecutive operations,
a break of a few hours is needed to adjust the tempera-
ture. If testing errors occur in a wafer batch, subsequent
operations must be canceled for wafer investigation and
another wafer batch is reloaded to the test equipment.
Given the unpredictability of errors, their nonnegligible
frequency and their significant influence, it is not a good
idea to find an optimal schedule a priori assuming that no
error will occur. It is preferable to take a reactive schedul-
ing approach that allocates a job and corresponding jigs
to equipment as requested. Dispatching rules are often
used for reactive scheduling. To adapt to many possi-
ble situations, simple dispatching rules are not enough,
meaning that some mechanism for adapting a dispatching
rule to the situation is desirable. Finding such a mecha-
nism is difficult so, as a simple alternative, we consider a
situation-dependent dispatching (SDD) rule that changes
the applied dispatching rule based on the situation.

3. SDD Rule and Allocation Algorithm

The job allocation algorithm based on a given SDD rule
allocates a job to test equipment. The allocation algorithm
is executed whenever jobs are waiting and equipment is
idle. An SDD rule is a tree whose leaves are associated
with dispatching rules. At every non-leaf node, the tree
has a branch with a condition about the production situa-
tion. Given an SDD, we check conditions from the root
to the leaf using branches whose conditions are satisfied.
When we reach a leaf. the associated dispatching rule is
applied, so the dispatching rule applied depends on the
production situation under the SDD rule.

Criteria used to evaluate the production situation. are
as follows:
Launched operation rate: The number of launched op-

Vol.19 No.1, 2015 Journal of Advanced Computational Intelligence 59
and Intelligent Informatics

Matsuo, T., Inuiguchi, M., and Masunaga, K.

erations processed per minute
Job completion rate: The number of completed jobs per
minute. A job consists of operations necessary for the test
process, so this rate differs from the launched operation
rate. A single job may include many wafers.
Wafer completion rate: The number of wafers com-
pleted per minute. Completion implies that all operations
necessary for the test process are finished, so the wafer
completion rate differs from the job completion rate. The
number of wafers in a lot varies so no one-to-one corre-
spondence exists between the wafer completion rate and
the job completion rate.
Delayed and uncompleted job: The number of uncom-
pleted jobs that are behind in their due dates
Delayed and uncompleted wafer: The number of un-
completed wafers that are behind in their due dates

No one-to-one correspondence exists between delayed
and uncompleted jobs and delayed and uncompleted
wafers.
Least slack time: The minimum slack time among jobs.
Slack time is the difference between the remaining time
before a due date and the sum of process times of remain-
ing operations.
Wasted time: The sum of setup time, temperature adjust-
ment time, and idling time over all test equipment.

We use the following six dispatching rules as candi-
dates:
FIFO: First in, first out rule, i.e., the job which comes first
in the queue
SPT: The shortest processing time rule, i.e., the job with
the shortest processing time in the queue
EDD: The earliest due date rule, i.e., the job with the ear-
liest due date in the queue
SLACK: The least slack time rule, i.e., the job with the
least slack time in the queue
LWKR: The least work remaining rule, i.e., the job with
the smallest sum of processing time for operations re-
maining before completion is selected from the queue
MP: The most profit rule. The most profitable job is se-
lected from the queue.

SDD rule representation differs with the method. Indi-
vidual representation is described in Sections 4 to 6.

Before describing the approaches proposed to acquire
an SDD rule, we explain the algorithm for job allocation
to test equipment under the constraints in the previous
section. Once the algorithm is applied, it determines the
schedule, i.e., the value of the criterion for the schedule
is obtained. Our algorithm is a modified version of the
algorithm proposed by Wu and Chien. [4]. Although the
algorithm considers the constrained allocation of jigs to
equipment and the setup time needed for jig changes, it
does not consider wafer testing error or the waiting time
for adjusting equipment temperature. We introduce these
parameters into our algorithm.

In the first step of our algorithm, we choose test equip-
ment with the longest waiting time. In the second step,
we allocate a job chosen by the SDD rule. In the third
step, we allocate jigs with the longest waiting time. In the
fourth step, we update parameters showing the production

Fig. 2. Individuals and population in the Pitts approach.

situation, e.g., start time and completion time. We repeat
these four steps within the planning period. If an error oc-
curs during a wafer test, we remove the job from the list
of those to be processed and put it in the waiting list for
error investigation.

Applying this algorithm to an SDD rule, we measure its
scheduling performance. In other words, an SDD rule is
evaluated using numerical simulation based on the algo-
rithm. It is assumed, in numerical simulation that an error
occurs randomly.

4. SDD Rule Acquisition by C4.5

Among the ways used to find and represent a suitable
SDD rule, C4.5 acquires a decision tree based on informa-
tion entropy [9]. We call the decision tree as an SDD rule.
C4.5 needs a decision table to acquire a decision tree.
We set the dispatching rule as the decision class, rather
than the lot, so that we can get the decision table from the
scheduling result produced by the GA method [4]. Test-
ing errors are unpredictable even though the probability
of occurrence is estimated. Nevertheless, we explore the
suitable SDD rule in an environment where no testing er-
ror occurs. Then we examine whether the SDD rule ob-
tained in the environment of no testing error works well
in environments where testing errors occur.

5. SDD Rule Acquisition by the Pitts Approach

The Pitts approach [6] is appropriate for offline learning
and regards a rule group as an individual, evaluating a
group of rules. The individuals and population of the Pitts
approach are shown in Fig. 2, together with the sequence
of if-then rules as an individual seen as a linear tree. That
is, the premise of an if-then rule corresponds to a non-leaf
node and the conclusion to a leaf.

The approach proposed in [6] only sorts prepared if-
then rules without considering thresholds and attributes.
The decision-maker must make the if-then rules. We pro-
pose a new representation of the SDD rule for searching
for an appropriate permutation of if-then rules, meaning
that thresholds and attributes are selected automatically.
The SDD rule is shown in Fig. 3. Because each if-then
rule has the thresholds of the antecedent and the dispatch-
ing rule as a conclusion, it consists of real value codes

60 Journal of Advanced Computational Intelligence Vol.19 No.1, 2015
and Intelligent Informatics

Knowledge Acquisition for Wafer Test Process Scheduling

Fig. 3. The representation of SDD rule in the Pitts approach.

and an integer value code. The real value code takes a
real value from 0 to 1, or 2 – the value from 0 to 1 rep-
resents the threshold and value 2 represents “don’t care.”
The integer value code takes an integer value from 0 to
5, representing the dispatching rule. Here, we apply ge-
netic operators such as selection, crossover, and mutation.
The genetic operators used for GBML in this study are as
follows:
Crossover: One-point crossover. We select one point as
a part of each individual in the current population, with
a crossover rate probability. If no individual is selected,
we return to the first individual and continue probabilistic
selection until two individuals are selected. If the num-
ber of selected individuals is odd, we return to the first
individual and continue probabilistic selection until one
additional individual is selected. This is the way we build
a parent set. Adjacent parents in the parent set are paired
and for each pair of parents, we choose a single crossover
point. The codes before the crossover point of Parent 1
are copied to Child 1. The rest of the chromosome for
Child 1 is filled with codes behind the crossover point of
Parent 2. Child 2 is built in the same way by switching
Parents 1 and 2.

This is an example of a crossover operator when the
chromosome consists of 9 genes:

Parent1 0.1 2 0.3 | 2 2 2 0.7 0.8 3
Parent2 2 2 0.5 | 0.3 2 0.2 2 2 1

↓
Child1 0.1 2 0.3 | 0.3 2 0.2 2 2 1
Child2 2 2 0.5 | 2 2 2 0.7 0.8 3

Mutation: We decide whether we generate a child using
the mutation operator for each individual or not by the
probability of the mutation rate. To generate a child, we
select one gene randomly in the chromosome and replace
it with a new random value.

This is an example of a mutation operator when the
chromosome consists of 9 genes:

Parent 0.1 2 0.3 2 2 2 0.7 0.8 3
↓

Child 0.1 2 0.3 2 0.4 2 0.7 0.8 3

Selection: Let N be the population size. Collecting chil-
dren generated by the crossover operator, children gen-
erated by the mutation operator and individuals in the
current generation, we build an enlarged population. We
choose N individuals as the population for the next gen-
eration from the enlarged population by using ranking se-
lection and elite preservation:

Parent 1 Parent 2

SPT EDD

OP > 0.3

EDD FIFO

SL < 0.3

ST < 0.5

MP LWKR

DW > 0.3 SLACK

CW > 0.4

Child 1 Child 2

MP LWKR

DW > 0.3

EDD FIFO

SL < 0.3

ST < 0.5

　
SPT EDD

OP > 0.3 SLACK

CW > 0.4

Fig. 4. Example of crossover in GP.

Ranking selection: We rank individuals based
on their fitness function values, then assign
probability p(n) to the individual with the n-th
rank. In this study, the probability p(n) is de-
fined as

p(n) =
2(N −n)
N(N −1)

.

We apply a roulette selection, so that the indi-
vidual with the n-th rank has selection probabil-
ity p(n). We repeat individual selection by us-
ing roulette (N− l) times, where l is the number
of elite individuals.
Elite Preservation: We select the top l individ-
uals in the current population and keep them in
the next generation.

6. SDD Rule Acquisition by GP

We consider the SDD rule acquired by the Pitts ap-
proach as a linear decision tree, and try to acquire a more
complex decision tree as an SDD rule by applying GP. GP
is an extended GA for representing trees (data structure).
A tree is generally translated omto an S-expression used
in LISP. We also use the S-expression as a genotype. Ge-
netic operators used for GP are as follows:
Crossover: Parents are chosen the same as used in
GBML. We select one node as a crossover point for each
parent. We swap subtrees below the crossover point be-
tween parents to become children. Fig. 4 is an example of
a crossover operator when the chromosome is the tree.
Mutation: Parents are chosen the same as used in GBML.
We select a node and swap the subtree for a new subtree
produced randomly. Fig. 5 is an example of a mutation
operator when the chromosome is the tree.
Selection: This is the same as used in GBML.

We set the max depth of the tree to keep the tree from
becoming too big. If a tree is too big to be a child, we
retry the operator.

Vol.19 No.1, 2015 Journal of Advanced Computational Intelligence 61
and Intelligent Informatics

Matsuo, T., Inuiguchi, M., and Masunaga, K.

Parent Child

SPT EDD

OP > 0.3

EDD FIFO

SL < 0.3

ST < 0.5

LWKR SPT

CP < 0.2

EDD FIFO

SL < 0.3

ST < 0.5

Fig. 5. Example of mutation in GP.

7. Experiment Environment

An individual corresponds to an SDD rule, so we
obtain scheduling performance by using simulation as
described in the previous section. Based on scheduling
performance, we define a fitness value. We use penal-
ties that consider improvement of the operation rate,
tardiness, and throughput. Three kinds of penalties are
considered: SPenalty for idling time, such as setup time
and waiting time; DPenalty for the number of delayed
wafers and delay time; and CPenalty, the number of
completed wafers. These are modeled by
SPenalty = (Sum of tester idling time),
DPenalty = (Sum of the product of the number of

delayed wafers and delay time),
CPenalty = (Sum of the number of complete wafers).

Delay time is measured by the minute. Penalties are
normalized by the difference in the two extreme values in
order to make scales uniform. The two extreme values are
set by a preliminary experiment and may be exceeded.
Fitness is defined by aggregating penalties described
above, i.e.,

Fitness = w1 ×SPenalty
+w2 ×DPenalty,+w3 × (1−CPenalty),

where w1, w2, w3 ≥ 0 are weights. Because fitness is a
penalty function value, the smaller the fitness value, the
better the individual.

The genetic algorithm procedure we used is shown in
Fig. 6.

8. Numerical Experiments

To confirm the usefulness of the proposed methods, we
conducted numerical experiments based on data obtained
from a real-world wafer factory. By the proposed method,
we generate SDD rules suitable for the given production
environment with discarding testing error. In this environ-
ment, we compare the efficiency of SDD rules generated
by different acquisition techniques. Then we confirm the
robustness of the obtained SDD rules by applying them to
the production environment with testing error. The com-
mon reactive scheduling, Left-Shift (LS) and simple dis-
patching rules are also applied for comparison. The LS
method means left shifting all the remaining jobs together
in the time horizon so that the disruption length is accom-
modated but the job sequence remains unchanged. The

Fig. 6. GA algorithm.

job sequence is acquired in advance by the GA approach.
We now describe real-world data in our scheduling

problem and the parameters of our proposed method. The
scheduling period is 1 day. There are jobs delayed from
the beginning. Several jobs have due dates on this day.
There are many test equipments and jobs to be processed.
The data scale is big. Test error probability and setup time
for replacing jigs and adjusting temperature are assumed
to be constant reflecting the company opinion. Tempera-
ture adjustment takes much longer than jig replacement.
Operation time varies widely with the type of operation.
The due date is regarded as a soft constraint rather than a
hard constraint. Therefore, even if the due date is not met,
the schedule remains feasible by paying the DPenalty in
the previous section.

Weights of SPenalty, DPenalty, and CPenalty for
Fitness are determined as (w1,w2,w3) = (1,1,1),
(1,1,100), (1,100,1), (1,100,100), (100,1,1),
(100,1,100), (100,100,1). GA parameters are se-
lected based on preliminary experiments. In the Pitts
approach, a chromosome consists of 750 genes. Popula-
tion size N is 200. The algorithm terminates after the 50th
generation run. The crossover rate is set to 0.5 and the
mutation rate is set to 0.5. The top 2 individuals (l = 2)
survive in the next generation for elite preservation. In
GP, the max tree depth is 7. Other GA parameters are
the same as in the Pitts approach. We execute the four
approaches in an environment where no testing error
occurs.

Comparing these SDD rules and the sequence of dis-
patching rule (SDR) obtained by GA where no testing er-
ror occurs, we obtained the results in Table 1. The best
value in each column is underlined, the SDD rule acquired
by Pitts approach is represented by SDDPitts, and other
SDD rules are represented in similar form. SDD[6] is the

62 Journal of Advanced Computational Intelligence Vol.19 No.1, 2015
and Intelligent Informatics

Knowledge Acquisition for Wafer Test Process Scheduling

Table 1. Evaluation of SDD rule acquisition.

rule (1,1,1) (1,1,100) (1,100,1)
SDDPitts 1.016 23.034 2.317
SDDGP 1.016 22.758 2.323
SDDC4.5 1.419 23.022 35.101
SDD[6] 1.195 23.034 2.639

SDR/LS 0.953 22.282 2.230
(1,100,100) (100,1,1) (100,1,100) (100,100,1)

41.639 27.928 76.507 32.502
41.724 24.333 54.884 29.354
47.889 54.674 79.522 82.423
76.415 35.563 79.177 37.938
41.566 21.204 51.570 25.883

SDD rule proposed in [6]. From the results in Table 1,
we found that SDR is the best. This is a natural result be-
cause SDR fits the problem most flexibly. SDR, however
considers only the sequence, not the situation, so it may
not adapt to changes.

To examine the robustness of the obtained SDD rule,
we compared the obtained SDD rules to LS through 100
simulations in an environment where testing errors occur.
The job sequence used in LS was acquired by SDR in an
environment where no testing errors occur. LS and SDR
thus have the same result, which is better than SDD rules
in the case of no testing errors.

Results when (w1,w2,w3) = (1,1,1), (1,100,100),
(100,1,100) are shown in Table 2. When (w1,w2,w3) =
(1,1,1), LS is the best rule, but when (w1,w2,w3) =
(1,100,100), SDDPitts and SDDGP are better than LS.
When (w1,w2,w3) = (100,1,100), SDDGP is better than
LS, and SDDPitts is better than LS only for a high error
rate. We confirmed that SDDPitts is superior to SDD[6].

In the case of other weights, such as when
(w1,w2,w3) = (1,100,1), (1,1,100), we obtained re-
sults similar to when (w1,w2,w3) = (1,100,100). When
(w1,w2,w3) = (100,1,1), (100,100,1), the result was
similar to the case when (w1,w2,w3) = (1,1,1). These
results show that the SDD rule acquired by evolutionary
computing performs well when the weight of DPenalty
or that of CPenalty is big. This is because we do not
use the dispatching rule considering SPenalty, so when
the weight of SPenalty is big, SDD rule performance be-
comes worse.

We checked how many times dispatching rules are used
in each SDD rule where no test error occurs.

As shown in the results in Table 3, all dispatch-
ing rules are used a dozen times in SDR when
(w1,w2,w3) = (1,1,1), namely, when LS is the best.
When (w1,w2,w3) = (1,100,100), however, namely,
when SDDPitts and SDDGP are better than LS, only SPT
and EDD are used in almost all cases in SDR. In the
case of other weights, when (w1,w2,w3) = (1,100,1),
(100,1,1), (100,100,1), all dispatching rules are used
a dozen times in SDR. When (w1,w2,w3) = (1,1,100),
(100,1,100), only one or two dispatching rules are almost
always used in SDR.

Table 2. Evaluation of the robustness of obtained SDD rules.

rule error rate mean min max var
(w1,w2,w3) = (1,1,1)

low 1.037 0.891 1.251 0.00322
SDDPitts mid 1.057 0.794 1.412 0.00759

high 1.058 0.844 1.412 0.00598
low 1.046 0.891 1.703 0.00884

SDDGP mid 1.076 0.794 1.843 0.0231
high 1.082 0.844 1.53 0.0144
low 1.483 1.346 1.789 0.0136

SDDC4.5 mid 1.497 1.296 1.955 0.0165
high 1.546 1.296 1.926 0.0167
low 1.289 0.921 1.688 0.0223

SDD[6] mid 1.391 0.944 1.766 0.0303
high 1.419 0.919 1.787 0.0298
low 1.112 0.951 1.630 0.0341

SDR mid 1.197 0.917 1.609 0.0368
high 1.240 0.947 1.616 0.0311
low 1.007 0.953 1.449 0.0104

LS mid 1.046 0.953 1.449 0.0166
high 1.071 0.953 1.633 0.019

(w1,w2,w3) = (1,100,100)
low 43.923 25.129 65.007 26.124

SDDPitts mid 45.847 25.049 71.270 61.710
high 46.385 22.029 74.603 61.160
low 43.878 25.194 65.091 26.633

SDDGP mid 46.184 25.114 71.335 64.653
high 46.418 22.094 74.668 62.617
low 46.794 25.127 71.257 37.215

SDDC4.5 mid 47.013 25.047 72.689 67.486
high 46.763 22.029 76.699 67.057
low 78.798 69.434 103.874 56.206

SDD[6] mid 81.882 58.849 108.077 126.176
high 84.509 59.079 104.571 157.464
low 50.201 41.440 70.593 43.880

SDR mid 53.902 38.934 83.561 78.473
high 53.564 42.514 84.222 47.829
low 45.230 41.566 65.093 31.119

LS mid 49.074 41.566 73.340 71.515
high 49.722 41.566 83.860 66.889

(w1,w2,w3) = (100,1,100)
low 80.122 76.504 98.107 17.913

SDDPitts mid 83.149 76.307 97.022 32.221
high 86.288 74.507 107.275 50.676
low 56.982 41.171 73.215 24.015

SDDGP mid 58.625 18.184 82.047 76.164
high 56.300 24.124 88.773 135.524
low 82.621 76.507 101.122 16.709

SDDC4.5 mid 84.875 76.507 97.022 27.352
high 87.397 74.507 107.272 43.250
low 81.946 65.940 106.603 32.942

SDD[6] mid 84.281 52.030 117.292 87.675
high 82.255 42.144 113.099 177.601
low 67.669 51.570 105.877 235.388

SDR mid 77.928 51.570 106.667 244.170
high 82.543 51.585 110.127 210.175
low 65.683 51.570 124.645 358.093

LS mid 74.959 51.570 157.840 523.889
high 90.578 51.570 193.250 840.950

Thus, if there are only a few appropriate dispatching
rules for a problem, the SDD rule obtained by evolution-
ary computing may work well. If the problem requires a
variety of dispatching rules, however, it is hard to acquire
a good SDD rule.

We check the number of occurrences of condition at-

Vol.19 No.1, 2015 Journal of Advanced Computational Intelligence 63
and Intelligent Informatics

Matsuo, T., Inuiguchi, M., and Masunaga, K.

Table 3. Number of applications of dispatching rules.

rule FIFO SPT LWKR MP EDD SLACK
(w1,w2,w3) = (1,1,1)

SDDPitts 0 0 48 0 55 0
SDDGP 0 0 46 0 57 0
SDDC45 12 14 48 42 6 0

SDR 13 14 17 18 15 13
(w1,w2,w3) = (1,100,100)

SDDPitts 0 106 0 0 36 0
SDDGP 0 109 0 0 32 0
SDDC45 0 104 0 0 37 0

SDR 1 89 2 0 33 6

Table 4. Number of occurrences of condition attributes.

rule OP CP CW DP DW SL ST
(w1,w2,w3) = (1,1,1)

SDDPitts 1 1 0 0 1 0 1
SDDGP 0 1 1 1 1 0 2
SDDC4.5 10 8 0 0 0 4 6

(w1,w2,w3) = (1,100,100)
SDDPitts 0 0 0 0 0 0 1
SDDGP 1 1 0 1 0 0 2
SDDC4.5 0 0 0 0 0 0 2

Table 5. Evaluation of robustness of modified SDDPitts.

rule error rate mean min max var
low 1.037 0.891 1.251 0.00322

SDD′
Pitts mid 1.057 0.794 1.412 0.00759

high 1.058 0.844 1.412 0.00598

tributes.
As Table 4 shows, SDDC4.5, methods acquiring the

SDD rule from the decision table, do not use DP and DW
as a condition attribute. From the results, we say that
DP and DW are redundant, so we then check SDDPitts
performance without DP and DW as attributes, when
(w1,w2,w3) = (1,1,1).

As shown in Table 5, the result is the same as before,
that is DP and DW are redundant for this problem. Fi-
nally, we try to obtain new knowledge from SDD rules
whose performance is good, i.e., we analyze SDDPitts and
SDDGP with (w1,w2,w3) = (1,100,100). We delete DP
and DW from the SDD rule before analysis. Fig. 7 shows
acquired SDD rules.

When the operation processing rate is large, the testing
flow goes smoothly. In other words, when the operation
processing rate is large, time loss may be small, so SDDGP
is the same as SDDPitts. Both rules mean “If ST is low,
i.e., if the sum of the setup times is low, EDD is chosen;
otherwise, SPT is chosen.” This gives us the new knowl-
edge that if ST is low, we should choose EDD; otherwise,
we should choose SPT. Other good SDD rules also have a
simple structure. Our method of acquiring the SDD rule
works well when the problem does not require a complex
rule.

In executing the same numerical experiments with
other data, we get data from the same factory on a dif-

SDDGP, (w1,w2,w3)=(1,100,100)

(if (>= OP 0.48296)
(apply SPT)
(if (>= ST 0.50551) 　 (apply EDD)

(apply SPT)))

SDDPitts, (w1,w2,w3)=(1,100,100)

1. if ST >= 0.48198 then apply EDD
2. otherwise then apply SPT

Fig. 7. SDD rules acquired.

Table 6. Evaluation of SDD rule without testing errors in
other data.

rule (1,1,1) (1,1,100) (1,100,1)
SDDPitts 1.082 7.10 50.288
SDDGP 1.082 6.750 46.132
SDR/LS 0.650 6.300 46.930

(1,100,100) (100,1,1) (100,1,100) (100,100,1)
77.343 20.748 35.964 95.624
73.251 21.357 31.194 86.298
58.413 6.838 1.267 63.397

Table 7. Evaluation of robustness of obtained SDD rules in
other data.

rule error rate mean min max var
(w1,w2,w3) = (1,1,1)

low 1.196 1.080 1.453 0.00589
SDDPitts mid 1.339 1.116 1.693 0.0145

high 1.457 1.146 1.966 0.0212
low 1.196 1.080 1.453 0.00589

SDDGP mid 1.339 1.116 1.693 0.0145
high 1.457 1.146 1.966 0.0214
low 1.191 0.650 2.190 0.139

LS mid 1.655 0.694 2.812 0.211
high 1.979 0.770 2.798 0.243

(w1,w2,w3) = (1,100,100)
low 86.186 69.940 163.311 227.153

SDDPitts mid 95.474 69.811 163.519 281.236
high 105.132 78.455 172.726 249.283
low 84.948 71.408 117.703 77.976

SDDGP mid 96.777 77.190 122.342 111.177
high 107.403 77.719 137.668 174.545
low 91.505 58.413 187.067 999.957

LS mid 120.781 63.965 204.540 1503.232
high 147.051 71.270 230.847 1644.947

(w1,w2,w3) = (100,1,100)
low 39.898 21.056 62.940 36.508

SDDPitts mid 46.156 26.335 148.217 191.554
high 48.924 31.610 75.848 93.193
low 35.744 29.482 56.867 28.056

SDDGP mid 42.919 25.048 69.952 77.680
high 48.295 31.072 80.533 105.118
low 43.741 1.267 197.774 1583.854

LS mid 77.903 1.336 192.512 2194.052
high 106.041 1.401 236.665 2943.872

ferent day and focus on the three best rules, i.e., SDDPitts,
SDDGP, and LS (see Tables 6 and 7).

We find that they yield similar results about rule per-
formance. Comparing Tables 3 and 8, we find that the

64 Journal of Advanced Computational Intelligence Vol.19 No.1, 2015
and Intelligent Informatics

Knowledge Acquisition for Wafer Test Process Scheduling

Table 8. Number of applications of dispatching rules in
other data.

rule FIFO SPT LWKR MP EDD SLACK
(w1,w2,w3) = (1,1,1)

SDDPitts 47 116 0 0 0 0
SDDGP 45 117 0 0 1 0

SDR 6 101 8 7 13 14
(w1,w2,w3) = (1,100,100)

SDDPitts 0 0 72 0 56 0
SDDGP 0 128 0 0 38 0

SDR 7 7 87 4 15 5

Table 9. Evaluation of SDD rule with SST added.

rule (100,1,1) (100,1,100) (100,100,1)
SDDPitts 24.928 54.703 28.785
SDDGP 18.321 51.702 28.918
SDR/LS 18.179 51.226 25.735

numbers of applications of dispatching rules are different.
We then say that the method for acquiring the SDD rule
works well in the wafer test, but we must not reuse the
same SDD rule on a different initial state. We must ob-
tain another SDD rule for each problem, and must choose
between SDD or LS based on the weight in the wafer test
scheduling problem. In the real factory, we get the initial
state of the next day by simulation – that is to say, we get
the SDD rule overnight and apply it the day, meaning that
this method is practical and effective in the wafer testing
process.

From the previous analysis, we know that the candi-
date dispatching rule of the SDD rule is not sufficient,
so we add another dispatching rule to the candidate and
check whether the SDD rule is improved. There is no dis-
patching rule relevant to SPenalty, so we add the short-
est setup time (SST) rule. The SST rule selects the job
with the shortest setup time in the queue. We evaluate the
SDD rule for a case in which the weight of SPenlaty is
large. The result where no testing error occurs is shown
in Table 9. Note that all approaches are improved by
adding SST. Next, comparing the rules in an environment
where testing errors occur, we get the results for a case in
which the SDD rule does not include SST, as shown in Ta-
ble 10. Results for the SDD rule including SST are shown
in Table 11. When (w1,w2,w3) = (100,1,1), SDDGP is
better than LS afterwards, SDDGP was worse than LS
before adding SST, When (w1,w2,w3) = (100,1,100),
(100,100,1), SDDPitts gets the same result, so in conclu-
sion, we say that we have succeeded in adding a good
dispatching rule to the candidate based on analysis. As
shown in Table 12, when the numbers of applications of
rules in SDR are not distributed evenly, SDD rules are
better than LS. As stated, we select a more appropriate
approach from SDD or LS by checking the numbers of
applications of rules in SDR. Of course, we also must set
the appropriate candidate rules in advance.

Table 10. Evaluation of SDD rule without SST added.

rule error rate mean min max var
(w1,w2,w3) = (100,1,1)

low 28.481 26.888 33.918 2.468
SDDPitts mid 28.887 25.848 43.183 6.976

high 29.079 24.688 42.519 9.405
low 25.215 23.185 35.949 5.942

SDDGP mid 26.825 23.212 41.235 18.913
high 27.339 23.293 40.011 16.953
low 23.544 21.204 44.964 30.204

LS mid 25.229 21.204 44.964 30.204
high 26.761 21.204 56.678 83.302

(w1,w2,w3) = (100,1,100)
low 80.122 76.504 98.107 17.913

SDDPitts mid 83.149 76.307 97.022 32.221
high 86.288 74.507 107.275 50.676
low 56.982 41.171 73.215 24.015

SDDGP mid 58.625 18.184 82.047 76.164
high 56.300 24.124 88.773 135.524
low 65.683 51.570 124.645 358.093

LS mid 74.959 51.570 157.840 523.889
high 90.578 51.570 193.250 840.950

(w1,w2,w3) = (100,100,1)
low 37.788 28.783 76.761 110.344

SDDPitts mid 40.336 22.121 82.501 188.967
high 41.180 21.589 78.229 141.724
low 40.295 25.115 60.063 164.374

SDDGP mid 48.571 25.115 76.921 152.357
high 49.224 25.115 66.886 161.505
low 33.657 28.558 78.145 104.988

LS mid 37.537 28.558 78.145 166.883
high 39.461 28.558 96.566 190.569

9. Concluding Remarks

We have considered a scheduling problem for the semi-
conductor wafer test process. Because of the unpre-
dictability of errors, non-negligible frequency, and signif-
icant influence, we have proposed three methods: C4.5,
the Pitts approach, and GP to acquire an SDD rule. Using
real data from a factory, we examined the performance
of the proposed methods. Comparing them to LS, we
confirmed that the obtained SDD rule is the most robust
against unpredictable testing errors in the case that the
error rate is a value that reflects a real factory situation
when the weights of DPenalty or CPenalty are big. We
have examined the performances of SDD rules using dif-
ferent data and found it yields the same result. We have
also added SST as a candidate and confirmed its effec-
tivity. In future work, we will look for an algorithm for
finding a more complex SDD rule. We will also consider
a method for acquiring appropriate candidate dispatching
rules automatically, and improve the evolutionary com-
puting convergence speed. We will apply also the pro-
posed approach to more general scheduling problems in
wafer testing and other processes.

References:
[1] D. Ouelhadj and S. Petrovic, “A Survey of Dynamic Scheduling in

Manufacturing Systems,” J. Sched., Vo.12, pp. 417-431, 2009.

[2] I. M. Ovacik and R. Uzsoy,” “Decomposition Methods for Schedul-
ing Semiconductor Testing Facilities,” The Int. J. of Flexible Man-
ufacturing Systems, Vol.8, pp. 357-388, 1996.

[3] Y. Shen and R. C. Leachman, “Stochastic Wafer Fabrication

Vol.19 No.1, 2015 Journal of Advanced Computational Intelligence 65
and Intelligent Informatics

Matsuo, T., Inuiguchi, M., and Masunaga, K.

Table 11. Evaluation of SDD rule with SST added.

rule error rate mean min max var
(w1,w2,w3) = (100,1,1)

low 25.242 22.928 34.168 2.302
SDDPitts mid 25.239 18.728 29.949 2.607

high 25.752 22.928 29.949 2.236
low 18.428 17.281 22.342 0.481

SDDGP mid 18.141 8.401 21.463 4.041
high 17.632 8.081 21.354 9.717
low 19.885 18.179 42.380 24.272

LS mid 21.144 18.179 42.180 39.627
high 22.856 18.179 54.093 80.520

(w1,w2,w3) = (100,1,100)
low 64.317 54.443 85.393 38.678

SDDPitts mid 57.286 38.183 74.193 64.873
high 61.201 24.483 79.543 96.943
low 55.297 51.702 76.452 20.097

SDDGP mid 57.711 50.662 69.792 29.203
high 60.239 50.662 78.947 41.215
low 69.506 51.226 150.111 499.982

LS mid 86.255 51.226 170.606 827.800
high 97.796 51.226 192.756 1183.631

(w1,w2,w3) = (100,100,1)
low 30.300 25.312 56.644 20.821

SDDPitts mid 32.191 21.438 52.103 44.539
high 31.642 21.438 57.137 30.292
low 35.744 25.444 71.056 106.769

SDDGP mid 38.462 18.998 71.256 174.244
high 41.700 18.998 75.097 146.398
low 31.344 25.735 78.923 130.778

LS mid 36.048 25.735 78.923 226.152
high 38.223 25.735 104.104 260.831

Table 12. Number of applications of dispatching rules with
SST added.

rule FIFO SPT LWKR MP EDD SLACK SST
(w1,w2,w3) = (100,1,1)

SDDPitts 0 0 0 81 7 0 0
SDDGP 0 8 0 16 1 0 66

SDR 11 6 10 18 7 17 16
(w1,w2,w3) = (100,1,100)

SDDPitts 0 51 0 0 0 0 70
SDDGP 0 0 74 0 0 29 14

SDR 1 64 51 5 4 11 3
(w1,w2,w3) = (100,100,1)

SDDPitts 0 0 0 0 50 0 44
SDDGP 24 0 0 0 18 7 35

SDR 10 9 19 12 11 12 10

Scheduling,” IEEE Tran. Semiconductor Manufacturing, Vol.16,
No.1, pp. 2-14, 2003.

[4] J.-Z. Wu and C.-F. Chien, “Modeling Semiconductor Testing Job
Scheduling and Dynamic Testing Machine Configuration,” Expert
Systems with Applications, Vol.35, pp. 485-496, 2008.

[5] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolu-
tion Programs,” 3rd, Revised and Extended Ed., Springer, Berlin,
1998.

[6] T. Matsuo, M. Inuiguchi, K. Masunaga, and D. Hirota, “Dynamic
Scheduling Approaches to Wafer Test Scheduling with Unpre-
dictable Error,” J. of Advanced Computational Intelligence and In-
telligent Informatics, Vol.17, pp. 526-534, 2013.

[7] S. F. Smith, “Flexible learning of problem solving heuristics
through adaptive search,” Proc. 8th Int. Joint Conf. on Artificial In-
telligence, Vol.1, pp. 422-425, 1983.

[8] K. Sakakibara, “Research about Scheduling Rule Acquisition Based
on Genetic Based Machine Learning,” Graduate School of Science
and Technology, Doctor Thesis, Kobe University, 2004.

[9] J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan
Kaufmann Publishers, 1993.

Name:
Tsubasa Matsuo

Affiliation:
Graduate School of Engineering Science, Osaka
University

Address:
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Brief Biographical History:
2012 Received B.E. degree in engineering science, Osaka University
2014 Received M.E. degree in engineering science, Osaka University
Main Works:
• He is interested in scheduling, machine learning, and rough sets.

Name:
Masahiro Inuiguchi

Affiliation:
Graduate School of Engineering Science, Osaka
University

Address:
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
Brief Biographical History:
1985, 1987, 1991 Received B.E., M.E., and D.E. degrees, respectively, in
industrial engineering at Osaka Prefecture University
1987-1992 Research Associate at Osaka Prefecture University
1992-1997 Associate Professor at Hiroshima University
1997-2003 Associate Professor at Osaka University
2003- Full Professor at Osaka University
Main Works:
• His interests include possibility theory, fuzzy programming, rough sets,
and approximate reasoning. He works as area editors of Fuzzy Sets and
Systems, Fuzzy Optimization and Decision Making, and Journal of
Multi-Criteria Decision Analysis and members of editorial boards of
several other journals.

Name:
Kenichiro Masunaga

Affiliation:
Renesas Electronics Co.

Address:
2-6-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
Brief Biographical History:
1993,1995 Received B.E. and M.E. degrees, respectively, in engineering at
Osaka University
1995-2002 Worked at Semiconductor Group, Hitachi, Ltd.
2002- Works at Manufacturing System Technology Department, Process
Technology Division, Renesas Electronics Co.
Main Works:
• He develops and applies the dispatching and scheduling system for
improving the efficiency of the semiconductor manufacturing line.

66 Journal of Advanced Computational Intelligence Vol.19 No.1, 2015
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

