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This paper proposes entropy-based L111-regularized
possibilistic clustering and a method of sequential
cluster extraction from relational data. Sequential
cluster extraction means that the algorithm extracts
cluster one by one. The assignment prototype algo-
rithm is a typical clustering method for relational data.
The membership degree of each object to each clus-
ter is calculated directly from dissimilarities between
objects. An entropy-based L111-regularized possibilis-
tic assignment prototype algorithm is proposed first to
induce belongingness for a membership grade. An al-
gorithm of sequential cluster extraction based on the
proposed method is constructed and the effectiveness
of the proposed methods is shown through numerical
examples.

Keywords: assignment prototype algorithm, possibilis-
tic clustering, L1-regularization, sequential cluster extrac-
tion, relational data

1. Introduction

The aim of cluster analysis called clustering, is to
discover important structures and features from massive
complex databases. Clustering, a data analysis method,
divides a set of objects into groups called clusters. Ob-
jects classified in the same cluster are considered similar,
while those classified in a different cluster are considered
dissimilar. Hard c-means [1] and fuzzy c-means clus-
tering (FCM) are the most well known clustering meth-
ods [2–4], as is possibilistic clustering (PCM), known to
be useful from the viewpoint of robustness against noise
and outliers [5]. Robustness against noise and outliers is
essential if clustering methods are to be useful in real-
world applications. Several variations have been proposed
and studied based on PCM [6, 7]. The noise clustering
concept has been proposed to overcome the negative ef-
fect of noise and outliers [8–10]. A method of sequential
cluster extraction has even been proposed using this draw-
back [8]. Significant algorithms that extract “one cluster

at a time” have also been proposed [7, 11]. The sequen-
tial cluster extraction algorithm need not determine the
number of clusters in advance – an advantage important
when handling massive and complex data sets for detect-
ing dense clusters.

Conventional clustering methods such as FCM and
PCM generally handle numerical objects in the form of
p-dimensional vector sets. Relational data, in contrast,
are obtained from various social phenomena, e.g., social
networks and e-commerce [12]. Relational data consist
of measures of similarity or dissimilarity between ob-
jects. Many clustering methods have been proposed to
handle such relational data [13–18]. The cluster center
referred to as representative of a cluster is not used in
these methods, and the membership degree of each object
to each cluster is calculated directly from dissimilarities
between objects. In the fuzzy non-metric model (FNM)
of relational clustering methods, in which the member-
ship degree of each object to each cluster is calculated di-
rectly from dissimilarities between objects [13, 16]. The
assignment-prototype algorithm (AP) [18] and relational
fuzzy c-means clustering (RFCM) [14] are also cluster-
ing methods used for relational data. FNM and AP han-
dle both Euclidean and non-Euclidean relational data,
whereas RFCM handles only Euclidean relational data.
Non-Euclidean relational fuzzy c-means has been pro-
posed to handle non-Euclidean relational data from that
sense [15].

A probabilistic constraint on membership grade is used
in FCM to denote that the sum of membership degrees
is equal to 1. Noise and outliers cause negatively affect
clustering results by FCM because of such a constraint.
A possibilistic constraint is used instead of a probabilis-
tic constraint in PCM [5], so a particular additional term
for the membership degree is added in an objective func-
tion to obtain nontrivial solutions. In the machine learn-
ing field and related research, the L1-regularization term
is well known and useful for inducing sparseness [19, 20].
Sparseness means that a small variables are calculated
as zero. In the clustering field, the sparse possibilistic
clustering method has been proposed by introducing L1-
regularization [21] to obtain sparse results by calculat-
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ing small degrees of membership as zero. This means
that sparseness is induced from the viewpoint of not be-
ing in the cluster. Sparseness for being in the cluster is
also considered in the clustering field. In that sense, L1-
regularized possibilistic clustering and its classification
function have been proposed and described [22]. The se-
quential cluster extraction algorithm has also been con-
structed based on the L1-regularized possibilistic cluster-
ing.

In this paper, we propose an entropy-based L1-
regularized assignment prototype algorithm (eL1PAP) to
handle relational data. We construct the sequential clus-
ter extraction algorithm to extract “one cluster at a time”
from relational data. We also show the effectiveness of
the proposed method through numerical examples.

This paper is organized as follows: In Section 2, we in-
troduce symbols, fuzzy clustering and possibilistic clus-
tering. In Section 3, we formulate an optimization prob-
lem and construct the eL1PAP algorithm. In Section 4, we
construct the sequential cluster extraction algorithm based
on eL1PAP. In Section 5, we review the results for the pro-
posed method with datasets, and in Section 6, we present
conclusions.

2. Preparation

The set of objects to be clustered is given and denoted
by X = {x1, . . . ,xn} in which xk (k = 1, . . . ,n) is an object.
In most cases, x1, . . . ,xn are p-dimensional vectors ℜp,
that is, object xk ∈ ℜp. A cluster is denoted as Ci(i =
1, . . . ,c). The membership degree of xk belonging to Ci
is denoted as uki and a partition matrix is denoted as U =
(uki)1≤k≤n, 1≤i≤c.

2.1. Assignment Prototype Algorithm

Several clustering methods for relational data have
been proposed. One example is fuzzy non-metric model
(FNM) of FCM-type clustering methods for relational
data based on optimizing an objective function under the
membership grade constraint [13, 16].

FNM depends strongly on initial values [16]. An as-
signment prototype algorithm (FAP) has been proposed
as a clustering method for relational data to achieve ro-
bustness for initial values [18]. The objective function of
FAP is similar to and yet a bit different from the objective
function of FNM. Two variables, i.e., membership grade
uki and prototype weight wti, are used in the assignment
prototype algorithm. Windham considers the following
objective function:

Jf ap(U,W) =
c

∑
i=1

n

∑
k=1

n

∑
t=1

(uki)
2 (wti)

2 rkt

where W = (wti)1≤t≤n, 1≤i≤c, is the prototype weight and
rkt is the distance measure between objects. The proba-

bilistic constraint for uki is as follows:

U f =

{
(uki) : uki ∈ [0,1] ,

c

∑
i=1

uki = 1, ∀k

}
. (1)

The constraint for wti is as follows:

W f =

{
(wti) : wti ∈ [0,1] ,

n

∑
t=1

wti = 1, ∀i

}
. (2)

An entropy-based assignment prototype algorithm
(eFAP) is considered in the same manner as in [3, 13].
The objective function of eFAP is as follows:

Je f ap(U,W) =
c

∑
i=1

n

∑
k=1

ukiwtirkt +λu

c

∑
i=1

n

∑
k=1

uki loguki

+λw

c

∑
i=1

n

∑
t=1

wti logwti, . . . . (3)

where λu > 0 and λw > 0 are fuzzification parameters.
Constraints for uki and wti are the same as for Eqs. (1) and
(2).

The formulation of FAP and eFAP is similar to that of
fuzzy c-medoids [12] and related to the FCM-type co-
clustering model [23].

2.2. Possibilistic Clustering

FCM is not robust against noise and outliers due to
constraint U f . The main idea of possibilistic clustering
(PCM) is to reduce the influence of noise and outliers on
a data set [5, 9]. We introduce two objective functions of
PCM:

Jps(U,V) =
n

∑
k=1

c

∑
i=1

(uki)mdki +
c

∑
i=1

ηi

n

∑
k=1

(1−uki)m,

Jpe(U,V) =
n

∑
k=1

c

∑
i=1

uki{dki +λ uki (loguki −1)} ,

where m > 1, ηi > 0 and λu > 0 are parameters for PCM.
The constraint U f is not used in PCM, but additional

terms for uki are added to derive a nontrivial solution.
Condition Up is written as follows:

Up =
{

(uki) : uki ∈ [0,1] , ∀k
}

, . . . . . (4)

where we have omitted original constraint 0 < ∑n
k=1 uki ≤

n.
The above objective functions are typical examples of

PCM [4]. Sparse possibilistic clustering has also been
proposed by introducing L1-regularization [21]:

Jsp(U,V) =
n

∑
k=1

c

∑
i=1

{(uki)mdki + γ|uki −α|} ,

where m > 1 and γ > 0 are parameters. Parameter α > 0
is called a baseline constant [20]. This method induces
sparseness for calculating the small membership grade as
zero.
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3. Proposed Method

3.1. Entropy-Based L111-Regularized Possibilistic
Assignment Prototype Algorithm

We propose a new possibilistic clustering method for
relational data, called entropy-based L1-regularized pos-
sibilistic assignment prototype algorithm (eL1PAP). We
consider the following objective function for eL1PAP:

Jel pap(U,W ) =
c

∑
i=1

n

∑
k=1

n

∑
t=1

ukiwtirkt +λw

c

∑
i=1

n

∑
t=1

wti logwti

+λu

c

∑
i=1

n

∑
k=1

uki (loguki −1)

+γ
c

∑
i=1

n

∑
k=1

|1−uki|.

λw > 0, λu > 0, and γ > 0 are the parameters of eL1PNM.
The condition for uki remains the same as for Eq. (4) and
that for wti remains the same as for Eq. (2). In the follow-
ing discussion of eL1PAP, dki and gti are as follows:

dki =
n

∑
t=1

wtirkt ,

gti =
n

∑
k=1

ukirkt .

The optimal solution of wti is derived as follows:

wti =
exp

(−λ−1
w gti

)
n

∑
q=1

exp
(−λ−1

w gqi
) . . . . . . . . . (5)

The main problem in constructing the algorithm of
eL1PAP is how to derive the optimal solution of uki. Each
membership uki could be solved separately in an eL1PAP
procedure because of a condition Up. We thus first con-
sider the following semi-objective function:

Jki
el pap(uki) = ukidki +λuuki (loguki −1)+ γ |1−uki| .

We decompose 1 − uki = ξ + − ξ−, to obtain partial
derivatives for uki in which all element of ξ + and ξ− are
non-negative. The semi-objective function is rewritten by
using a decomposition method [20] as follows:

Jki
el pap(uki) = ukidki +λuuki (loguki −1)+ γ

(
ξ + +ξ−)

.

Constraints are as follows:

1−uki ≤ ξ +, 1−uki ≥−ξ−, ξ +,ξ− ≥ 0.

Introducing Lagrange multipliers β +, β−, ψ+, and
ψ− ≥ 0, Lagrangian Ll p is as follows:

Lel pap = ukidki +λuuki (loguki −1)+ γ
(
ξ + +ξ−)

+β + (
1−uki −ξ +)

+β− (−1+uki−ξ−)
−ψ+ξ +−ψ−ξ−. . . . . . . . (6)

From ∂ Lel pap/∂ ξ + = 0 and ∂ Lel pap/∂ ξ− = 0,

γ −β +−ψ+ = 0, γ −β−−ψ− = 0. . . . (7)

Since ψ+, ψ− ≥ 0, conditions 0 ≤ β + ≤ γ and 0 ≤
β− ≤ γ are obtained from Eq. (7). Substituting Eq. (7)
into Eq. (6), Lagrangian Lel pap is simplified as follows:

Lel pap = ukidki +λuuki (loguki −1)+β (1−uki). (8)

Here, β = β +−β− and satisfies −γ ≤ β ≤ γ .
From ∂ Lel pap/∂ uki = 0

uki = exp
(
−dki −β

λu

)
. . . . . . . . . . (9)

Substituting the above for Lel pap, the Lagrangian dual
problem is written as follows:

Lel pap
d = β −λu exp

(
−dki −β

λu

)
.

From ∂ Lel pap
d /∂ β = 0, this dual problem is solved as

β = dki. . . . . . . . . . . . . . . . (10)

The optimal solution of the primary problem is derived
by considering Eq. (9), Eq. (10) and −γ ≤ β ≤ γ . β < 0 is
not realized because dki is always positive. For 0 ≤ β ≤ γ ,
the optimal solution is uki = 1 because β = dki. For γ < β ,
the optimal solution is uki = exp

(
− dki−γ

λu

)
. The optimal

solution for uki of eL1PAP is derived as follows:

uki =

⎧⎨
⎩

1 0 ≤ dki ≤ γ

exp
(
−dki − γ

λu

)
γ < dki

(11)

3.2. eL111PAP Algorithm

The eL1PAP algorithm is described as Algorithm 1
based on the previous discussion:

Algorithm 1 eL1PAP algorithm

eLLL111PAP 1 Set initial values and parameters.

eLLL111PAP 2 Calculate uki ∈U as follows:

uki =

⎧⎨
⎩

1 0 ≤ dki ≤ γ

exp
(
−dki − γ

λu

)
γ < dki

eLLL111PAP 3 Calculate wti ∈W as follows:

wti =
exp

(−λ−1
w gti

)
n

∑
q=1

exp
(−λ−1

w gqi
) .

eLLL111PAP 4 If the convergence criterion is satisfied,
stop. Otherwise go back to eLLL111PAP 2.
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4. Sequential Cluster Extraction Algorithm

The objective function of PCM is minimized separately
because the probabilistic constraint used in FCM is not
used in PCM [9]. This implies the drawback that a clus-
ter centers obtained by PCM would have exactly the same
results. The sequential cluster extraction algorithm is con-
structed by developing this drawback. The basis of this al-
gorithm was previously proposed and discussed [7, 9, 10].
We construct the sequential cluster extraction algorithm
by using the proposed method. The object has small dki
classified in a compact cluster. The membership grade
of such data can then be calculated as uki = 1 by using
Eq. (11). These data should be classified in the same
cluster, which satisfies uki = 1. eL1PAP can thus extract
one cluster at a time by minimizing the objective function
in c = 1. The sequential cluster extraction algorithm by
eL1PAP is described as Algorithm 2.

Algorithm 2 Sequential cluster extraction algorithm
based on proposed methods

STEP 1 Give X , initial values uki, wti, and parame-
ters λu, λw, and γ .

STEP 2 Repeat the eL1PAP algorithm with c = 1
until the convergence criterion is satisfied.

STEP 3 Extract {xk | uki = 1} from X .

STEP 4 If X = /0 or the maximum number of repe-
titions is satisfied, stop. Otherwise give initial values
and go back to STEP 2.

Parameter γ plays an important role in extracting clus-
ters one by one. Previous studies mentioned a procedure
for determining the sequential cluster extraction parame-
ter [8, 10]. Based on that research, we construct the up-
dating procedure for γ as follows:

γ = ρ

[ |X |
∑
k=1

c

∑
i=1

dki

|X |

]
. . . . . . . . . . . (12)

ρ > 0 is a scale multiplier that must be determined in
advance. |X | means the number of objects handled in
STEP 2. Parameter γ is updated in Algorithm 2 by us-
ing Eq. (12).

5. Numerical Examples

We show the numerical examples of sequential cluster
extraction using the Polaris and Iris datasets. The param-
eters which are used in eL1PAP are fixed λu = 1.0 and
λw = 100.0. The squared Euclidean norm is used as the
distance measure between xk and xt , i.e., rkt = ‖xk − xt‖2.

Fig. 1. Sequential cluster extraction by eL1PAP with λu =
1.0, λw = 100.0, and ρ = 0.4. The number of extracted clus-
ters is 5 and the number of noise objects is 3.

Fig. 2. Sequential cluster extraction by eL1PAP with λu =
1.0, λw = 100.0, and ρ = 0.7. The number of extracted clus-
ters is 3 and the number of noise objects is 2.

5.1. Polaris Dataset
We start with the results of the proposed method with

the Polaris dataset, which consists of 51 objects with 2
attributes and should be classified into three clusters.

Figures 1 and 2 are illustrative examples of sequen-
tial cluster extraction by eL1PAP. The value displayed at
each data point denotes the sequence for extracting clus-
ters. The letter ‘n’ denotes the noise objects. We show
the effectiveness of the proposed method by evaluating
the results of the average and standard derivation of the
Rand index (RI) [24], the number of extracted clusters,
and the number of noise objects as listed in Table 1. The
proposed algorithm extracts some good clusters and does
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Table 1. Results of 100 trials of sequential cluster extraction
by eL1PAP with the Polaris dataset.

Rand Index Num. of clusters Num. of noise
ρ Ave SD Ave SD Ave SD

0.1 0.703 0.009 9.71 0.516 11.18 2.075
0.2 0.770 0.009 8.57 0.863 1.55 1.445
0.3 0.779 0.016 7.16 0.946 1.04 1.174
0.4 0.804 0.022 5.59 0.722 1.90 1.005
0.5 0.863 0.028 5.18 0.712 1.89 0.646
0.6 0.887 0.030 5.31 0.956 1.58 0.961
0.7 0.923 0.053 3.95 0.792 1.86 0.510
0.8 0.866 0.036 5.64 0.625 0.19 0.560
0.9 0.759 0.018 5.87 0.336 0.00 0.000
1.0 0.693 0.014 5.02 0.346 0.00 0.000

not extract noise objects. Noise objects are the objects
not extracted until the convergence criterion is satisfied
and consists of a noise cluster . In Table 1, the number of
clusters means the number of good clusters. The number
of repetitions is set to 10 as the convergence criterion in
this numerical experiment. In these tables, Ave and SD
means average and standard variation.

Figures 1 and 2 show that some rough clusters are ex-
tracted and some noise objects are not extracted by the
proposed algorithm. It also shows that parameter ρ used
in Eq. (12) affects the results of sequential cluster extrac-
tion. The case with ρ = 0.7 takes better results and seems
to be suitable for the Polaris dataset, the larger the ρ , the
smaller the number of extracted clusters. The number of
noise objects is from Table 1. Large ρ induces large γ
that takes a broad area that satisfies uki = 1.0. These ta-
bles show that the proposed algorithm is robust for initial
values because the value of SD is quite small. Parameter γ
further influences the classification results and sequential
cluster extraction.

5.2. Iris Dataset

Next, we show the results of proposed methods with the
Iris dataset published in the UCI machine learning repos-
itory.1 The Iris dataset consists of 150 objects with 4 at-
tributes and should be classified into three clusters. We
also show the results of proposed method with the aver-
age and standard derivation RI, the number of extracted
clusters, and the number of noise objects in Table 2. In
the case of ρ = 0.1, the algorithm does not extract a good
cluster and all objects are classified into noise clusters.
Many objects are also classified into noise clusters in the
case of ρ = 0.2 and ρ = 0.3. By evaluating the value
of RI, the number of extracted clusters, and the number
of noise objects comprehensively, parameter ρ is suitable
for the Iris dataset between 0.4 and 0.8.

1. http://archive.ics.uci.edu/ml/ [Accessed September 8, 2014]

Table 2. Results of 100 trials of sequential cluster extraction
by eL1PAP with the Iris dataset.

Rand Index Num. of clusters Num. of noise
ρ Ave SD Ave SD Ave SD

0.1 0.329 0.000 0.00 0.000 150.00 0.000
0.2 0.518 0.006 1.00 0.000 113.62 1.420
0.3 0.806 0.024 2.24 0.472 37.37 5.416
0.4 0.795 0.003 3.01 0.099 13.23 1.535
0.5 0.790 0.003 3.49 0.806 4.20 2.631
0.6 0.782 0.001 3.96 0.196 3.17 0.788
0.7 0.780 0.001 3.42 0.494 2.62 0.690
0.8 0.779 0.000 3.37 0.730 3.07 1.645
0.9 0.778 0.000 5.00 0.000 0.00 0.000
1.0 0.777 0.000 5.00 0.000 0.00 0.000

6. Conclusions

We have proposed an entropy-based L1-regularized
possibilistic assignment prototype algorithm (eL1PAP).
We have also constructed a sequential cluster extraction
algorithm based on eL1PAP. The algorithm handles both
p-dimensional objects xk ∈ Rp and relational data (rkt).
We have shown the effectiveness of the sequential cluster
extraction algorithm through numerical examples.

In future work, we will compare the performance of
the proposed sequential cluster extraction algorithm with
other methods and benchmark datasets. We will also con-
sider how to determine a better or more suitable parameter
ρ , which plays an important role in the proposed method
and algorithm.
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[9] R. N. Davé and R. Krishnapuram, “Robust clustering methods : A
unified view,” IEEE Trans. on Fuzzy Systems, Vol.5, No.2, pp. 270-
293, 1997.

Vol.19 No.1, 2015 Journal of Advanced Computational Intelligence 27
and Intelligent Informatics



Hamasuna, Y. and Endo, Y.
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