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In this paper, a model of mixed oligopoly with con-
jectured variations equilibrium (CVE) is examined, in
which one of the agents maximizes a convex combina-
tion of its net profit with the domestic social surplus.
The agents’ conjectures concern the price variations,
which depend on the variations in their production
outputs. Using the established existence and unique-
ness results for the CVE (the exterior equilibrium) for
any fixed set of feasible conjectures, the notion of
the interior equilibrium is introduced by developing
a conjecture consistency criterion. Then, the existence
theorem for the interior equilibrium (defined as a CVE
state with consistent conjectures) is proven. When the
convex combination coefficient tends to 1 (thus trans-
forming the model into the mixed oligopoly in its ex-
treme form), two trends are apparent. First, for pri-
vate companies, the equilibrium with consistent con-
jectures becomes more proficient than the Cournot-
Nash equilibrium. Second, there exists a (unique)
value of the convex combination coefficient such that
the private agent’s aggregate profit is the same in both
the above-mentioned equilibria, which makes subsi-
dies to producers or consumers unnecessary.

Keywords: management engineering, game theory, equi-
librium theory

1. Introduction

Models of mixed oligopolies have attracted increased
attention in the past decade and have become very pop-
ular in the literature. In contrast to a classical oligopoly,

a mixed oligopoly usually includes at least one special
agent in addition to the regular participants, who maxi-
mize their net profits. This special company strives to in-
crease the value of an objective function that is different
from the net profit. Many models of this kind include an
agent that maximizes domestic social surplus (cf. [1–5]).
An income-per-worker function substitutes the standard
net profit objective function in some other sources (cf. [6–
9]). Papers [10] and [11] examine a third kind of mixed
duopoly with an extraordinary agent that aims to increase
a convex combination of its net profit and the domestic
social surplus.

Most of the above-mentioned works study mixed
oligopoly with the classical Cournot, Hotelling, or Stack-
elberg approaches. Recently, the conjectural varia-
tions equilibrium (CVE) introduced by Bowley [12] and
Frisch [13], another possible solution for static games, has
received increased study. This concept supposes that the
players behave as follows: each agent selects his/her op-
timal strategy under the assumption that every rival’s re-
sponse is a conjectural variation function of her/his own
move. For example, as Laitner [14, p. 643] states, “Al-
though the firms make their output decisions simultane-
ously, plan changes are always possible before produc-
tion begins.” In other words, in contrast to the Cournot-
Nash framework, here, every firm supposes that its choice
of output level will affect its opponents’ behavior. The
generated anticipation (or conjectural variation) function
composes the core of the conjectural variations approach
to decision making, or the CVE.

According to [15] and [16], the CVE has been the topic
of various theoretical discussions (cf. [17]). Economists
have made extensive use of various forms of the CVE
to forecast the effects of non-cooperative behavior in nu-
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merous areas of economics. However, the literature on
conjectural variations has focused mainly on two-player
games because a serious conceptual difficulty arises if the
number of agents is greater than two (cf. [15] and [18]).

In order to cope with this conceptual impediment in
many-player games, Bulavsky [19] developed a strong
new approach. Rather than assuming the equivalence
(symmetry) of players in the oligopoly, he supposed that
every player does not make conjectures redarding the (op-
timal) response functions of each of the other players,
but only about the variations of the market clearing price,
which depend on (infinitesimal) variations in the agent’s
output volume. Knowing their rivals’ conjectures (called
influence coefficients), every agent applies a verification
procedure and determines whether his/her influence coef-
ficient is consistent with those of the other players.

In the recent papers [18] and [20], the results of [19]
were extended to the mixed duopoly and oligopoly cases,
respectively. In both papers, the concept of exterior equi-
librium was defined as the CVE with influence coeffi-
cients fixed in an exogenous mode. The existence and
uniqueness theorems for this sort of CVE were estab-
lished to be used as a keystone for the concept of interior
equilibrium, which is the exterior equilibrium with con-
sistent conjectures (influence coefficients). The consis-
tency criteria, verification procedures, and existence the-
orems for the interior equilibrium were formulated and
proven in [18] and [20].

In [22], the above-described theoretical outcomes were
amplified to the case of a partially mixed oligopoly, in
which the public company, similar to [10] and [11], max-
imizes a convex combination of its net profit and the do-
mestic social surplus. The results of numerical experi-
ments with a test model of an electricity market from [23],
both with and without a public company among the
agents, showed the importance of the CVE for the con-
sumer. In this paper, we explore this importance in greater
detail. When the convex combination coefficient tends
to 1, thus pushing the model towards the standard mixed
oligopoly, two interesting trends can be discerned. First,
for private companies, the equilibrium with consistent
conjectures becomes more proficient than the Cournot-
Nash equilibrium. Second, there exists a (unique) value
of the combination coefficient such that the private agents’
aggregate profit is the same in both the above-mentioned
equilibria (Cournot-Nash and Bulavsky), which makes
subsidies from the authoritites to producers or consumers
unnecessary.

The rest of this paper is arranged as follows. Section 2
specifies the model and the two kinds of equilibrium we
consider (exterior and interior). In Section 3, we present
the main theorem for the existence and uniqueness of the
exterior equilibrium for any set of feasible conjectures
(influence coefficients) as well as the formulas for the
derivative of the equilibrium price p with respect to the
active demand variable D. Section 4 introduces the con-
sistency criterion and the definition of the interior equi-
librium (which can be treated as a consistent CVE, or
CCVE); the CCVE existence theorem from [22] is also

discussed. To provide tools for future research concern-
ing the interrelationships between the demand structure
(with a demand function that is not necessarily smooth)
and the CVEs with consistent conjectures (influence coef-
ficients), the behavior of the latter as functions of a certain
parameter governed by the derivative by p of the demand
function is considered in Theorem 4.9. Section 5 deals
with an important case of a linear demand function for
duopoly and, more generally, oligopoly. In Section 6, a
qualitative analysis of the results of the numerical exper-
iments from [22] is developed, while concluding remarks
are given in Section 7.

2. Mixed Oligopoly with Combined Payoff
Functions

Following [22], consider a market with at least three
producers of a homogeneous good with the cost functions
fi(qi), i = 0,1, . . . ,n, n ≥ 2, where qi is the output of pro-
ducer i. Consumers demand is described by a demand
function G(p), where p is the market price proposed by
the producers. The value of active demand D is nonnega-
tive and does not depend on the price. We fix the equilib-
rium between the demand and supply for a given price p
by the following balance equality

n

∑
i=0

qi = G(p)+D. . . . . . . . . . . . (1)

We also assume the following properties of the model’s
data.

A1. The demand function G = G(p)≥ 0 defined over p ∈
[0,+∞) is non-increasing and continuously differentiable.

A2. For each agent i = 0,1, . . . ,n, the cost function fi =
fi(qi) is quadratic:

fi(qi) =
1
2

aiq2
i +biqi, . . . . . . . . . . (2)

where ai > 0,bi > 0, i = 0,1, . . . ,n. In addition, we as-
sume that

b0 ≤ max
1≤i≤n

bi. . . . . . . . . . . . . . (3)

Remark 2.1 Although the assumption of ai > 0, i =
0,1, . . . ,n, may seem to be unacceptable in view of
the scale effect often observed in real-life production
economies, it is not uncommon in theories of classical
and mixed oligopolies (cf. [3–5] and [23]). In the major-
ity of cases, this assumption is the easiest way to ensure
the concavity of each player’s payoff function. However,
this condition can be somewhat relaxed, as, for example,
in [24], where the second derivative of the cost function
is not assumed to be positive. Then, the desired payoff
function’s concavity is achieved by another assumption
that combines the first derivative of the demand function
and the second derivative of the cost function. Finally,
the scale effect can also be modeled by permitting the
first-order coefficients bi, i = 0, . . . ,n to be negative. We
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have already obtained the corresponding results for this
more general case, and they will be published elsewhere.

Each private producer i = 1, . . . ,n chooses its out-
put volume qi ≥ 0 so as to maximize its profit function
πi(p,qi) = p · qi − fi(qi). On the other hand, the public
company with index i = 0 produces q0 ≥ 0 so as to max-
imize a convex combination of its profit and the domestic
social surplus (defined as the difference between the con-
sumer surplus, the private companies’ aggregate revenue,
and the public firm’s production costs):

S(p;q0, . . . ,qn) =

β

⎡
⎢⎢⎢⎣

n
∑

i=0
qi∫

0

p(x)dx− p

(
n

∑
i=1

qi

)
−b0q0 − 1

2
a0q2

0

⎤
⎥⎥⎥⎦

+(1−β )
(

pq0−b0q0 − 1
2

a0q2
0

)
, . . . (4)

where 0 < β ≤ 1 (here, we follow [10] and [11]). We pos-
tulate that the agents (both public and private) assume that
their choice of production volumes may affect the price
value p. This assumption can be defined by the conjec-
tured dependence of the price p on the output values qi.
Then, the first-order maximum condition to describe the
equilibrium would have the following form for the public
company (i = 0)

∂ S
∂ q0

= p−
[
(β −1)q0 +β

n

∑
i=1

qi

]
∂ p
∂ q0

− f ′0(q0)

{
= 0, if q0 > 0;
≤ 0, if q0 = 0;

. . . . . (5)

and

∂ πi

∂ qi
= p+qi

∂ p
∂ qi

− f ′i (qi)

{
= 0, if qi > 0;
≤ 0, if qi = 0,

. (6)

for private firm i (i = 1, . . . ,n).
Thus, we see that to describe the agent’s behavior, we

must evaluate the behavior of the derivative ∂ p/∂ qi =−vi
rather than the dependence of p on qi, i = 0, . . . ,n. Here,
we introduce the negative sign (minus) to deal with non-
negative values of vi. Of course, the conjectured depen-
dence of p on qi must provide (at least the local) concav-
ity of the i-th agent’s conjectured profit as a function of its
output.

For instance, it is sufficient to assume coefficient vi
(henceforth referred to as the i-th agent’s influence coef-
ficient) to be nonnegative and constant. Then, the con-
jectured local dependence of private firm i’s profit varia-
tion on the variation in production output (ηi−qi) has the
form [p− vi(ηi −qi)]ηi− pqi− fi(ηi)+ fi(qi), which im-
plies that the profit is a concave function with respect to
ηi. Therefore, the profit’s maximum condition at ηi = qi,

i = 1, . . . ,n, is provided by the relationships{
p = viqi +b1 +aiqi, if qi > 0;
p ≤ bi, if qi = 0.

. . . . (7)

Similarly, the public company conjectures the local de-
pendence of the domestic social surplus on its production
output’s variation η0 in the form

β

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η0+
n
∑

i=1
qi∫

q0+
n
∑

i=1
qi

p(x)dx− [p− v0(η0 −q0)]×
n

∑
i=1

qi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+(1−β ){[p− v0(η0 −q0)]η0 − pq0}
− f0(η0)+ f0(q0), . . . . . . . . . . . (8)

which indicates that the public company’s payoff function
is concave with respect to η0; hence, the maximum con-
dition at η0 = q0 can be written as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p = −β v0

n

∑
i=1

qi +(1−β )v0q0+ b0 +a0q0,

if q0 > 0;

p ≤−β v0

n

∑
i=1

qi +b0, if q0 = 0.

(9)

If the agents’ conjectures about the model were given
exogenously, as assumed in [25] and [26], we would al-
low the values vi to be functions of qi and p. However,
we use the approach from [18], [19], and [22], where
the conjecture parameters for the equilibrium are deter-
mined simultaneously with the values for price p and
the outputs qi by a special verification procedure. In the
latter case, the influence coefficients are scalar parame-
ters determined only for the equilibrium. In Section 4,
such an equilibrium state is referred to as an interior one,
which is described by the set of variables and parameters
(p,q0, . . . ,qn,v0, . . . ,vn).

As mentioned in Remark 2.1, we have already ob-
tained results concerning the models featuring so-called
effects of scale (scale effects, economies of scale, etc.).
Economies of scale are the cost advantages that enter-
prises obtain because of their size, output, or scale of op-
eration, with the cost per unit of output generally decreas-
ing as scale increases because fixed costs are spread out
over more units of output. Often, operational efficiency
is also greater with increased scale, which leads to lower
variable costs as well. In our model, this effect can be re-
vealed if the values of bi are negative. In order to allow
this effect, we must modify assumption A2 as follows.

A2′′′. For all agents i = 0, . . . ,n, their cost functions
fi = fi(qi) are quadratic:

fi(qi) =
1
2

aiq2
i +biqi + ci, . . . . . . . . (10)

where ai > 0,bi < 0, ci > 0, i = 0,1, . . . ,n. In addition,
we suppose that

b2
i −4aici < 0, i = 0, . . . , n, . . . . . . . (11)
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and

G(0)+
n

∑
i=0

bi

ai
> 0. . . . . . . . . . . . (12)

Remark 2.2 In contrast to assumption A2, here, we need
to suppose a fixed cost ci to be positive for all produc-
ers i = 0, . . . ,n. Moreover, the technical condition (11)
is needed to guarantee that the quadratic cost fi = fi(qi),
i = 0, . . . ,n, never drops to zero for non-negative supply
volumes qi ≥ 0, i = 0, . . . ,n. Finally, together with as-
sumption A1, the strict inequality (12) provides for the
existence of a unique solution for the balance equality
(1) and optimality conditions (7) and (9) (i.e., the ex-
terior equilibrium) for any nonnegative values of D,vi,
i = 1, . . . ,n, and all v0 ∈ [0, ū0), where

0 < ū0 := −a0

⎡
⎢⎢⎢⎣

G(0)+
n

∑
i=0

bi

ai
n

∑
i=1

bi

ai

⎤
⎥⎥⎥⎦ . . . . . . (13)

In the special case of duopoly (n = 1), the parameter ū0 is
defined with a simpler formula:

0 < ū0 := −a0a1

b1

[
G(0)+

b0

a0
+

b1

a1

]
. . . . . (14)

It is notable that all the properties and optimality con-
ditions stated above are also valid for economies of scale
assumptions. Moreover, optimality conditions (7) and (9)
become even simpler because under A2′′′, zero output is
not possible for any company. These and other differ-
ences that appear in the existence and uniqueness theo-
rems for the exterior and interior equilibria will be dis-
cussed in Sections 3 and 4.

3. Exterior Equilibrium in Oligopoly

In order to present the verification procedure, we must
study first another notion of equilibrium, the exterior
equilibrium (cf. [18] and [20]), with parameters vi given
exogenously. The point (p,q0, . . . ,qn) is called an exte-
rior equilibrium state for the given influence coefficients
(v0, . . . ,vn), if the market is balanced, that is, if equality
(1) is valid and the maximum conditions (7) and (9) hold.

In the following, we consider only the case in which
the collection of producing participants is fixed (i.e., it
does not depend on the values vi of the influence coeffi-
cients). To guarantee this property, we make the following
assumption.
A3. For the price p0 = max

1≤ j≤n
b j, the following estimate

holds
n

∑
i=0

p0 −bi

ai
< G(p0). . . . . . . . . . . (15)

The latter assumption, together with assumptions A1

and A2, guarantees that for all nonnegative values of vi,
i = 1, . . . ,n, and for v0 ∈ [0, v̄0), where v̄0 > 0 and

v̄0 = a0

⎡
⎢⎢⎢⎣

G(p0)− p0 −b0

a0
n

∑
i=1

p0 −bi

ai

−1

⎤
⎥⎥⎥⎦ . . . . . . (16)

if

n

∑
i=1

p0 −bi

ai
> 0,

and v̄0 = +∞ otherwise, there always exists a unique so-
lution of optimality conditions (7) and (9) satisfying bal-
ance equality (1) — that is, it is an exterior equilibrium
state. Lemma 3.1 establishes that conditions (1), (7) and
(9) can hold simultaneously if and only if p > p0: that is,
if and only if all outputs qi, i = 0, . . . ,n are strictly pos-
itive. The latter equivalence is demonstrated below (this
proof appears in [22]: we repeat it for self-consistency).
Lemma 3.1. Let assumptions A1–A3 be valid. If a vector
(p,q0,q1, . . . ,qn) is an exterior equilibrium state, then the
relationship p > p0 is equivalent to the fact that all qi > 0,
i = 0,1, . . . ,n.
Proof. If a vector (p,q0,q1, . . . ,qn) is an exterior equilib-
rium state then conditions (1), (7) and (9) hold simul-
taneously. In this case p > p0 is equivalent to the fact
that all outputs qi are strictly positive, i = 0,1, . . . ,n. In-
deed, if p > p0, it is evident from (3) and (9) that nei-
ther the inequalities p ≤ bi, i = 1, . . . ,n seen in (7), nor

p ≤ β v0
n
∑

i=1
qi + b0 in (9) are possible, which means that

none of qi, i = 0,1, . . . ,n can be zero. Conversely, if all
qi > 0, i = 0,1, . . . ,n, it is straightforward from condition
(7) that

p = viqi +bi +aiqi > bi, i = 1, . . . ,n,

hence p > max
1≤ j≤n

b j = p0.

We are now in a position to formulate the main result of
this section. We have demonstrated the following theorem
in [22], and the details of its very long proof are available
from the authors upon request.
Theorem 3.2. Under assumptions A1–A3, for any D ≥ 0,
vi ≥ 0, i = 1, . . . ,n, and v0 ∈ [0, v̄0), there exists uniquely
an exterior equilibrium state (p,q0,q1, . . . ,qn) that de-
pends continuously on the parameters (D,v0,v1, . . . ,vn).
The equilibrium price p = p(D,v0,v1, . . . ,vn) as a
function of these parameters is differentiable with re-
spect to both D and vi, i = 0,1, . . . ,n. Moreover,
p(D,v0,v1, . . . ,vn) > p0, and

∂ p
∂ D

=
1

F(β ,a,v, p)
, . . . . . . . . . . . (17)

974 Journal of Advanced Computational Intelligence Vol.18 No.6, 2014
and Intelligent Informatics



Mixed Oligopoly: Analysis of Consistent Equilibria

with

F(β ,a,v, p) =
1

a0 +(1−β )v0

+
a0 + v0

a0 +(1−β )v0

n

∑
j=1

1
a j + v j

−G′(p). . . . . . . . . . (18)

First, we consider the case of n = 1, that is, of the
duopoly model.

3.1. Exterior Equilibrium in Duopoly with
Economies of Scale

As mentioned above, in the economies of scale models,
under assumption A2′′′, no company may supply zero out-
put at equilibrium. Indeed, since the coefficients b0 and
b1 are now both supposed to be negative in sign, optimal-
ity conditions (7) and (9) can hold only if qi > 0, i = 0,1.
More precisely, they reduce to the optimality conditions

p = v1q1 +b1 +a1q1, . . . . . . . . . . (19)

and

p = −β v0q1 +(1−β )v0q0 +b0 +a0q0, . . . (20)

respectively.
Thus, the following key result of this subsection is eas-

ier to establish than Theorem 3.2. However, since its
proof is too long, it will be published elsewhere.
Theorem 3.3. Under assumptions A1 and A2′′′, for any
D ≥ 0, v1 ≥ 0, and v0 ∈ [0, ū0), where ū0 is as defined
in (14), there exists uniquely the exterior equilibrium
(p,q0,q1) that depends continuously on the parameters
(D,v0,v1). The equilibrium price p = p(D,v0,v1) as a
function of these parameters is differentiable with respect
to both D and v0,v1. Moreover, qi > 0, i = 0,1 and

∂ p
∂ D

=
1

F(β ,a,v, p)
. . . . . . . . . . . (21)

where

F(β ,a,v, p) =
1

a0 +(1−β )v0

+
v0 +a0

a0 +(1−β )v0
· 1

v1 +a1

−G′(p). . . . . . . . . . (22)

3.2. Exterior Equilibrium in Oligopoly with
Economies of Scale

Similar to the duopoly case studied above, in the
economies of scale models, under assumption A2′′′, we
are assured that no company may supply zero output
in the equilibrium. Indeed, since all coefficients bi,
i = 0,1, . . . ,n, are now negative in sign, optimality condi-
tions (1), (7) and (9) can hold only if qi > 0, i = 0,1, . . . ,n.

More precisely, (7) and (9) reduce to the optimality con-
ditions

p = viqi +bi +aiqi, i = 1, . . . ,n, . . . . (23)

and

p = −β v0

n

∑
i=1

qi +(1−β )v0q0 +b0 +a0q0, . . (24)

respectively.
Therefore, the following key result of this subsection is

easier to establish than Theorem 3.2. However, since its
proof is extremely long, it will be published elsewhere.
Theorem 3.4. Under assumptions A1 and A2′′′, for any
D ≥ 0, vi ≥ 0, i = 1, . . . ,n, and v0 ∈ [0, ū0), where ū0
is as defined in (13), there exists uniquely the exterior
equilibrium (p,q0, . . . ,qn) that depends continuously on
the parameters (D,v0, . . . ,vn). The equilibrium price
p = p(D,v0, . . . ,vn) as a function of these parameters is
differentiable with respect to both D and v0, . . . ,vn. More-
over, qi > 0, i = 0, . . . ,n and

∂ p
∂ D

=
1

F(β ,a,v, p)
. . . . . . . . . . . (25)

where

F(β ,a,v, p) =
1

a0 +(1−β )v0

+
a0 + v0

a0 +(1−β )v0

n

∑
j=1

1
a j + v j

−G′(p). . . . . . . . . . (26)

4. Interior Equilibrium in Oligopoly

Again, following [22], we now define the interior equi-
librium.We first describe the procedure for verifying the
influence coefficients vi as given in [22]. Assume that we
have an exterior equilibrium state (p,q0, . . . ,qn) that has
occurred for some v0, . . . ,vn, and D. One of the produc-
ers, say, k, temporarily changes its behavior: it abstains
from maximizing the conjectured profit (or the combina-
tion of the domestic social surplus and its net profit, as in
case k = 0) and exercises small fluctuations in its output
volume qk. In mathematical terms, it is tantamount to re-
stricting the model to the oligopoly of the agents i with
i �= k with output qk subtracted from the active demand.

A fluctuation in the supply by agent k is then
equivalent to accepting the active demand varied by
δ Dk := δ (D− qk) ≡ −δ qk. If we consider these varia-
tions as infinitesimal, we conclude that by observing the
corresponding variations of the equilibrium price, agent k
can estimate the derivative of the equilibrium price with
respect to the active demand, which coincides with agent
k’s own influence coefficient.

Applying Eqs. (17) and (18) from Theorem 3.2 (or
Eqs. (21) and (22) from Theorem 3.3 or Eqs. (25) and
(26) from Theorem 3.4, for the model with economies

Vol.18 No.6, 2014 Journal of Advanced Computational Intelligence 975
and Intelligent Informatics



Kalashnikov, V. V. et al.

of scale) to calculate the derivatives, one must remember
that agent k is (temporarily) absent from the equilibrium
model; hence, terms with number i = k must be elimi-
nated from all the sums. Bearing this in mind, we have
the following criterion.

4.1. Consistency Criterion
In the exterior equilibrium state (p,q0, . . . ,qn), the in-

fluence coefficients vk, k = 0, . . . ,n are referred to as con-
sistent if the following equalities hold:

v0 =
1

n

∑
i=1

1
ai + vi

−G′(p)
, . . . . . . . . . (27)

and

vi =
1

a0 + v0
a0 +(1−β )v0

n

∑
j �=i, j=1

1
a j + v j

−G′(p)
, . (28)

i = 1, . . . ,n.
We are now ready to define the concept of interior equi-

librium.
Definition 4.1. The collection (p,q0,q1, . . . ,qn,v0,v1,. . . ,
vn),where vk ≥ 0, k = 0,1, . . . ,n, is referred to as an inte-
rior equilibrium state if, for the considered influence co-
efficients, the collection (p,q0,q1, . . . ,qn) is an exterior
equilibrium state, and the consistency criterion is satis-
fied for all vk, k = 0,1, . . . ,n.
Remark 4.2. If all agents i = 0,1, . . . ,n, were net profit-
maximizing companies, Eqs. (27) and (28) would be re-
duced to the uniform ones obtained independently in [19]
and [23]:

vi =
1

n

∑
j �=i, j=0

1
a j + v j

−G′(p)
,

i = 0,1, . . . ,n. . . . . . (29)

The following theorem is an extension of Theorem 4.2
from [18] to the case of a mixed oligopoly with the com-
bined payoff function.
Theorem 4.3. Under assumptions A1–A3, for any D ≥ 0,
there exists an interior equilibrium state.
Proof. The proof is an evident extension of that of Theo-
rem 4.2 in [18].
Remark 4.3. The only difference of Theorem 4.3 from the
corresponding existence result for the interior equilibrium
in an economies-of-scale mixed oligopoly model is that in
the latter, assumption A2 is replaced with assumption A2′′′,
while assumption A3 becomes redundant.
Theorem 4.4. Under assumptions A1 and A2′′′, for any
D ≥ 0, there exists (at least one) interior equilibrium
state.
Proof. The proof is an evident extension of that of Theo-
rem 4.2 in [20].

In our future research, we will extend the obtained re-
sults to the case of non-differentiable demand functions.
However, some of the necessary techniques must be de-
veloped now in the differentiable case.

4.2. Case of Duopoly
For the duopoly case, we denote the value of the de-

mand function’s derivative by τ = G′(p) and rewrite the
consistency Eqs. (27) and (28) as follows:

v0 =
1

1
a1 + v1

− τ
, . . . . . . . . . . . (30)

and

v1 =
1

1
a0 +(1−β )v0

− τ
, . . . . . . . . (31)

where τ = [−∞,0]. If τ = −∞ then system (30)–(31) has
the unique solution vi(τ) = 0, i = 0,1. The following re-
sult was demonstrated in [21].
Theorem 4.5. [21] Under assumptions A1–A3 and for
any τ ∈ (−∞,0] there exists a unique solution of Eqs. (30)
and (31), and this one-to-one correspondence is a contin-
uous function of the variable τ . Moreover, vi(τ)→ 0 when
τ →−∞, and vi(τ) strictly increases up to vi(0) as τ in-
creases and tends to zero, i = 0,1.

The analogous result for the economies of scale model
the analogous result is shown below.
Theorem 4.6. Under assumptions A1 and A2′′′ and for any
τ ∈ (−∞,0], there exists a unique solution of Eqs. (30) and
(31), and this one-to-one correspondence is a continuous
function of the variable τ . Moreover, vi(τ)→ 0 when τ →
−∞, v1(τ) strictly increases up to v1(0), and v0(τ) strictly
increases up to min{vi(0), ū0} as τ grows and tends to
zero, i = 0,1. Here, ū0 is as defined by (14).

Proof. The proof of this theorem is quite long and will
be published elsewhere.
Remark 4.4. The only difference of Theorem 4.6 from
the corresponding existence result for the interior equi-
librium in an economies-of-scale mixed oligopoly model
is that in the latter, assumption A2 is replaced with as-
sumption A2′′′, while assumption A3 becomes redundant.

Theorem 4.7. Under assumptions A1 and A2′′′, for any
D ≥ 0, there exists (at least one) interior equilibrium
state.
Proof. The proof is an evident extension of that of Theo-
rem 4.2 in [20].

4.3. Case of Oligopoly
Again, as in Subsection 4.2, denote the value of the

demand function’s derivative by τ = G′(p) and rewrite
the consistency Eqs. (27) and (28) as follows:

v0 =
1

n

∑
i=1

1
ai + vi

− τ
, . . . . . . . . . . (32)
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and

vi =
1

a0 + v0
a0 +(1−β )v0

n

∑
j �=i, j=1

1
a j + v j

− τ
, . . . (33)

i = 1, . . . ,n, where τ = [−∞,0]. If τ = −∞, system (32)
and (33) has the unique solution vi(τ) = 0, i = 0,1, . . . ,n.

The following result was demonstrated in [22].
Theorem 4.8. [22] Under assumptions A1–A3 and for
any τ ∈ (−∞,0], there exists a unique solution of Eqs. (32)
and (33) that continuously depends on τ . Moreover,
vi(τ)→ 0 when τ →−∞, i = 0,1, . . . ,n, and v0(τ) strictly
increases up to min{v0(0), v̄0}) as τ increases and tends
to zero, if

ns
ns+a0(n−1)2 < β ≤ 1, . . . . . . . . (34)

where s = max{v̄0,a0,a1, . . . ,an}.
The analogous result for the economies of scale model

is shown below.
Theorem 4.9. Under assumptions A1 and A2′′′ and for
any τ ∈ (−∞,0] there exists a unique solution of Eqs. (32)
and (33), and this one-to-one correspondence is a con-
tinuous function of the variable τ . Moreover, vi(τ) → 0
when τ → −∞, vi(τ) strictly increases up to vi(0),
i = 1, . . . ,n, and v0(τ) strictly increases up to
min{v0(0), ū0} as τ grows and tends to zero if

ns
ns+a0(n−1)2 < β ≤ 1, . . . . . . . . (35)

where s = max{ū0,a0,a1, . . . ,an}. Here, ū0 is determined
by expression (13).

Proof. The proof of this theorem is extremely long and
will be published elsewhere.

5. A Linear Demand Function

Again, following [21] and [22], we consider a partic-
ular case of the linear demand function by introducing a
new assumption in place of A1.
A4. The demand function is linear, G(p) =−K p+T with
K > 0,T > 0, and the ratio T/K > 0 is large enough to
ensure that G(p) > 0 for all equilibrium states that can
occur in the model.

5.1. A Linear Demand Function in Duopoly
Several interesting results concerning the behavior of

the interior and exterior equilibria and their dependence
on the parameter β ∈ (0,1] have been derived and pub-
lished in [21].
Theorem 5.1. [21] For each β ∈ (0,1], un-
der assumptions A2–A4, there exists uniquely
an interior equilibrium state (p∗,q∗0,q

∗
1,v

∗
0,v

∗
1)=

=(p∗(β ),q∗0(β ),q∗1(β ),v∗0(β ),v∗1(β )). Moreover, the
consistent coefficients of influence v∗i = v∗i (β ), i = 0,1,
the equilibrium production volumes q∗i = q∗i (β ), i = 0,1,

and the equilibrium price p∗ = p∗(β ), which are treated
as (well-defined) functions of the variable β , are continu-
ously differentiable over the feasible domain β ∈ (0,1].

It is straightforward that the parameter β can be inter-
preted as a measure of the “nationalization” of company
i = 0 (cf. [11]). Indeed, the smaller the value of β , the
higher the relative weight of the net profit in the com-
pany’s objective function (4). In contrast, when β → 1,
the public company i = 0 tends to behave more and more
like the player maximizing the domestic social surplus.
Therefore, it is intuitively clear that when the parameter
β grows, the output produced by firm i = 0 must increase,
whereas the private company i = 1 should decrease its
supply because of the decreasing price. Furthermore, it
is also intuitively clear that when β increases, the total
equilibrium demand G∗ = G(p∗(β )) must increase, thus
decreasing the clearing (equilibrium) price p∗(β ). This
leads both agents (private and public) in the market to a
loss in their influence rates, that is, a decrease in their
influence coefficients v∗i (β ), i = 0,1. For the particular
case of the linear demand function, all these results can
be demonstrated by mathematically rigorous arguments,
as illustrated by the following result from [21].
Theorem 5.2. [21] Under assumptions A2–A4, the con-
sistent coefficients of influence v∗i (β ), i = 0,1 and the
equilibrium price p∗(β ), which are treated as (well-
defined) functions of the variable β ∈ (0,1], strictly de-
crease over the whole interval (0,1]. In addition, there
exists a value β̄ ∈ [0,1) such that the interior equilibrium
private volume function q∗1 = q∗1(β ) strictly decreases,
while the interior equilibrium public volume function
q∗0 = q∗0(β ) strictly increases over the (semi-closed) inter-
val β ∈ (β̄ ,1].
Remark 5.1. The obtained results lead to the conclusion
that when a certain “degree of nationalization” β̄ ∈ [0,1)
is achieved, the private company is “crestfallen” and drops
in both its production volume q1 and its self-evaluation
parameter v1. However, for the consumers, the growing
of β is the good news since the total production volume
increases, whereas the clearing price p, vice versa, falls
down.
Remark 5.2. As in the previous section, it is noteworthy
that to obtain the corresponding results for the economies-
of-scale model, it is sufficient to replace assumption A2
with assumption A2′′′ and to delete assumption A3, which
is unnecessary. Therefore, the following theorems are
true (the proofs are very long and will be published else-
where).
Theorem 5.3. For each β ∈ (0,1], under as-
sumptions A2′′′ and A4, there exists uniquely
an interior equilibrium state (p∗,q∗0,q

∗
1,v

∗
0,v

∗
1)=

=(p∗(β ),q∗0(β ),q∗1(β ),v∗0(β ),v∗1(β )). Moreover, the
consistent coefficients of influence v∗i = v∗i (β ), i = 0,1,
the equilibrium production volumes q∗i = q∗i (β ), i = 0,1,
and the equilibrium price p∗ = p∗(β ), which are
treated as (well-defined) functions of the variable β ,
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are continuously differentiable over the feasible domain
β ∈ (0,1].
Theorem 5.4. Under assumptions A2′′′ and A4, the con-
sistent coefficients of influence v∗i (β ), i = 0,1 and the
equilibrium price p∗(β ), which are treated as (well-
defined) functions of the variable β ∈ (0,1], strictly de-
crease over the whole interval (0,1]. In addition, there
exists a value β̄ ∈ [0,1) such that the interior equilibrium
private volume function q∗1 = q∗1(β ) strictly decreases,
while the interior equilibrium public volume function
q∗0 = q∗0(β ) strictly increases over the (semi-closed) inter-
val β ∈ (β̄ ,1].

5.2. A Linear Demand Function in an Oligopoly
For the general oligopoly (n > 1), several interesting

results concerning the behavior of the interior and exte-
rior equilibria dependent on the parameter β ∈ (0,1] were
derived and published in [22].
Theorem 5.5. [22] For each β ∈ (0,1], under as-
sumptions A2–A4, there exists uniquely an interior
equilibrium state (p∗,q∗0,q

∗
1, . . . ,q

∗
n,v

∗
0,v

∗
1, . . . ,v

∗
n)=

=(p∗(β ),q∗0(β ),q∗1(β ), . . . ,q∗n(β ),v∗0(β ),v∗1(β ), . . . ,v∗n(β )).
Moreover, the consistent coefficients of influence
v∗i = v∗i (β ), i = 0,1, . . . ,n, which are treated as (well-
defined) functions of the variable β , are continuously
differentiable over the feasible domain

ns
ns+a0(n−1)2 < β ≤ 1, . . . . . . . . (36)

where s = max{v̄0,a0,a1, . . . ,an}.
It is straightforward that the parameter β can be inter-

preted as a measure of the “nationalization” of company
i = 0 (cf. [11]). Indeed, the smaller the value of β , the
higher the relative weight of the net profit in the com-
pany’s objective function (4). In contrast, when β → 1,
the public company i = 0 tends to behave increasingly
like the player maximizing the domestic social surplus.
Therefore, it is intuitively clear that when the parameter
β grows, the output produced by firm i = 0 must increase,
whereas the private companies i = 1, . . . ,n should de-
crease their supply because of the decreasing price. Fur-
thermore, it is also intuitive that when β increases, the to-
tal (passive) demand G∗ = G(p∗(β )) must increase, thus
dropping the clearing (equilibrium) price p∗(β ). The lat-
ter evidently leads all the agents (private and public) of
the market to losses in their influence rates,that is, to de-
creases in their influence coefficients v∗i (β ), i = 0,1, . . . ,n.
All these properties are illustrated in the next section for
the particular case of the linear demand function via the
results of numerical experiments.
Remark 5.3. The obtained results lead to the conclu-
sion that when a certain “degree of socialization” β̄ ∈
(0,1) achieved, the private companies are “crestfallen”
and drop both their production volumes qi and their self-
evaluation parameters vi . However, the increase of β is
good for consumers since the total production volume in-
creases, whereas the clearing price p, vice versa, goes
down.

Remark 5.4. The threshold β̄ ∈ (0,1) need not be tending
to zero, as shown via the numerical experiments with the
linear demand functions described in the next section.
Remark 5.5. As in the previous section, it is notewor-
thy that to obtain the corresponding results for the case of
the economies-of-scale model, it is enough to replace as-
sumption A2 with assumption A2′′′ and to delete assump-
tion A3, which is redundant. Therefore, the following the-
orems are true (the proofs are quite long and will be pub-
lished elsewhere).
Theorem 5.6. For each β ∈ (0,1], under assump-
tions A2′′′ and A4, there exists uniquely an interior
equilibrium state (p∗,q∗0,q

∗
1, . . . ,q

∗
n,v

∗
0,v

∗
1, . . . ,v

∗
n)=

=(p∗(β ),q∗0(β ),q∗1(β ), . . . ,q∗n(β ),v∗0(β ),v∗1(β ), . . . ,v∗n(β )).
Moreover, the consistent coefficients of influence
v∗i = v∗i (β ), i = 0,1, . . . ,n, which are treated as (well-
defined) functions of the variable β , are continuously
differentiable over the feasible domain

ns
ns+a0(n−1)2 < β ≤ 1, . . . . . . . . (37)

where s = max{ū0,a0,a1, . . . ,an}.

6. Numerical Experiments: Oligopoly

To illustrate the difference between the mixed
oligopoly studied in this paper and the standard mixed and
the classical oligopoly cases related to the CVE with con-
sistent conjectures (influence coefficients), in our previ-
ous paper [22], we applied Eqs. (27) and (28) to a simple
example of oligopoly in the electricity market from [20]
and [23]. The only difference in our modified example
from [23] is that in their case, all six agents (suppliers) are
private companies producing electricity and maximizing
their net profits, while in our example examined in [22],
similar to [20], we assume that agent 0 (agent 2 in some
instances) is a public enterprise seeking to maximize the
convex combination of the domestic social surplus and its
profit described in (4), while the other generators are pri-
vate firms maximizing their net profits. Similar numeri-
cal experiments were conducted and reported in [20], but
only for β = 1. All other parameters involved in the in-
verse demand function p = p(G,D) and the producers’
cost functions are exactly the same as in [20].

Following the above-mentioned references, we selected
the IEEE six-generator, 30-bus system (cf. [23]) to illus-
trate our analysis. The inverse demand function in the
electricity market has the form:

p(G,D) = 50−0.02(G+D)
= 50−0.02(q0 +q1). . . . . . . (38)

Here, agents i = 0,1, . . . ,5 will be combined in the vari-
ous examples listed below. In particular, Oligopoly 1 will
involve agents i = 0 (public) and j = 1, . . . ,5 (private),
whereas Oligopoly 2 comprises agents i = 5 (public) and
j = 0,1, . . . ,4 (private).

To find the consistent influence coefficients in the clas-
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Table 1. Cost function parameters.

Agent i bi ai
0 2.00 0.02000
1 1.75 0.01750
2 3.00 0.02500
3 3.00 0.02500
4 1.00 0.06250
5 3.25 0.00834

Table 2. Coefficients of influence wi for Oligopoly 1 (C.: –
Cournot, P.: – Perfect Competition).

i β = 0 1/4 1/2 3/4 β = 1 C. P.
0 0.193 0.192 0.190 0.189 0.188 1.0 0.0
1 0.196 0.189 0.182 0.174 0.166 1.0 0.0
2 0.188 0.180 0.173 0.166 0.159 1.0 0.0
3 0.188 0.180 0.173 0.166 0.159 1.0 0.0
4 0.178 0.168 0.161 0.154 0.148 1.0 0.0
5 0.224 0.216 0.208 0.201 0.193 1.0 0.0

Table 3. Consistent equilibrium (production volumes qi,
total volume G, price p, and the objective functions’ values)
for Oligopoly 1.

β = 0 β = 1/4 β = 1/2 β = 3/4 β = 1
q0 353.405 421.555 489.706 557.856 626.006
q1 405.120 393.375 381.629 369.883 358.138
q2 258.436 248.940 239.444 229.947 220.451
q3 258.436 248.940 239.444 229.947 220.451
q4 142.898 138.539 134.180 129.821 125.462
q5 560.180 542.361 524.543 506.723 488.905
G 1,978.5 1,993.7 2,008.9 2,031.8 2,039.4
p 10.43 10.125 9.82 9.515 9.21
S 1,727.4 11,842.5 21,957.6 32,072.7 42,187.8
π1 2,076.6 1,944.96 1,813.32 1,681.68 1,550.04
π2 1,082.9 1,002.65 922.4 842.15 761.90
π3 1,082.9 1,002.65 922.4 842.15 761.90
π4 707.48 665.20 622.93 580.65 538.37
π5 2,709.8 2,511.85 2,313.89 2,115.93 1,917.98

sical oligopoly market (Case 1, β = 0), [23] uses Eq. (25)
for all six agents, while for the partially mixed oligopoly
models (Oligopoly 1 or 2, β > 0), we exploit Eq. (23)
for the public agent (which is agent 0 in Oligopoly 1 and
agent 5 in Oligopoly 2) and Eq. (24) for the private com-
panies (that is, 1 through 5 in Oligopoly 1 and 0 through
4 in Oligopoly 2), with 0 < β < 1. Of course, when
β = 1, our model coincides with the mixed oligopoly
studied in [18]. With the thus-obtained influence coef-
ficients, the (unique) equilibrium is found for Oligopoly
1 and 2. The equilibrium results (influence coefficients,
production outputs in MWh, equilibrium price, and the
objective functions’ optimal values in dollars per hour)
are presented in Tables 2–9. To make our conjectures
vi comparable to those used in [20], [18], and [23], we
divide them by [−p′(G)] = K−1 = 0.02 and thus obtain
wi :=−vi/p′(G) = Kvi = 50vi, i = 0,1, . . . ,n, as shown in

Table 4. Cournot equilibrium (production volumes qi, total
volume G, price p, and the objective functions’ values) for
Oligopoly 1.

β = 0 β = 1/4 β = 1/2 β = 3/4 β = 1
q0 319.06 539.295 759.53 979.765 1,200.00
q1 347.00 312.15 277.30 242.45 207.60
q2 261.39 232.35 203.31 174.26 145.22
q3 261.39 232.35 203.31 174.26 145.22
q4 166.82 150.98 135.14 119.29 103.45
q5 406.23 360.11 314.00 267.88 221.77
G 1,761.9 1,827.2 1,892.6 1,990.6 2,023.3
p 14.76 13.45 12.15 10.84 9.53
S 3,054.0 11,184.9 19,315.8 27,446.6 35,577.5
π1 3,461.7 2,906.03 2,350.36 1,794.69 1,239.02
π2 2,220.5 1,836.72 1,452.94 1,069.16 685.38
π3 2,220.5 1,836.72 1,452.94 1,069.16 685.38
π4 1,426.2 1,206.78 987.36 767.93 548.51
π5 3,988.5 3,288.55 2,588.6 1,888.65 1,188.70

Table 5. Perfect competition equilibrium (production vol-
umes qi, total volume G, price p, and the objective functions’
values) for Oligopoly 1.

β = 0 β = 1/4 β = 1/2 β = 3/4 β = 1
q0 348.43 348.43 348.43 348.43 348.43
q1 412.49 412.49 412.49 412.49 412.49
q2 238.74 238.74 238.74 238.74 238.74
q3 238.74 238.74 238.74 238.74 238.74
q4 127.50 127.50 127.50 127.50 127.50
q5 685.68 685.68 685.68 685.68 685.68
G 2,051.6 2,051.6 2,051.6 2,051.6 2,051.6
p 8.97 8.97 8.97 8.97 8.97
S 1,214.0 11,736.4 22,258.8 32,781.1 43,303.5
π1 1,488.80 1,488.80 1,488.80 1,488.80 1,488.80
π2 712.47 712.47 712.47 712.47 712.47
π3 712.47 712.47 712.47 712.47 712.47
π4 507.98 507.98 507.98 507.98 507.98
π5 1,960.50 1,960.50 1,960.50 1,960.50 1,960.50

Tables 2 and 6, where the Cournot and Perfect columns
show the influence coefficients for the Cournot-Nash and
perfect competition models, respectively.

Tables 3–5 from [22] show the numerical results for
Oligopoly 1.

As Table 3 clearly shows, the market clearing price
(equilibrium price) in the case of the classical oligopoly
(β = 0) is p1 = $10.43, which is higher than the mixed
oligopoly equilibrium price p2 = $9.21. The assertions of
Remark 5.3 are also well confirmed: the total production
volume grows together with the public firm’s output and
the domestic social surplus, while the clearing price (as
well as the private companies’ outputs and net profits) de-
crease when β increases from 0 to 1. The conclusion can
be made — that the higher the proportion of domestic so-
cial surplus in the public firm’s objective, the greater the
total production volume, and hence, the lower the clearing
price of electricity.
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Table 6. Coefficients of influence wi for Oligopoly 2 (C.:
Cournot, P.: Perfect Competition).

i β = 0 1/4 1/2 3/4 β = 1 C. P.
0 0.193 0.178 0.162 0.147 0.132 1.0 0.0
1 0.196 0.181 0.166 0.150 0.135 1.0 0.0
2 0.188 0.173 0.158 0.143 0.128 1.0 0.0
3 0.188 0.173 0.158 0.143 0.128 1.0 0.0
4 0.175 0.161 0.147 0.133 0.118 1.0 0.0
5 0.224 0.223 0.220 0.218 0.216 1.0 0.0

Table 7. Consistent equilibrium (production volumes qi,
total volume G, price p, and the objective functions’ values)
for Oligopoly 2.

β = 0 β = 1/4 β = 1/2 β = 3/4 β = 1
q0 353.405 329.924 306.443 282.961 259.480
q1 405.120 379.647 354.175 328.702 303.229
q2 258.436 238.048 217.660 197.272 176.884
q3 258.436 238.048 217.660 197.272 176.884
q4 142.898 133.670 124.441 115.213 105.984
q5 560.180 691.081 821.983 952.884 1,083.785
G 1,978.5 2,010.4 2,042.4 2,090.3 2,106.3
p 10.43 9.79 9.15 8.51 7.88

π0 1,727.40 1,508.34 1,289.28 1,070.22 851.16
π1 2,076.6 1,820.64 1,564.68 1,308.71 1,052.75
π2 1,082.9 929.98 777.06 624.14 471.22
π3 1,082.9 929.98 777.06 624.14 471.22
π4 707.48 625.02 542.56 460.09 377.63
S 2,709.8 13,151.7 23,593.6 34,035.4 44,477.3

It is also interesting to compare the results in the
CVE with consistent conjectures against the production
volumes and profits obtained for the same cases in the
classical Cournot equilibrium (i.e., with all wi = 1, i =
0,1, . . . ,5). Table 4 provides the numerical results: p3 =
$14.76 in the classical oligopoly (β = 0), which is much
higher than the market equilibrium price, p4 = $9.535, in
the mixed oligopoly (β = 1), which is only 65% of the
former.

Again, the total electricity production level is mono-
tone increasing along with parameter β , starting from
G3 = 1761.90 MWh when β = 0 and ending with G4 =
2023.256 MWh for β = 1. Another interesting observa-
tion can be made by comparing Tables 3 and 4: when β
is small or medium (β ≤ 0.75), strong private companies
(such as agent 5) have higher objective function values by
making use of the Cournot conjectures wi = 1, i = 0, . . . ,5.
However, if β is high enough (i.e., greater than 0.75), the
orderings are reversed: by relying on the Bulavsky consis-
tent conjectures calculated by Eqs. (27) and (28) instead
of the Cournot-Nash conjectures, the private companies
improve their results significantly.

We also consider the perfect competition model (see
Table 5) with wi = 0, i = 0, . . . ,5, which naturally gives
the same results for all values of β and which is the best
for consumers. In our example, this model overcomes
the mixed oligopoly with consistent conjectures, both in
terms of the market price, p5 = $8.97, and the total pro-

Table 8. Cournot equilibrium (production volumes qi, total
volume G, price p, and the objective functions’ values) for
Oligopoly 2.

β = 0 β = 1/4 β = 1/2 β = 3/4 β = 1
q0 319.06 269.95 220.84 171.72 122.61
q1 347.00 294.61 242.23 189.84 137.45
q2 261.39 217.73 174.08 130.42 86.77
q3 261.39 217.73 174.08 130.42 86.77
q4 166.82 143.01 119.19 95.38 71.57
q5 406.23 717.08 1,027.92 1,338.77 1,649.61
G 1,761.9 1,860.1 1,958.3 2,105.7 2,154.8
p 14.76 12.80 10.83 8.87 6.90

π0 3,054.0 2,403.25 1,752.51 1,101.76 451.01
π1 3,461.7 2,732.07 2,002.44 1,272.81 543.18
π2 2,220.5 1,726.54 1,232.59 738.63 244.67
π3 2,220.5 1,726.54 1,232.59 738.63 244.67
π4 1,426.2 1,135.28 844.36 553.43 262.51
S 3,988.5 13,269.3 22,550.0 31,830.8 41,111.6

Table 9. Perfect competition equilibrium (production vol-
umes qi, total volume G, price p, and the objective functions’
values) for Oligopoly 2.

β = 0 β = 1/4 β = 1/2 β = 3/4 β = 1
q0 348.43 348.43 348.43 348.43 348.43
q1 412.49 412.49 412.49 412.49 412.49
q2 238.74 238.74 238.74 238.74 238.74
q3 238.74 238.74 238.74 238.74 238.74
q4 127.50 127.50 127.50 127.50 127.50
q5 685.68 685.68 685.68 685.68 685.68
G 2,051.6 2,051.6 2,051.6 2,051.6 2,051.6
p 8.97 8.97 8.97 8.97 8.97

π0 1,214.0 1,214.0 1,214.0 1,214.0 1,214.0
π1 1,488.80 1,488.80 1,488.80 1,488.80 1,488.80
π2 712.47 712.47 712.47 712.47 712.47
π3 712.47 712.47 712.47 712.47 712.47
π4 507.98 507.98 507.98 507.98 507.98
S 1,960.50 12,482.9 23,005.27 33,527.7 44,050.0

duction volume G5 = 2051.57 MWh. The domestic social
surplus (with β = 1) is also slightly higher in this case (of
perfect competition), $43,303.52 per hour, than that in the
mixed oligopoly with consistent conjectures (also β = 1),
$42,187.80 per hour.

Next, we numerically estimate Oligopoly 2, where pri-
vate companies 0 – 4 compete with a much stronger public
company 5 (see Table 1 for the parameters). The consis-
tent coefficients of influence computed by Eqs. (27) and
(28) are shown in Table 6.

Tables 7–9 show the numerical results for Oligopoly 2.
For the numerical results for Oligopoly 2, similar com-

ments may be formulated to those for Oligopoly 1. For
instance, as Table 7 apparently shows, the market clear-
ing price (equilibrium price) in the case of the classical
oligopoly (β = 0) is quite elevated, reaching p6 = $20.60,
in comparison to the mixed oligopoly equilibrium price,
p7 = $15.85, which is 25% lower. The modes of behav-
ior predicted by Theorems 5.5 and 5.6 and by Remark 5.3
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are also confirmed: the total production volume increases
together with the public firm’s output and the domestic so-
cial surplus, while the clearing price (as well as the private
company’s output and net profit) decreases when β grows
from 0 to 1. As for Oligopoly 1, the higher the proportion
of the domestic social surplus in the public firm’s objec-
tive function, the greater the total production volume, and
hence, the lower the clearing price of electricity.

Again, it is worthwhile to compare the results in the
CVE with consistent conjectures against the production
volumes and profits obtained for the same cases in the
classical Cournot equilibrium (i.e., with all wi = 1, i =
0,1). Table 8 presents the numerical results, where p8 =
$24.16 in the classical oligopoly (β = 0) is substantially
greater than the market equilibrium price p9 = $16.59 in
the mixed oligopoly (β = 1).

Similar to Oligopoly 1, the total electricity produc-
tion level is monotone increasing along with parameter β ,
starting from G6 = 1470.23 MWh when β = 0 and end-
ing with G7 = 1707.68 MWh for β = 1. An analogous
feature can be found by comparing Tables 7 and 8: when
β is small or medium (β ≤ 0.75), the private companies
have higher objective function values by making use of
the Cournot conjectures wi = 1, i = 0, . . . ,4. However, for
β greater than 0.75, the orderings are reversed: by rely-
ing on the Bulavsky consistent conjectures calculated by
Eqs. (27) and (28) instead of the Cournot-Nash conjec-
tures, the strong private firms (i = 0 and i = 1) improve
their profits significantly.

We also consider the perfect competition model (see
Table 9) with wi = 0, i = 0, . . . ,5, which naturally gives
the same results for all values of β and which is known
to be best for consumers. Indeed, in contrast to Oligopoly
1, in Oligopoly 2, the perfect competition results are su-
perior (from the consumers’ point of view) to those of
the mixed oligopoly with consistent conjectures, both in
terms of the market clearing price, p10 = $13.60, and the
total production volume, G8 = 1820.23 MWh. In line
with this, the domestic social surplus (with β = 1) is con-
siderably higher in this case (that of perfect competition),
$36,493.68 per hour, than that in the mixed oligopoly with
consistent conjectures (also β = 1 ), which is $32,875.44
per hour.

Finally, by comparing pairwise Tables 3 and 7 with
Tables 4 and 8, we can see that the latter tables con-
tain higher total production volumes and lower clearing
prices than the former. These results may serve as a good
example of how a strong private company may implic-
itly regulate the market price within a (mixed) oligopoly:
the stronger the private company, the better the results for
consumers.
Remark 6.1. Comparing pairwise Tables 3–4 with
Tables 7–8, an interesting phenomenon is apparent. If
all companies are private (β = 0), the Cournot-Nash
equilibrium is more attractive for them than the Bulavsky
equilibrium (the consistent conjectural variations equi-
librium) since the former provides higher profits to
companies than the latter. However, the relationship is

exactly opposite (at least, for strong private agents) when
company i = 0 (or i = 5) is public. In this case, the
Bulavsky equilibrium is more profitable for the private
agents than the Cournot-Nash equilibrium. At the same
time, the energy price is always lower in the Bulavsky
equilibrium than in the Cournot-Nash equilibrium. In
other words, if the energy market is not (implicitly) regu-
lated by the intervention of a public company that strives
to enhance the domestic social surplus, the Cournot-Nash
equilibrium proves to be better for private suppliers,
while the Bulavsky equilibrium is more attractive for
consumers because of the lower clearing price. On the
other hand, when a public company operates in the
market, the Bulavsky equilibrium is better for both sup-
pliers and consumers than the Cournot-Nash equilibrium.
.
Remark 6.2. Reconsider the phenomenon described in
Remark 6.1 and suppose that a municipality (government)
of a location consuming energy from the market with any
value of β ∈ [0,1] is responsible enough to issue subsi-
dies to either (i) reduce the Cournot-Nash price for the
consumer to the price proposed by the Bulavsky equilib-
rium or (ii) compensate the private suppliers’ profit losses
whenever they switch to Bulavsky conjectures instead of
Cournot-Nash ones. Simple calculations demonstrate that
option (ii) is always cheaper for the location’s administra-
tion than option (i), that is, if they pay subsidies to pro-
ducers they save a great deal compared to paying them
(i.e., subsidies) to consumers. Moreover, according to
Theorems 5.5 and 5.6, it is possible to show that there
exists a (unique) value of the convex combination coeffi-
cient β ∗ ∈ (0,1) such that if the “public” company (i = 0)
weights the domestic social surplus part of its utility func-
tion (4) by the parameter β ∗, the private companies’ ag-
gregate profits in the Cournot-Nash equilibrium and in the
Bulavsky equilibrium will be equal. This implies that
when the “nationalization degree” of firm i = 0 corre-
sponds to the optimal percentage value β = β ∗, there is
no need to pay subsidies either to private suppliers (be-
cause they are indifferent as to what conjectures to ap-
ply, the Bulavsky or Cournot-Nash ones) or to consumers
(since all suppliers are inclined to produce Bulavsky equi-
librium outputs, which always generates a lower price for
consumers than the Cournot-Nash price). In other words,
the aforementioned value of β = β ∗ could be interpreted
as a kind of “optimal” percentage of state-owned shares in
the “public” company’s assets.

7. Conclusion

In this paper, we considered a model of a combined
mixed oligopoly with the conjectural variations equilib-
rium (CVE). The agents’ conjectures concern the price
variations that depend on the increase or decrease of their
production outputs. We established the existence and
uniqueness results for the CVE (called the exterior equi-
librium) for any set of feasible conjectures. To introduce
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the notion of the interior equilibrium, we developed a
consistency criterion for the conjectures (referred to as
influence coefficients) and proved the existence theorem
for the interior equilibrium (understood as the CVE with
consistent conjectures). The special cases of the models
with economies of scale and markets with affine (linear)
demand functions were also examined.

To prepare the base for the extension of our results
to the case of non-differentiable demand functions, we
also investigated the behavior of consistent conjectures
that depend on a parameter representing the demand func-
tion’s derivative with respect to the market price. Nu-
merical experiments with a small electrical power market
have been conducted, and some comparisons of the con-
sistent CVE (Bulavsky’s conjectures) against the classi-
cal Cournot-Nash and perfect competition equilibria have
been made.

In our forthcoming papers, we will examine the quali-
tative behavior of prices and production outputs when the
demand function is not necessarily differentiable and the
cost functions are not quadratic. Moreover, the results
outlined in Remarks 6.1 and 6.2 will receive a mathemat-
ically rigorous justification.
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