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Earthquakes are natural disasters caused by an unex-
pected release of seismic energy from extreme levels of
stress within the earth’s crust. Over the years, earth-
quake prediction has been a controversial research
subject that has challenged even the smartest of minds.
Because numerous seismic precursors and other fac-
tors exist that may indicate the potential of an earth-
quake occurring, it is extremely difficult to predict
the exact time, location, and magnitude of an impend-
ing quake. Nevertheless, evaluating a combination of
these precursors through advances in Artificial Intelli-
gence (AI) can certainly increase the possibility of pre-
dicting an earthquake. The sole purpose for predicting
a seismic event at a pre-determined locality is to pro-
vide substantial time for the citizens to take precau-
tionary measures. With this in mind, Artificial Neu-
ral Networks (ANNs) have been promising techniques
for the detection and prediction of locally impending
earthquakes based on valid seismic information. To
highlight the recent trends in earthquake abnormality
detection, including various ideas and applications, in
the field of Neural Networks, valid papers related to
ANNs are reviewed and presented herein.

Keywords: artificial neural networks, ANN, earthquake
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1. Introduction

An earthquake is a natural disaster caused by an un-
expected release of seismic energy due to extreme stress
within the earth’s crust. Such energy is released because
of aggressive movements of the tectonic plates in active
fault zones. The accumulated energy, containing immense
pressure, is transferred from the earth’s crust to its surface
in the form of seismic waves. These waves can either roll
or travel parallel to the surface causing the destruction of
anything that falls within its path. Earthquakes can create
severe structural damages, irretrievable financial ruin, and
irrecoverable loss of human life.

Over the years, earthquake prediction has been a con-
troversial subject that has challenged even the brightest
researchers. Because numerous seismic precursors and
other factors indicating a potential earthquake exist, it is

extremely difficult to predict the exact time, location, and
magnitude of an impending quake. Nevertheless, evalu-
ating a combination of these precursors through advances
in Artificial Intelligence (AI) can increase the possibility
of an earthquake prediction.

In this direction, Neural Networks (NNs) have been
utilized to translate seismic information and provide a
valid detection and prediction of locally impending earth-
quakes. A Neural Network is an AI method inspired from
the functionality of the human brain. A NN consists of in-
terconnected neurons, weights, links, activation functions,
and a training set through which the system “learns” from
experience by corresponding with output errors [1]. The
accuracy of NNs predictions depends highly on the net-
work’s output uncertainties; a network adjusts itself using
provided learning method to minimize output errors [2].
NNs have the aptitude to deduce patterns and detect trends
that are nearly impossible for humans to recognize, and
hence are a valuable commodity for detecting seismic ac-
tivity.

For example, on February 4, 1975, a 7.3 magni-
tude earthquake struck the city of Haicheng in Northeast
China, resulting in over 2,041 casualties, leaving thou-
sands of people homeless, and destroying various struc-
tures in its path [3]. Chinese officials confirmed that an
earthquake warning was announced only hours before the
main shock occurred [4, 5]. The impending earthquake
was successful predicted based on various seismic precur-
sors observed by seismologists and other scientists [6].
The most important precursor was a sequence of fore-
shocks, although other precursors such as abnormal an-
imal behavior, radon activity, changes in land and ground
water elevations, and altered chemical properties each
played a vital role prior to the evacuation [4, 6]. This spe-
cific case shows that earthquakes may provide multiple
precursors. When these different precursors are integrated
through an NN analogy, they can increase the probability
of predicting earthquakes with a higher accuracy [7].

This paper describes background information on earth-
quake properties, and surveys the scientific possibilities of
earthquake prediction using NNs. In addition, this survey
provides a detailed layout of different seismic precursors
such as peak ground acceleration, liquefaction, radon de-
tection, and aftershocks. Moreover, this paper discusses
how these seismic precursors are utilized by NN compu-
tations for earthquake prediction and detection. A respec-
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tive network analysis is presented for each type of seismic
precursor, along with the type of NN used. In addition, a
detailed explanation of the objective of the network, a de-
scription of its input and output neurons, and a review of
the training and testing phases are provided. Finally, this
paper surveys recent trends in detecting earthquake abnor-
malities and current NN applications for seismic predic-
tion.

2. Strong Ground Motion Analysis as a Seismic
Precursor

Strong ground motion is a sudden violent tremble on
the surface of the earth that occurs before an imminent
earthquake. Seismic instruments such as accelerome-
ters are widely used in earthquake-prone areas to monitor
and collect such data. Located approximately 30 m be-
low the surface of the earth, accelerometers are among
the most essential tools used to acquire input parame-
ter readings for various types of ground motion analy-
ses [8]. However, as one of the many tools providing
impending earthquake information, accelerometers are in-
effective as primary tools for seismic detection because
they only observe vibrations at high frequencies. Over
the years, ground motion prediction using various NN ap-
proaches and methodologies has been a highly reviewed
subject. Idriss [9] conducted an extensive ground motion
analysis using related content periodically collected un-
til 1978. Boore and Joyner [10] followed up by incorpo-
rating important ground motion prediction equations in
1981; their studies laid the foundations for earthquake
prediction using a network analogy. Later, Campbell [11]
conducted a wider range of ground-motion analyses up to
1985 that contained vital equations and innovative precur-
sory analogies.

In this section, we blend critical ground motion applica-
tions into network architecture to increase the likelihood
of a strong ground motion prediction. The ground mo-
tion applications taken into consideration as precursors to
an earthquake are a Peak Ground Acceleration (PGA) and
the potential liquefaction. The following subsection fea-
tures a thorough survey on various approaches to predict-
ing a PGA and the possibility of liquefaction using ANNs.

2.1. Predicting Peak Ground Acceleration Using
Artificial Neural Networks

A PGA is a measure of earthquake acceleration with
respect to extensive ground-shaking movements [12]. As
a seismic precursor, a PGA is induced through an intense
release of energy from an earthquake, causing ground de-
formations such as liquefaction, landslides, and surface
fault ruptures [13, 14].

Derras and Bekkouche [15] introduced a comprehen-
sive approach to estimating the maximum PGA using a
Feed-forward Back-propagation Neural Network (FFBP-
ANN). The outcome of the network was then compared to
two Ground Motion Prediction Equations (GMPE) mod-

Fig. 1. Indicated site seismic parameters utilized in a PGA
evaluation.

eled by Ambraseys and Takahashi [15], respectively. The
GMPE models were used as an alternative approach for
the estimation of the PGA values where accelerometric
monitoring stations are not present. Such an approach re-
quires a large volume of data on the site coefficients as
well as pre-recorded PGA values. In return, the GMPE
theory has been observed to be relatively weaker in terms
of prediction compared to an FFBP-ANN owing to its in-
ability to cope with non-linear expressions and complex
data types. An FFBP-ANN was designed with a total se-
lected set of 1,000 epochs and a tangential-hyperbolic sig-
moid/linear activation function, and consists of five input
parameters: the locally measured meteorological agency
magnitude, the depth of focus at which an earthquake is
triggered, the epicenter distance, the thickness of the sed-
imentary layers (Zx), and the corresponding resonant fre-
quency ( fx). Importantly, both the sedimentary thickness
and the resonant frequency have a constant shear wave
velocity of x = 800 m/s, as depicted in [16]. Fig. 1 [15]
provides a visual representation of the site parameters uti-
lized for evaluation.

The ANN configuration utilized in Fig. 1 consists of
326 training and 1,850 testing records extracted from
KiK-net data. A comparison between an FFBP-ANN,
Ambraseys’s GMPE model, and Takahashi’s GMPE
model shows that the performance of the NN (FFBP-
ANN) is far superior to the two GMPEs. The coefficient
of determination (R2) for the PGA estimated by an NN
is 0.94 as compared to those of the GMPE approaches,
which are 0.76 and 0.82, respectively. In the same venue,
the NMRSE for the NN approach is considerably smaller,
at 0.11%, as compared to the GMPE models, which shows
a respective NMRSE of 0.25% and 0.17% confirming
that a PGA approximation using an NN surpasses that
of the GMPE models in terms of both performance and
accuracy. Specifically, the results show that the epicen-
tral distance parameter heavily influences the outcome
of the PGA value, obtaining the best R and MSE values
of 0.51/0.48 and 0.075/0.076 for the training and testing
phases, respectively. In contrast, the focal depth and site
parameters have the least influence on the outcome of the
PGA value. Furthermore, a combination of all five param-
eters is observed to return the optimal results, retaining an
R− score of 0.85 and 0.84, and an MSE value of 0.0203
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and 0.0205 correspondingly, for the training and testing
phases. The R−score is a correlational coefficient that in-
dicates the degree of independence between an input and
output. An R value closer to ±1 indicates a strong corre-
lation; however, when R = 0, the prediction is considered
inaccurate.

Various novel approaches to an ANN have been used
to approximate PGA values, leading to different ac-
curacy levels and performance ratings. Kemal and
Ayten [17] introduced a comparative approach to PGA
prediction by evaluating three types of ANNs, namely,
Feed-Forward Back-Propagation (FFBP), a Radial Ba-
sis Function (RBF), and a Generalized Regression Neu-
ral Network (GRNN). All these versions of ANNs taken
into consideration were trained using a Back-Propagation
(BP) methodology with only one hidden layer, and were
evaluated using four input parameters, namely, the earth-
quake moment magnitude, hypo-central distance, focal
depth, and site conditions. These input parameters, along
with 95 records from 15 accelerometers, were captured
from three wave directions (i.e., up–down, north–south,
and east–west). From the 95 records selected, 72 datasets
were used for training the network, leaving 23 sets of data
for testing purposes. The performance results show that
the FFBP-ANN achieved the highest R− score and low-
est RMSE and MAE scores of 0.856, 44.45, and 18.46 in
the east-west (horizontal) direction. To obtain a high level
of accuracy, the predicted values generated by the FFBP-
ANN were further modified through a linear regression
analysis to make the prediction more sensitive. On the
other hand, the GRNN provided a better performance (for
PGA >20 cm/s2) in the vertical direction compared to the
other two ANNs with an R − score, RMSE, and MAE
of 0.933, 14.22, and 5.27 respectively. Above all, the
RBF-ANN is the poorest performer in both the vertical
and horizontal directions. A detailed comparison between
the NN efficiencies can be found in [17]. To summarize,
for a horizontal PGA prediction, the FFBP-ANN is the
ideal choice, whereas for predicting vertical PGA values,
a GRNN-ANN is preferable.

Ambraseys and Douglas [18] performed a similar anal-
ysis on near-field horizontal and vertical ground motions
triggered by an earthquake. The results suggest that a ver-
tical PGA decays faster with respect to distance compared
to a horizontal PGA value. Specifically, for a magnitude
of 6.0, a vertical PGA drops from approximately 0.33 to
0.22 g in 5 km, whereas a horizontal PGA only drops from
0.39 to 0.37 g. This suggests that vertical PGAs have
a higher frequency, and therefore attenuate more rapidly
compared to horizontal ground motions. In addition, an
investigation on this subject also showed that vertical mo-
tions contain much less energy compared to horizontal
motions. Arguably, it would be effective to obtain more
vertical motion data from the accelerometers because this
component is perceived to influence the PGA values ex-
clusively.

Kerh and Chu [19] explored a different direction in
predicting PGA values at a given site by comparing an
ANN approach with micro-tremor measurements. Micro-

Fig. 2. A comparison of PGA prediction using an ANN and
micro-tremor measurements.

tremor measurements, on the other hand, are an empiri-
cal method for collecting all ground vibrations within a
very short span of time, thereby having a clear advan-
tage over a classical seismic record database. Their ANN
approach was developed by employing pre-defined data
points for training, and validating the network using a BP
analogy. Specifically, three input neurons were evaluated:
the epicentral distance, focal depth, and magnitude of the
earthquake. The results showed that using three input pa-
rameters achieved an R − score of 0.972, which is sig-
nificantly higher compared to two input parameters (av-
eraging 0.6 to 0.9) and a single input parameter (averag-
ing below 0.6). A comparison of this subject has shown
clear results: micro-tremor measurements are definitively
useful when time is constrained, but are lacking in perfor-
mance ability. In contrast, an ANN is remarkable in its
performance, but as a weakness is highly dependent on
pre-defined data. Fig. 2 shows a comparison of the PGA
estimation between the use of an ANN and micro-tremor
measurements [19].

Kerh and Ting [20] also brought attention to the use of
PGA estimation, confirming that increasing the number
of input neurons has an enhancing effect on the correla-
tional coefficient. Their results showed that the Nakamura
transformation method using micro-tremor measurements
closely resembles the ANN results described in [19]. In
this context, the estimation of the PGA value using tra-
ditional seismic data embedded into an ANN is fairly
smoother, providing an 80% more accurate performance
as compared to micro-tremor measurements. In brief, this
concept reveals an area for further research by integrating
micro-tremor measurements as an NN parameter under
the application of PGA prediction. Granted, although this
approach may have a higher chance of uncertainty in com-
parison to an ANN with pre-defined seismic datasets, its
collaboration may result in a more accurate performance
if the data retrieved are minimal and time is constrained.

2.2. Predicting Liquefaction Potential Using
Artificial Neural Networks

Soil liquefaction is a phenomenon that occurs when sat-
urated soil changes its state into liquid-like behavior af-
ter losing its strength, density, and stiffness in response
to sudden ground motions caused by seismic events. In
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the event of liquefaction, various infrastructures will be
severely damaged, and liquefaction should therefore be
considered a vital precursor. A response spectrum is
an earthquake-engineering tool utilized for analysis of a
structure quality and performance by evaluating its natural
frequency. The purpose of introducing a response spec-
trum is to put forward the importance of liquefaction, and
provide the basic information on the true effects that this
precursor can cause on various applications. Although re-
sponse spectra are not discussed comprehensively in re-
gard to the subject of an ANN in this survey, the intension
here is to relate the effects of liquefaction on a response
spectrum application.

Derras et al. [21] proposed an MLP-ANN approach in
combination with a retro-propagation learning methodol-
ogy for determining a response spectrum by utilizing ap-
propriate seismic data on a given site. To train, test, and
validate the network, KiK-net accelerographs and soil dy-
namics were utilized to simulate the response spectrum
on the surface. The behavior of the network prediction re-
veals that spectral acceleration is highly dependent on the
behavior of the soil conditions, and is hence used as input.
Under such circumstances where the input parameters are
highly sensitive and non-linear, a reliable input variable is
required to reduce network uncertainties. The ANN con-
sidered is composed of two input neurons: the response
spectrum of acceleration, and its time periods. In addi-
tion, the NN is composed of two hidden layers with a non-
linear hyperbolic tangent activation function. The valida-
tion of the network involves comparing the response spec-
tra estimated by the NN to that estimated by TOTTORI,
which are datasets obtained from accelerograms. Overall,
the estimated response spectra value using the NN is iden-
tical to the accelerogram readings, and a graphical repre-
sentation on their relationship can be found in [21].

Similarly, Bojorquez et al. [22] used an FF-MLP ANN
along with a BP training methodology to predict inelas-
tic response spectra. In addition, five different types of
soils were taken into consideration for testing purposes.
To train the network, 50 ground motion records were
extracted from the NGA database; specifically, moment
magnitudes ranging from 5.9 to 7.7 were considered, cov-
ering most of the moderate to large seismic events. The
results show that it becomes increasingly difficult to esti-
mate the response spectra as the soil softens. Although
the test results obtained in this study were acceptable,
the overall error increased as the ductility parameter grew
larger. A graphical representation of the comparison be-
tween the actual data and the ANN earthquake response
spectra can be found in [22].

Liquefaction is determined by integrating the major
ground parameters, which involves PGA values as an ap-
plication for analysis. Goh [14] conducted a study on the
evaluation of seismic liquefaction using a Probabilistic
Neural Network (PNN) based on the Bayesian classifier
method through two different analyses. The first analysis
was based on Cone Penetration (CPT) datasets, and the
second involved data on the shear wave velocity. The liq-
uefaction potential is commonly examined using in situ

testing methods. However, owing to the complex anal-
ysis of non-linear relationships such as seismic and soil
properties, a composite structure such as an NN is desir-
able. In particular, the Bayesian classifier method is an
appropriate complement to a PNN for pattern-recognition
when predicting a sensitive parameter such as the lique-
faction potential. The architecture of the PNN consists
of four layers and six input neurons, namely, the earth-
quake magnitude, surface-level PGA, cumulative vertical
overburden stress, the effective vertical overburden stress,
the measured CPT tip resistance, and the mean grain size.
During the training phase of the network, it was found that
the PNN can discover the difference among the soil and
seismic parameters and the liquefaction potential, and it
is therefore not mandatory to scale or normalize the pa-
rameters. This phenomenon is specific to a PNN, which
makes a PNN an advantageous architecture compared to
any other NN structures. Moreover, CPT prediction using
a PNN resulted in an overall success rate of 100%, with
a standard deviation of 0.2235, and without errors gener-
ated during the training and testing phases. In contrast,
the conventional (in situ) method using the same dataset
resulted in 17 errors and an overall success rate of 90%.
On the other hand, the shear wave velocity approach gen-
erated an overall output rate of 98%, with a standard devi-
ation of 0.1265, and outputting two errors during both the
training phase and the testing phase. In contrast, the tra-
ditional in situ method outputted roughly 60 errors with
an overall success rate of 68%. The comparative results
obtained are truly astounding, and illustrate that NNs pos-
sess high-quality pattern-detection ability when specifi-
cally considering the prediction of sensitive precursors.

To determine vital precursors, such as an occurrence
of liquefaction at a given site, it is extremely essential
to obtain a healthy set of data from the ground. When
the samples obtained from the ground are limited, it may
jeopardize the overall outcome of a network, and there-
fore, an alternative approach should be examined to deal
with such constrained situations. Kumar et al. [23] in-
troduced an innovative approach to predicting the pos-
sibility of liquefaction of alluvial soil using situ mea-
surement systems based on a Standard Penetration Test
(SPT) value and concatenating it in terms of an FFBP-
ANN architecture. An SPT is a soil strength parameter
used as a guide to obtain the ground conditions when in-
adequate borehole samples of sand, gravel, weak rocks,
and clay are present. The established FFBP-ANN was
then compared with the traditional Idriss and Boulanger
(I&B) [23] method, which also uses an SPT analogy. A
SPT is relatively inexpensive to conduct and the results
are simpler to comprehend as compared to an ANN, and
it is used specifically to determine the liquefaction po-
tential. Adversely, an SPT only provides useful results
when the soil density is low, and yields a poor outcome
when highly dense soil conditions such as clay or gravel
are present. Embedding an SPT as an input neuron com-
plements an NN by simulating specific soil input prop-
erties, thereby increasing the likelihood of predicting a
complex non-linear precursor, such as the liquefaction po-
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tential. The ANN architecture comprises six input param-
eters: the depth, SPT value, classification of the soil, nat-
ural moisture content, angle of internal friction, and par-
ticle size (which is slightly less than 2 mm). The train-
ing phase includes 160 datasets obtained from field and
laboratory tests, 133 of which were used to develop the
ANN, with the other 27 used to validate the network. A
network analysis revealed that the regression for valida-
tion varies from 0.967 to 0.9969, and the average abso-
lute error ranges from 0.929 to 2.687%. In addition, the
Pearson’s correlational coefficient for the ANN models
exceeded 0.96, which is a healthy correlation among the
parameters. Overall, the FFBP-ANN exceeded the perfor-
mance of the I&B methodology. Comprehensive details
on its liquefaction outcome can be found in [23]. There-
fore, the use of an FFBP-ANN with SPT datasets provides
accurate results overall, and should be considered when
the ground condition samples are inadequate for evalua-
tion.

In brief, the gap between a NN analogy and a ground
motion analysis was successfully bridged. In particular,
the PGA and liquefaction potential precursors were sur-
veyed in adequate detail. In addition to the implementa-
tion of a PGA on an ANN, various types of NNs and al-
ternative datasets were reviewed. Moreover, the effects of
liquefaction on the response spectra were also discussed
to stress the importance of the precursor. Network anal-
yses along with the ground motion precursors show that
an FFBP-ANN is the ideal choice for predicting the PGA
values; furthermore, it is also evident that a PNN will have
superior performance when predicting the liquefaction
potential. The strategies exposed in this subsection show
that an NN is exceptional in its performance with regard
to determining a ground motion analysis. For instance,
a PGA is a vital precursor that can be determined tradi-
tionally using accelerometers; however, there are limita-
tions to this technology, such as inaccuracy in reading cer-
tain frequencies, and sensitivity to directional vibrations.
These uncertainties are refined when using an NN anal-
ysis, owing to the immense training that a network un-
dergoes. It has been established that accelerometers are
critical to determining the PGA values, but integrating the
datasets obtained by accelerometers and embedding them
as input neurons, along with other sensitive parameters,
can provide phenomenal levels of performance and accu-
racy. This in-turn can address greater insight into ground
motion analytics.

3. Artificial Neural Networks on Large-
Magnitude Earthquakes

The purpose of this subsection is to provide a survey
on predicting large-magnitude main-shock and seismic af-
tershock events using an NN analogy. Scientists around
the world have strived over the years to predict earth-
quake magnitudes with precision and accuracy. Despite
the number of scientific attempts and amount of precur-
sory information, the accuracy of such prediction remains

strained. Large earthquake magnitudes cannot be deter-
mined using a specific tool or parameter; they are highly
dependent on various parameters, and require extensive
training to obtain an accurate prediction. Consequently,
an analysis of the right type of precursors using an appro-
priate NN can significantly increase the chances of pre-
diction and the overall accuracy of the network.

3.1. Predicting Large-Magnitude Main Shocks
In 2007, Panakkat and Adeli [24] conducted an anal-

ysis by comparing three different ANN models, namely,
a Feed-Forward Levenberg-Marquardt Back-propagation
Neural Network (FF-LMBP), a Recurrent Neural Net-
work (RNN), and a Radial Basis Function (RBF) NN,
to ultimately predict a largest earthquake one month in
advance. The input parameters were similar to the neu-
rons depicted in [25]. Comparative results among the net-
works showed that for magnitudes ranging from 5.0 to
6.0, the RNN obtained an R − score between 0.20 and
0.51, whereas, RBF and LMBP networks acquired an
R− score of 0.12 to 0.37 and 0.01 to 0.14, respectively.
Therefore, it is clear that an RNN has the ability to predict
large earthquakes (above 6.0) faster and more accurately
than LMBP and RBF networks.

Two years later, Adeli and Panakkat [25] presented an
innovative method by introducing both an RNN and a
PNN to predict the magnitude of the largest earthquake
that is likely to occur in a pre-defined time frame in the
near future. Their parameters, methodology, and process
are the same as in [24]. The network models considered
do not require a training phase, and hence are significantly
faster than a BP-NN. The testing phase revealed that the
PNN model obtains accurate predictions only when the
magnitude ranges between 4.5 and 6.0, which yields an
R− score of 0.62 to 0.78; however, the prediction of a
magnitude above 6.0 is very poor, returning an R− score
of 0 to 0.5. An RNN, on the other hand, outperforms a
PNN for magnitudes ranging from 6.0 to 7.5, yielding an
R− score of 0.5 to 1.0; however, an RNN obtains a min-
imal performance when the magnitude is less than 6.0,
returning an R− score between 0.36 and 0.51. From the
analysis held by Panakkat and Adeli [25], it is apparent
that an RNN is the preferable choice for predicting large-
magnitude earthquakes as compared to other NN analo-
gies. Fig. 3 [24] shows the layout of an RNN.

Simultaneously, Panakkat and Adeli [26] implemented
an RNN using the Levenberg-Marquardt training algo-
rithm for approximating the time occurrence of an earth-
quake and its corresponding geological location. They
then compared the network to actual datasets generated in
sub-regions of California. The prediction accuracies were
evaluated through statistical measurements: the Probabil-
ity Of Detection (POD), False Alarm Ratio (FAR), fre-
quency bias, and R− score. The RNN was able to pre-
dict the epicentral distance and time of occurrence of four
major earthquakes with a magnitude of greater than 5.5.
However, the outcome of the network yielded location er-
rors that ranged from 15 to 39 miles. On the other hand,
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Fig. 3. Architecture of an RNN developed to predict large-
magnitude earthquakes.

the errors in time accuracy ranged from 75 to 94 days for
the main shock, and 5 to 16 days for aftershocks. The re-
sults obtained on the locality of the main-shock were not
impressive; however, the time predictions for the after-
shocks were reasonably accurate when compared to actual
data records. After immense training, the RNN yielded
a high R− score of 1.0 for magnitudes greater than 6.5,
and a modest R − score of 0.4 for a magnitude of 4.5,
leading to the conclusion that an RNN is ideal for high-
seismic zones, but not as effective when used at a region
with low seismicity. Furthermore, an analysis on RNN
behavior suggests that the R− score deteriorates when the
time of prediction is less than 13 days; this indicates that
an RNN is weak when predicting seismic events within a
short time span. On the contrary, the R− score is strong
when the time of prediction has a window of two weeks.
A detailed comparison between the predicted and actual
values for the epicentral distance and time of occurrence
can be found in [26].

In the same context, Nuannin explored seismic behav-
iors when trying to predict large main-shock events us-
ing the b− value as a precursor [27]. The b− value is a
slope extracted from a historical law, and was designed
specifically to predict aftershocks. A detailed description
of this expression is provided in the following subsec-
tions. For a main shock, it is important to acknowledge
that the b−value yields the optimal results when the seis-
mic event is from days to weeks in the future. This phe-
nomenon shows that the RNN and b − value may have
similar features that have not been explored yet. As the
b−value is more lenient in predicting aftershocks, it may
be a good idea to evaluate the b− value using an RNN
when predicting large-magnitude aftershocks.

Li et al. [7] proposed the use of a Genetic Algorithm
(GA) as a training algorithm complimenting an NN when
predicting a large earthquake within one year before the
event. The network considered uses a large volume of
historic metadata extracted from northern and southern
China for roughly 28 years, along with six different seis-

mic precursory indicators including the reciprocating fre-
quency, the b−value derived from the Gutenberg-Richter
law, the average magnitude in the region of interest, the
magnitude deficit, the rate of strain release, and the Mean
Square Deviation (MSD), which is based on a Gutenberg-
Richter logarithmic-frequency plot. For a reliable predic-
tion, a categorical data analysis (AIC) was implemented
to provide the best model by assessing its quality and ac-
curacy of fit. The training and testing phases of the pre-
diction were classified as reasonably accurate when com-
pared to the recorded datasets, with R − scores ranging
from 0.02 to 0.55. Utsu [28] studied an earthquake size
distribution, and suggested that the Gutenberg-Richter re-
lation is ideal when the AIC value is low; this is true
for earthquake applications unless a modified Gutenberg-
Richter equation is implemented. A comprehensive ex-
ploration of the Gutenberg-Richter relationship can be
found in their study.

In theory, the performance of an NN is highly de-
pendent on the training process and hidden-layer de-
sign. Perez [29] showed that the GA has a self-searching
method that shadows the concept of evolution. This
means that a GA network has the ability to generate new
values as possible solutions undetectable by humans. A
comparison between the GA and BP training methods in-
dicates the importance of the training data precision. The
GA training methodology produces a 92% accuracy rat-
ing, which is substantially higher when compared to the
BP training (which is only 72% accurate). With regard to
the time consumption, the BP outperforms the GA train-
ing approach, providing 86% to 72% performance rating.

To complement this argument, Montana and Davis [30]
used a GA to train an FF-NN, and compared the results to
those using the BP learning algorithm. Their exploration
on the subject suggests that the GA enhances its perfor-
mance when constraining the domain to contain only fil-
tered and valuable data. On the other hand, one major
drawback of the BP is its poor performance when the net-
work complexity and data volume increase. On the con-
trary, one advantage of the BP architecture is its ability to
work if the network being dealt with has a simple train-
ing problem. As future work, it will be very interesting
to remove the BP learning mechanism in favor of the GA,
as discussed in [7], and evaluate the R− score of the NN
when predicting seismic magnitudes.

A follow-up on aftershock and main-shock estimations
would be quite interesting; although they are categorized
as different entities in nature, it is important to realize that
they sustain similar properties. Esteban et al. [31] used an
unsupervised clustering method called K-means, to obtain
patterns and predict large earthquakes. The seismic input
indicator taken into consideration is the slope from the
Gutenberg-Richter law (b− value), which is analyzed as
a network stress-meter. Predicting large earthquakes us-
ing the pioneered relationship between magnitude and to-
tal number of earthquakes, also known as the Gutenberg-
Richter law, is a classical approach that is robust in na-
ture [32]. Of course, this relationship is inexpensive and
easier to comprehend, but it does have its flaws when the
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data obtained are non-linear, as is the case in reality, and
hence this law can be made definitive if implemented as
an input neuron. A major advantage of integrating the
b−value with an NN is an improvement in efficiency and
overall accuracy, which is possible from extensive train-
ing and testing, which such a network is designed to with-
stand. The measure of quality of the results obtained from
the NN yields a respective sensitivity value of 79.31% and
90%, and a respective specificity value of 90.38% and
90%, in particular Spanish-speaking areas. Insight into
the K-means approach yields a good overall performance,
especially when the uncertainty of an earthquake occur-
rence is taken into consideration. Schorlemmer et al. [33],
on the other hand, showed that the b− value is higher in
normal fault zones as compared to thrust zones, which is
unexpected because the thrust zones are higher in stress
compared to normal zones. Nevertheless, an examination
on this topic has revealed that the b− value is in-fact a
stress-meter inversely dependent on the differential stress.

With regard to this same topic, Htwe and WenBin [34]
conducted a study on evaluating the Gutenberg-Richter
recurrence law and analyzing the mean rate of large earth-
quakes occurring annually. The study involves a col-
lection of database records from 1975 to 2006 around
the Mayanmar area. In addition, the Gutenberg-Richter
law contains a pre-defined magnitude threshold of 4.0
to 7.5 on the Richter scale. After a thorough analysis
on this subject, the author concluded that the bounded
Gutenberg-Richter law provides a smaller mean annual-
rate of magnitude threshold, and a longer time frame for
large seismic events. Theoretically, this means that in-
creasing the maximum magnitude of an earthquake will
require a dramatic decrease in the mean annual-rate of
a low-magnitude threshold. In addition, a study by
Aldo et al. [35] showed that a b− value of ∼= 2 indicates
a volcanic region; on the other hand, a b− value of ∼= 1
represents a highly seismic area that is likely to produce
a large-magnitude earthquake. Furthermore, other stud-
ies [35], [36] have suggested an error equation associ-
ated with the b− value, which could prove useful when
implementing b − values directly as an input parameter
into the network. Such seismic laws have greatly influ-
enced the outcome of a network, as demonstrated by Es-
teban et al. [31].

Reyes et al. [37] recently developed a ground-breaking
method for predicting earthquakes in Chile by imple-
menting a three-layered BP-ANN utilizing the b− value,
Bath’s law, and Omori-Utsu’s law. The outcome of such
a network is two-fold. First, it indicates the probabil-
ity of an earthquake magnitude exceeding a pre-defined
threshold. Second, the network will output a probable
magnitude that may occur within the following five days.
A comparison between different NNs such as an ANN,
a KNN, an SVM, and K-means clustering showed that
an ANN, a KNN, and K-means clustering produce bet-
ter prediction accuracies. To validate the network used,
500 epochs were used in four different regions in Chile.
A comparison between the NNs showed that the overall
performance measured based on the specificity and sen-

Fig. 4. A comparison between an RBF-NN and modified
Omori function in predicting large aftershocks.

sitivity values is highly dependent on the location. For
instance, within the region of Santiago, the ANN per-
formed slightly better than the KNN and K-means clus-
tering, leaving the SVM far behind in terms of prediction
accuracy. In particular, the sensitivity was 35.7% for the
ANN, 42.9% for the KNN, and 50% for the K-means clus-
tering, with indeterminate results shown for the SVM. A
further comparison of the NN performances in other re-
gions within Chile can be found in [37].

3.2. Predicting Large Aftershock Sequences
The occurrence of a large main-shock earthquake is

typically found to trigger a secondary seismic shock,
known as an aftershock. Aftershocks resemble the behav-
ior of a decaying probability model, and are said to be just
as dangerous as main-shock sequences [38]. The magni-
tude of an aftershock depends significantly on the time of
occurrence and the magnitude of the main-shock.

Farahbod and Allamehzadeh [39] developed a RBF-
NN used for prediction of large-magnitude aftershocks in
eastern and central Iran. Their approach involves compar-
ison of the modified Omori function with the self-learning
RBF-NN to determine which concept is superior when
predicting large aftershocks. The results showed that an
RBF-NN provides a better prediction ability as compared
to the modified Omori relation; however, incorporating
a modified version of Omori’s law as an input param-
eter, as suggested in [37, 40], was shown to deliver af-
tershock predictions with higher accuracy and reliability.
Fig. 4 [39] provides a graphical representation of the com-
parison between an RBF-NN and modified Omori func-
tion, and their accuracy against the observed data.

Similarly, Barrile et al. [40] used an RBF-NN to eval-
uate a series of Omori aftershock temporal aftershocks in
Colfiorito, Italy. In this case, the network used consisted
of a pre-defined magnitude threshold of greater than 7.0
on the Richter scale. In particular, the RBF-NN was con-
sidered over other NNs because an RBF has been scientif-
ically recognized for its ability to resolve complex time-
series functions accurately. A detailed schematic of the
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RBF-NN layout used for this application can be found
in [40]. For testing purposes, 153 datasets for magni-
tudes greater than 7 were collected from all over the world
for the period of 1973 to 2004. An analysis of the net-
work output showed that the probability of a large after-
shock is 81% provided that it occurs within ten days af-
ter the main-shock. Moreover, the RMSE value obtained
was 3.47%, which is reasonable. It is thereby conclusive
that predicting an aftershock using an NN along with a
modified Omori function is quite possible; however, this
methodology does not support predicting the locality of
an aftershock.

Wiemer et al. studied the properties of an aftershock
by analyzing the 1999 Hector Mine aftershock sequence
without considering any type of NN [41]. The findings
of this phenomenon concluded that the earthquake size
factor (b− value), aftershock decay rate (p− value), and
seismic activity rate (a− value) played vital roles in the
seismic event of the Hector Mine [41]. An analysis of
this subject demonstrated that the b− value is observed
to be higher in the rupture zone and increases with re-
spect to time for the first two months after the main shock.
In addition, the highest aftershock reading was observed
away from the ruptured main shock, suggesting that the
transfer of stress from the main shock to the aftershock is
static. Ranalli [42] examined a statistical study on the af-
tershock sequences using the Omori-Utsu law, the magni-
tude stability law, and the Gutenberg-Richter distribution.
The results show that aftershocks are generally surface-
oriented events, although magnitudes below the surface
of the earth have been observed. It was also observed
that using the least squares method to evaluate the Omori
law delivers satisfactory results for uncorrelated values
even when the theoretical conditions are not met. Using
any of these techniques (b− value, p− value, a− value,
or Omori-Utsu function) in an isolated fashion can pro-
vide seismologists and researchers with a rough estimate
on impeding earthquakes. As mentioned before, these
expressions are time-oriented and strictly follow the be-
havior of the function itself, which is not the case when
predicting earthquakes in the real world. The need to
resolve complex, non-linear, and unfriendly patterns de-
mands a self-learning architecture, which is supported by
NN strategies.

In conclusion, this subsection provided a detailed as-
sessment of large-magnitude main-shock and aftershock
predictions using different NN approaches. It is clear
that an RNN is currently the ideal choice for predicting
large-magnitude main-shocks. Although the accuracy of
main-shock prediction has not always been at a consis-
tently high level, an evaluation of this topic has illus-
trated promising results when incorporating a combina-
tion of seismic parameters into the proper type of NN.
With regard to aftershock prediction, it is apparent that
aftershocks are time-dependent in a functional format;
in such cases, an RBF-NN is the ideal choice given its
strengths and versatility in analyzing functional approxi-
mations and time-series prediction.

4. Detecting Radon Anomalies Using Artificial
Neural Networks

Radon is a radioactive gas transmitted from layers be-
neath the earth’s surface owing to rock micro-fracturing.
It is colorless, odorless, and tasteless, making it virtually
undetectable by humans [43]. Radon gas is present on
land and in water bodies, and is released above the earth’s
surface gradually over time. This phenomenon has been
observed by many authors in [44–48].

The concept of radon concentration as an influential
precursor in predicting earthquakes has been brought to
light by seismologists around the world. Observations
led by Loomis [49] and King et al. [50] have shown
that the radon concentration varies highly in different
types of rock. It has also been shown that the radon
concentrations in sedimentary rocks are relatively lower
than those in granite or crystalline. As mentioned by
Igarashi et al. [51], the presence of radon anomalies accu-
mulated from cavities and cracks on the surface is a vital
earthquake precursor. Radon release has been observed to
promote intense degassing fluxes when the earth’s crust
is strained prior to a sudden slip from an earthquake.
Ramola et al. [52] recently put forward valuable infor-
mation on seismo-tectonic indicators on soil-gas radon.
The results of their study suggest that radon concentra-
tions may be affected by the magnitude, epicentral dis-
tance, precursory time, micro-structural changes, and fo-
cal depth of an earthquake, as well as non-linear functions
including the type of rock, stress and strain, and the trans-
port/diffusion measures within the local vicinity.

As an earthquake precursor, Gregoric et al. [53] con-
ducted a study on radon concentration for detecting pos-
sible anomalies using NNs. The architecture of the uti-
lized ANN consisted of five environmental input indica-
tors, namely, the soil temperature, air temperature, soil
air pressure, air pressure, and rainfall using data obtained
in the Krsko basin site located in Slovenia for network
testing and validation. To accurately identify the exis-
tence of radon anomalies caused by an increase in seis-
micity, four approaches were considered: the standard
deviation related to the mean value, the relation between
barometric pressure and radon concentration, an ANN us-
ing a BP learning approach, and decision tress. The re-
sults obtained from the performance tests show that using
the standard deviation and barometric pressure as thresh-
old values yields better accuracy than the measured-to-
predicted ratio thresholds used by both an ANN and deci-
sion trees. However, the barometric pressure approach is
believed to output many more false anomalies from envi-
ronmental disturbances. A graphical comparison of these
approaches can be found in [53].

Based on Gregoric et al. [53] results, Zmazek et al. [54]
monitored the radon concentration in Krsko basin soil and
found that its concentration is inversely proportional to
the barometric pressure; hence, a decrease in baromet-
ric pressure causes an increase in the release of radon in
soil-gas from the surface, and vice-versa. This relation-
ship shows that an earthquake can be anticipated to occur

708 Journal of Advanced Computational Intelligence Vol.18 No.5, 2014
and Intelligent Informatics



Artificial Neural Networks for Earthquake Anomaly Detection

Fig. 5. Relationship between radon gas and barometric pres-
sure during a seismically active period.

when the barometric pressure and soil-gas concentration
are proportional; under this circumstance, the relation be-
tween the radon concentration and barometric pressure is
considered a precursor. It is thereby evident that a tra-
ditional standard-deviation strategy, along with the baro-
metric pressure, provides modest outcomes; owing to its
simple mechanics, ease-of-use, and inexpensive nature,
this is an effective approach to predicting radon anoma-
lies. In this venue, incorporating these traditional tactics
with NNs is a fair proposition for further enhancing the
certainty of prediction. Fig. 5 shows the relationship be-
tween barometric pressure and radon gas release during a
seismically active period [53].

In 2005, Zmazek et al. [55] proposed a related approach
to identify radon anomalies in soil gas; this approach in-
cludes the input of environmental parameters using deci-
sion trees and an MLP-type ANN combined with a conju-
gate gradient learning algorithm. The proposed network
was trained twice using over 45,000 pre-defined epochs,
and the results obtained show that ten random anomalies
were detected for 12 earthquakes using the ANN, giving
a performance rating of 83%. On the other hand, decision
trees found radon anomalies for every earthquake, even
during those periods where no seismicity occurred. Ob-
servations on the Pearson’s correlational coefficient from
the test results convey that, for seismically active data, the
radon concentration fluctuates drastically seven days be-
fore or after a seismic event. Arguably, both Zmazek [55]
and Gregoric [53] agree that during a seismically ac-
tive period, the measured and predicted ratios are signifi-
cantly weaker; however, during a non-seismically active
period, the measured and predicted threshold decisions
work well. The evaluation results of these approaches
show that the radon anomalies are likely caused from seis-
mic phenomena and not entirely by environmental param-
eters. It is now clear that radon anomalies can naturally
be false positives incurred from environmental miscon-
ceptions, and that this differentiation should be resolved
when using an NN strategy.

Torkar et al. [56] introduced another ANN-BP applica-
tion to simulate the Radon concentration trends in soil-gas
from three boreholes at the Orilica fault zone. For the net-
work architecture, the same input parameters from [53]
were used; however, five different types of thresholds
were utilized, namely, the total time of an anomaly,
the seismic activity period, the separation of anomalies,

the anomaly integral, and once again, the measured-to-
predicted threshold value. The results show that the per-
cent of specificity of the soil temperature and air pressure
increases ten days before and after the occurrence of a
radon anomaly. Research on this topic shows an ANN
as the ideal choice to predict the radon level in soil-gas
as compared to other data mining techniques; in particu-
lar, the proposed prediction strategy was successful in ten
out of 13 cases (77%). In addition, comparative thresh-
old results show that the ANN measured-to-predicted ra-
tio produces a high R− score of 0.95 for the training set,
0.78 for the cross-validation, and 0.79 for the testing set.
These performance results are more accurate in compari-
son to decision trees and regression models, which predict
the radon concentration with an R − score of 0.83 dur-
ing an NSA and 0.69 during an SA period. Furthermore,
Planinic et al. [57] studied temporal variations of radon in
soil and found that the temperature variation only influ-
ences the radon concentration in well water; this indicates
that temperature variations are not as heavily weighted as
soil parameters.

Xia-Ting and Masahiro developed an ANN-BP that
predicts rock micro-fracturing when under tri-axial com-
pressive stress [58]. Their network modeling consists
of Acoustic Emissions (AEs) and time distributions as
the primary input parameters for characterizing the rock
micro-fracturing. AE is specifically utilized for determi-
nation of the internal changes in an object under stress us-
ing sound waves, and is hence an ideal component when
analyzing minor changes in environmental behaviors.
Over the years, researchers have attempted to adapt AE
models with non-linear characteristics. However, through
various tests and observations, such models are unable
to resemble to actual radon data because the datasets are
non-linear in nature. Therefore, the use of a prediction
tool, such as an NN, may significantly increase the predic-
tion ability when complying with the random, dynamic,
and non-linear data produced by rock micro-fractures.
The results extracted from AE event patterns before and
after a failure show that the MSE values change from
0.035 to 0.0419, and that an error in an extrapolated pre-
diction changes from 0.223 to 0.149, respectively. These
performance results obtained are certainly not the best,
nor are they the most accurate; however, the idea behind
the prediction of rock micro-fracturing, as an NN appli-
cation, is the increased likelihood of radon emission de-
tection. This topic should be investigated in greater detail
because the prediction of rock micro-fracturing may act
as a threshold, filtering the differences between environ-
mental issues and actual radon anomalies detected from a
seismic event.

Negarestani et al. [59] brought forward a creative ap-
proach for the prediction of radon concentration in soil
using environmental parameters, and assessing the soil
using a Layered NN Back-Propagation (LNN-BP) archi-
tecture. This network consists of data analytics obtained
from a site in Thailand that are roughly 40 weeks old and
trained using 400 iterations. The input neurons evaluated
by the NN are the soil temperature, soil pressure, rainfall,
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and weekly radon concentration data obtained at 100 and
50 cm below the surface. An investigation on this subject
showed that the best-fit between the estimated and mea-
sured time-series for radon recognition is between the 15th

and 18th weeks. The authors also concluded that the re-
lationship between rainfall and radon concentration is not
linear; however, using this type of network, the radon con-
centration formed by a seismic event can be differentiated
from false radon detection. A detailed graphical compari-
son between the NN prediction and measured radon con-
centration can be found in [59]. The evidence of rainfall
and its effect on radon anomalies strongly agree with the
findings of Pinault and Baubron [60]. They showed that
the kinetics of water in soil causes a reaction that gen-
tly opens the cracks in the rock precisely 11 days after
a rainfall. A comprehensive representation of the signal
processing of soil radon can be found in [60].

Negarestani et al. [61] later introduced a similar method
for predicting the radon concentration in soil using envi-
ronmental variables, however, this time using an Adaptive
Linear Neural Network (Adaline). For the training phase,
263 iterations of the input parameters, similar to the study
in [59], were taken into consideration. The test results of
the Adaline network show the same time-series as in [59].
Although the testing phase reveals a similar time-series
estimate for Radon detection, a closer comparison of Ada-
line and LNN affirms that an Adaline NN is a better fit
for predicting the Radon concentration owing to the fact
that it resembles the actual data more vividly. A graphi-
cal representation of an Adaline NN performance can be
found in [61]. In addition, Negarestani also stated that the
proposed radon prediction method using Adaline is con-
siderably more accurate, easier to use, and faster in terms
of application processing than other methods.

Gupta and Shahani [62] projected an RBF-type ANN
approach in combination with a time-reliant Fast Fourier
Transformation (FFT) for predicting radon emissions. An
RBF network was explicitly chosen over an MLP-ANN
for two reasons. First, an RBF can model any complex
non-linear equation using a single hidden layer, thereby
increasing the overall performance. Second, a single-
layered transformation located in the output neuron is op-
timized using a linear modeling strategy to overcome the
local minima problems encountered by an MLP-ANN.
The network evaluation includes database records from
1994 to 1996, as well as the temperature, pressure, wind
velocity, rainfall, and humidity from the soil-gas as input
parameters. Testing of this methodology resulted in a sig-
nificant 87.8% prediction rate, which could be increased if
the number of false alarms is reduced. In addition, it was
observed that the barometric pressure and rainfall param-
eters heavily influence the radon emission levels. More-
over, optimal results were obtained from the system when
using the mean and standard deviation thresholds, which
were processed using an FFT to train the network.

In brief, the detection of radon emissions as an earth-
quake anomaly is possible when using an FFBP-ANN;
however, additional work needs to be carried out on
this subject to accurately predict the radon concentra-

tion level. Toutain and Baubron [63] and Ramola [64]
studied gas-geochemistry and its relation to seismological
events. One observation of their studies showed the advis-
ability of recording other gases such as helium, carbon-
dioxide, and chlorine along with the radon emissions
when conducting an earthquake-like prediction. Addi-
tionally, Toutain and Baubron [63] suggested combining
various other chemical and physical parameters such as
water chemistry, water temperature and level, tilt, Vp/Vs
ratio, low-level seismicity, and electric conductivity to in-
crease the accuracy of Radon prediction. Therefore, it
appears that the prediction of a Radon anomaly is quite
possible when using an FFBP-ANN architecture.

5. Results and Discussion

Table 1 below shows a comprehensive overview of
the NNs discussed in this paper, along with the train-
ing mechanism used and the respective authors. An FF-
ANN, along with a BP learning methodology, is the most
common type of network used to predict earthquake pre-
cursors because this network architecture is simple, re-
liable, and can adapt to various types of data for pro-
viding a valid prediction. However, certain networks
have been observed to perform better when embedded
with specific types of precursors; for instance, a PGA
and radon anomaly prediction yield better accuracy when
paired with an FFBP-ANN methodology, a prediction of
the potential liquefaction provides optimal results when
evaluated using a PNN, large-magnitude main-shocks are
better predicted using an RNN, and aftershock sequences
are more accurate when evaluated using an RBF-NN. To
summarize, each of the precursors mentioned above can
be depicted using an NN. Since this type of network is
designed to deal with real-world (non-linear) data types,
embedding precursory data as input neurons can provide
seismologists and researchers with accurate and concise
prediction models.

6. Conclusion

As this paper has shown, most earthquake anomalies
that are currently detected by other systems can be cov-
ered through ANNs, making the outcome more precise
and accurate. The goal of this paper was to present NN
applications through the integration of earthquake anoma-
lies, namely, a PGA, the liquefaction potential, large mag-
nitudes of main-shock and aftershock events, and finally,
predicting radon anomalies as precursors. When using
a network approach, it is vital to collect adequate seis-
mic data on the particular region of interest, as a greater
amount of data will make the predictions more accurate.
With reference to the seismicity, NNs are utilized as an
important aid in classifying seismic windows and con-
straints, and in predicting earthquake precursors. This
methodology demonstrates the value of adding expert
knowledge to machine learning algorithms, and provides
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Table 1. Recapitation of the precursors and types of NN/learning methodology used for predicting seismic events.

evidence showing that this knowledge may further in-
crease the accuracy of the machine learner.

The studies discussed in this paper show clearly that
certain networks in collaboration with a specific precur-
sor yield more accurate results. An FFBP-ANN is the
best choice when predicting the ground motion and radon
concentration. Liquefaction prediction is better examined
using a PNN. An RNN is more appropriate for the pre-
diction of large-magnitude main-shocks; and finally, an
RBF-NN is a suitable choice for a functional approach
such as predicting aftershocks. Each of these NNs has its
merits and demerits; however, they each excel in terms of
accuracy and performance for their respective precursory
applications.

As future research on AI under the application of seis-
micity, the following topics should be evaluated: the Seis-
mic Gap Theory to measure the seismic energy release,
IR thermal anomalies to detect temperature variations
(hotspots) on the surface of the earth, and finally, Seismic
Electric Signals (SES) to determine the transient changes
in the electrotelluric field emitted by rocks under stress.
In addition, an integration of the known proportionality
into an NN is another area of work that may increase the
accuracy given larger training and testing sets. In conclu-
sion, a combination of different precursors with the imple-
mentation of a NN methodology cannot make earthquake
predictions 100% accurate, but it can definitely improve,
approaching an acceptable level of accuracy.
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