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This paper addresses the issues associated with de-
ployment of sensors, which are critical in wireless sen-
sor networks. This paper provides an improved par-
ticle swarm optimization (PSO) algorithm by chang-
ing the basic form of PSO and introducing distur-
bance (d-PSO). By comparing with other PSO-based
algorithms, simulation results show that the d-PSO al-
gorithm provides a good-coverage solution with a sat-
isfying coverage rate in a short time. This feature is
especially useful for the rapid deployment of sensors.
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1. Introduction

Wireless Sensor Networks (WSNs) are formed by
small, inexpensive, low-powered sensors. The sensors
communicate with each other wirelessly over a short dis-
tance [1].

WSNs have recently become a popular research area
because of their promising application in numerous fields,
especially in district monitoring. Each sensor has a sens-
ing range, and with some sensors combined as WSNs,
they can then detect an extended area. Therefore, WSNs
are widely used in environment monitoring [2, 3].

However, there are some challenges in using WSNs be-
cause of their properties. For example, each sensor has
a limited communication range and lifetime [4]. There-
fore, the sensors need to be placed within a certain range
for communication. For area monitoring, coverage is a
problem. The sensors in WSNs are used for monitoring
a region of interest (ROI). Therefore, an increase in the
number of points detected in the ROI ensures better cov-
erage effect of the sensors deployment. Meanwhile, the
deployment algorithm should have an appropriate conver-
gence speed considering about the computation time.

Numerous studies have been conducted to optimize
sensor deployment. PSO algorithms are frequently used
as an optimization algorithm to solve the deployment of
WSNs [5]. Parallel particle swarm optimization (PPSO),
which divides the ROI and the sensors equally into sev-

eral parts, is proposed in [6], and it is used when there
are large numbers of sensors to be deployed. Thus, the di-
mension of the searching space is partitioned to save time.
In [7], a PSO-LA algorithm is proposed, and the veloc-
ity is changed by using learning automata (LA). In [8], an
improved co-evolutionary PSO algorithm is proposed that
combines virtual force and PSO with a co-evolutionary
mechanism.

There are some computational geometry methods
based on Delaunay triangulations and Voronoi dia-
grams [2, 4, 9]. In [10], a grid deployment algorithm is
proposed with environmental factors in order to reach a
minimum number of mobile nodes.

In this paper, the coverage problem is discussed, and
an improved algorithm based on PSO is proposed. Some
important issues investigated are coverage rate and con-
vergence speed. The remainder of this paper is organized
as follows. Section 2 contains the problem formulation,
which gives the basic detection models, basic PSO, and
other PSO-based algorithms. The d-PSO algorithm is in-
troduced in Section 3. Simulations are introduced in Sec-
tion 4. Finally, a conclusion of this paper and future work
is discussed in Section 5.

2. Problem Formulation

2.1. Coverage Problem

In this paper, coverage rate is used as a way to evaluate
the performance of WSN deployment. Therefore, the po-
sition of sensors is an important factor in determining the
quality of the WSNs. Sensors should be placed reason-
ably according to the ROI such that the detecting ranges
of the WSNs are fully utilized. The purpose of the cover-
age problem is to maximize the sensors coverage rate for
a given ROI. In this paper, the ROI is an area described by
a two-dimensional square.

We assume that there are n sensors deployed in the ROI
at points si(xi,yi), with detecting range ri. In WSNs, there
are two sensor detection models, the binary detection
model [11] and the probabilistic detection model [12].
The probabilistic detection model is used in this paper.
The detection model of the i-th sensor for the point P(x,y)
can be described as a probability function by distance. It
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is based on radio signal propagation models in which the
signal strength decays with distance [13].

cx,y(si) =⎧⎪⎪⎨
⎪⎪⎩
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where d denotes the Euclidean distance between the
point P and the location of the sensor. Thus, d =√

(x− xi)2 +(y− yi)2. re(re < ri) measure the uncer-
tainty of the detection. λ1 = re − ri + d, λ2 = re + ri − d.
α1, α2, β1, and β2 are detection probability parameters.
These values vary depending on the sensors types and
characteristics.

In order to determine whether the point P is covered,
it is better to calculate the probability of the point P(x,y)
from all the sensors in the ROI. Therefore, an overlapping
sensor-detecting area increases the detection probability.
The joint detection probability can be easily deduced as
follows:
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(
n

∑
i=1

si

)
= 1−

n

∏
i=1

(1− cx,y(si)). . . . (2)

The coverage rate is determined by calculating the ef-
fective detection probability of all the points in the ROI.
However, there are an infinite number of points in the
ROI. Therefore, the ROI can be expressed as a grid. The
points in the ROI are sampled by two-dimensional uni-
formly distributed grids. The distance between two adja-
cent grids determines the number of points we consider in
the ROI. This is a key factor of the calculation time and
the accuracy of the coverage.

According to Fig. 1, the coverage rate is affected by the
grid size. Therefore, the grid size should be chosen care-
fully in order to balance the calculation time and accuracy.

The coverage rate can be determined as follows [1]:

R =
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∑
j=1

cx j,y j

(
n

∑
i=1

si

)

np
, . . . . . . . . (3)

where np is the number of grid points in the ROI.
There are several factors to consider in the coverage

problem [2]. There may not be enough sensors to cover all
the ROI. Since the sensors are cheap and limited in terms
of their sensing range, they cannot easily cover the whole
ROI. Some of them will die out because of limited access
to power. Large-sensing-range sensors are very expensive
to use. If this kind of sensor is somehow destroyed, the
coverage of the ROI will decrease substantially. Mean-
while, it is easy for sensors to be deployed randomly in
the ROI because of their mobility. For some dangerous
and otherwise unreachable regions, they can initially be
deployed remotely from the ROI. Therefore, the time for
deployment may be an important issue as well.

The objective of the optimization in the paper is to max-
imize the coverage rate of the WSNs within a limited time.

(a) (b)

Fig. 1. Three sensor nodes deployed in gridded ROI: (a)
grid size: 0.5×0.5; (b) grid size: 0.25×0.25.

2.2. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is
an algorithm based on the social behavior of a flock of
birds that was developed by Kennedy and Eberhart [14].
The motion of the particles is interpreted as birds flying.
The particles move in the searching space according to
their former speed, their experience, and the experience
of their surrounding neighbors [2]. The dth dimension i-
th particle (xid) represents a potential solution of the op-
timization. The dimension of the particle represents the
number of variables that need to be optimized. The num-
ber of the particle n is set in advance, and the initial po-
sition and velocity (vid) of the particles are randomly set
according to certain constraints.

In the process of the PSO algorithm, the position and
the velocity of each particle evolve as follows:

vid(t +1) = w× vid(t)+ c1× rand()× (pibest − xid)
+c2 × rand()× (pgbest − xid) . . (4)

xid(t +1) = xid(t)+ vid(t +1) . . . . . . . (5)

where w is an inertia factor which ensures that the direc-
tion of motion of a particle is affected by its former veloc-
ity. It must be smaller than one and usually linearly de-
creases from 0.9 to 0.4 with respect to the time t. rand() is
an independent random number from 0 to 1. pibest repre-
sents the best position ever found for the i-th particle and
pgbest represents the global best position. c1 and c2 are
respectively the cognitive factor and social factor which
control the motion of the particle to its personal best posi-
tion and global best position. The position of the particle
is renewed by the velocity. The PSO algorithm will stop
when the maximum number of iterations is met.

The best position is defined by a fitness function, which
evaluates the position quality of a particle, and pibest and
pgbest are replaced according to it. For the coverage prob-
lem, the fitness function is the coverage rate. It should
be noted that all the particles have the ability to memorize
their personal best positions and the best positions of their
neighbors.

Any WSN will constitute of numerous sensors. The
searching space for this optimization problem will in-
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crease rapidly. For a high-dimensional optimization prob-
lem, the calculation time will increase as well. How-
ever, because all the components in one particle in the
PSO algorithm are moving, there may be arise a situa-
tion where some components move closer to the optimal
position while others move away from the optimal; the
algorithm provides a better solution for a larger coverage
rate. This is the so-called “two steps forward, one step
back” process [15]. In this process, a local convergence
situation is met.

Meanwhile, the velocity of the particle is affected by
its earlier motion; this may speed up the local conver-
gence situation because its earlier motion may not have
been optimal. Therefore, an improved algorithm is pro-
posed in the next section.

2.3. Other PSO-Based Algorithms
The virtual force PSO algorithm [8] is used for sensor

deployment. For each sensor, we consider the force ex-
erted on it by other sensors, which eventually forces the
sensors to depart from each other. The force can be an
attracting or a repelling force. The total force on sensor si
can be expressed as

�Fi =
n

∑
j=1, j �=i

�Fi j, . . . . . . . . . . . . (6)

where n is the number of sensors.
The virtual force exerted on sensor si by sensor s j can

be expressed as
�Fi j =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if di j ≥C
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(
1
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)
,αi j +π

)
if di j < dth

(7)

where C is the communication range, αi j is the orientation
of the line from si to s j, and wA (wR) describes the effect
of the attractive (repulsive) force.

For virtual force particle swarm optimization (VFPSO),
the velocity-renewing equation is given as

vid(t +1) = w× vid(t)+ c1 × rand()× (pibest − xid)
+c2 × rand()× (pgbest − xid)+q(d) (8)

q(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx

(
j+1
2

)
Fxy

(
j+1
2

) ×MaxStep× e
−1

Fxy
( j+1

2

)

j = 1,3, . . . ,2n−1

Fy

(
j
2

)
Fxy

(
j
2

) ×MaxStep× e
−1

Fxy( j
2)

j = 2,4, . . . ,2n

(9)

The co-evolutionary PSO (CPSO) [15] algorithm im-
proves the searching ability of PSO in high-dimensional
problems. In CPSO, the searching space is partitioned

(a) (b)

Fig. 2. Searching space between (a) PSO algorithm and (b)
d-PSO algorithm.

into several one-dimensional subspaces. The solution
vector is split into several values. For an n-dimensional
problem, CPSO converts it into n one-dimensional prob-
lems. Further, it can combine with VF to create
VFCPSO [8].

3. Proposed Algorithm

In this section, a deployment algorithm called d-PSO
is proposed to overcome the disadvantages of the PSO
algorithm with local convergence and time consumption.
This algorithm is based on PSO, but has a faster and more
global solution.

In WSNs, we assume that there are n sensors in
a two-dimensional ROI. The position for one sensor
can be described using a coordinate system as (xi, yi).
Therefore, a particle for n sensors can be represented
as (x1, y1, x2, y2, x3, y3, . . . , xn, yn). The particles are 2n-
dimensional for n sensors.

Because of the drawbacks of the PSO algorithm, this al-
gorithm changes the velocity form of the canonical PSO.
It deletes the former velocity part and adds a disturbance
to the velocity, which is given as follows:

vid(t +1) = c0 × randn()+ c1× rand()× (pibest − xid)
+c2 × rand()× (pgbest − xid), . . (10)

where c0 is the amplitude of the disturbance, and the func-
tion randn() is a standard normal distribution with aver-
age zero and standard deviation one. The update formula
of the position is the same with PSO.

Figure 2 describes the difference of the position ten-
dency between the PSO algorithm and the d-PSO algo-
rithm. Here, c1 and c2 are set to 1, c0 is set according to
the number of sensors, the sensing range, and the space
size.

From Fig. 2, it is obvious that the searching space in
the PSO algorithm is smaller than the d-PSO algorithm.
The shadow area in Fig. 2(a) only considers more about
the direction of its velocity. However, in Fig. 2(b), the
shadow area contains parts of the shadow in Fig. 2(a),
but has spaces away from its original direction as well.
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(a) (b)

(c) (d)

(e)

Fig. 3. Deployment after (a) initial random placement, (b)
PSO, (c) VFPSO, (d) VFCPSO, and (e) d-PSO.

This unique feature ensures that the result will not lead
to a local optimal, as in PSO algorithm, because the per-
sonal best and global best position may be a suboptimal
position. The disturbance in Fig. 2(b) makes it possible
for the particle to jump away from the local optimal po-
sition. It should be noted that the searching probability
of the outer shadow introduced by the disturbance is not
uniformly distributed, since the disturbance is normally
distributed. The outer shadow is 3c0 in width, since for
N(0,1), P(−3 < x < 3) = 2Φ(3)−1 = 99.7%.

The factor c0 plays an important role in influencing par-
ticles to converge to the global optimized solution. If this
factor is extremely large or small, this algorithm will per-
form badly.

This paper presents four algorithms related to PSO. The
PSO algorithm is a simple and effective algorithm, as are

Fig. 4. The coverage rate of d-PSO and other algorithms
during the iterations with random initial position.

both VFPSO and VFCPSO. However, the random compo-
nent in d-PSO brings a nonzero velocity, which provides
the possibility of improving a suboptimal solution to ac-
quire the global optimal solution. For VFCPSO, its high
computation time may be a big problem, especially when
there are a large number of WSNs.

4. Simulation Results

In order to test the performance of the d-PSO al-
gorithm, several simulations are conducted as follows.
The simulation is implemented on an Intel Core i5-3470
CPU (3.2 GHz) PC using MATLAB R2013a.

4.1. Deployment Performance
The object of this experiment is to test the perfor-

mance of the d-PSO algorithm with other PSO-based al-
gorithms (PSO, VFPSO, and VFCPSO). First, the situ-
ation is considered where there are n = 20 sensors in a
WSN, so the dimension is d = 2 × n = 40. The area
of the ROI is 40× 40 m2. There are 20 particles in the
entire algorithm. The detection range is r = 5 m. w =
0.9− 0.4 (linearly decreasing with t) for PSO. c0 = 0.4,
c1 = c2 = 1.4962, and the maximum iteration = 1000.
For the probabilistic detecting model, re = 0.1 r, α1 = 1,
α2 = 0, β1 = 1, and β2 = 0.5. The parameters for virtual
force are set as wA = 1, wR = 5, dth = 2 r, C = 3 r, and
MaxStep = 0.5 r. The size of grid is set to 1× 1 m2, so
there are 1600 grids to determine coverage rate.

Figure 3 shows the result of the d-PSO algorithm and
the other PSO-based algorithms with the same initial
placement. The coverage rate for the initial placement
in Fig. 3(a) is 64.04%, and the result by PSO, VFPSO,
VFCPSO, and d-PSO in Figs. 3(b), (c), (d), and (e) are
75.44%, 76.95%, 86.17%, and 86.87%.

It is obvious that d-PSO presents a better deploy-
ment solution than PSO and VFPSO, and is similar to
VFCPSO. 50 experiments are conducted independently
with random initial states are given in Fig. 4 and Table 1.
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Table 1. The average coverage rate and its standard devia-
tion with random initial position.

Algorithm PSO VFPSO d-PSO VFCPSO
Average
coverage 74.56 76.30 85.49 86.70
rate (%)
Standard
Deviation 1.95 1.68 0.77 0.57

(%)

Fig. 5. The coverage rate of d-PSO and other algorithms
during the iterations with bad initial position.

Figure 4 and Table 1 shows that the d-PSO algorithm
converges faster than the other PSO-based algorithms, but
the coverage is less than that of VFCPSO. However, d-
PSO demonstrates the ability to converge to a satisfying
result in a short time. This ability enables it to be used in
fast deployment applications.

4.2. The Impact of Initial Position

In Section 4.1, d-PSO shows a faster convergence speed
than other algorithms. In Section 4.2, bad initial position-
ing of the algorithm is discussed.

The initial position of the sensors is not random. For
example, some dangerous or unreachable region for hu-
mans. Or for dynamic deployment, the ROI is changing.

With the same parameters in Section 4.1, the initial cov-
erage is lower than random deployment.

Figure 5 and Table 2 shows that the d-PSO algorithm
still has a good convergence speed compared to other al-
gorithms. However, VFCPSO takes enormous time to
converge. It takes VFCPSO 19 s to catch up with d-PSO.
Although VFCPSO shows a good coverage rate, it takes
too much time to converge. Therefore, d-PSO is better
when time is limited.

Table 2. The average coverage rate and its standard devia-
tion with bad initial position.

Algorithm PSO VFPSO d-PSO VFCPSO
Average
coverage 66.65 69.34 81.82 82.51
rate (%)
Standard
Deviation 3.02 3.30 4.46 1.59

(%)

5. Conclusion and Future Work

This paper presented an improved deployment algo-
rithm called d-PSO. It is used to solve the deployment
problem of WSNs. This algorithm delivers a better cov-
erage rate within a short span of time, which is especially
important in the rapid deployment of sensors.

In future studies, the convergence property of the al-
gorithm and the factor of the disturbance will be studied
thoroughly, and the description of the ROI and sensors
may be more detailed.
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