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The study of decomposing movement into units of mo-
tor function is evolving in neuroscience. Meanwhile, in
robotics, there is a problem with redundant Degrees
Of Freedom (DOF) in the motor control of human-
like robots. We attempt to achieve fewer-DOF control
of a human-like musculoskeletal robot by using our
knowledge of the units of motor function. In this pa-
per, we introduce “the agonist-antagonist muscle pairs
(A-A) ratio” and “A-A activity,” which are defined by
using ElectroMyoGraphic (EMG) data and which de-
scribe the coordination between the agonist and an-
tagonist muscles. Human running is decomposed into
two units of motor function from the point of view of
muscle coordination using Principal Component Anal-
ysis (PCA) of these biological signals. The kinematic
meanings of the extracted patterns of muscle coordi-
nation are visualized by human-like musculoskeletal
leg robot.

Keywords: EMG, human running, motor primitive, prin-
cipal component analysis, muscular coordination

1. Introduction

The problem of redundant degrees of freedom in the
human body is known as Bernstein’s problem. N. A.
Bernstein, a Russian physiologist, attempted to solve the
problem by explaining that a human flexibly adjusts the
redundant degrees of freedom in coordinated motion for
any purpose [1]. However, a clear description for this
ill-posed problem has not yet been obtained. In neuro-
science, there is an enormous amount of research on de-
composing movement into units of motor function, which
is said to be important for solving Bernstein’s problem of
redundant degrees of freedom. There are a potent hypoth-
esis about the units of motor function; the muscle-synergy
hypothesis [1–4]. It regards the Central Nervous System’s
(CNS’s) commands to muscle groups as the units of mo-
tor function. It then combines the units of motor function
of CNS to achieve movement.

As observed above, the study of decomposing move-
ment into units of motor function is evolving, but its ap-
plications to robotics have not been deeply investigated

yet. The present robot driven by DC servo motors is op-
erated by position servo control. As the servo stiffness
is adjusted as high as possible, it is difficult for the robot
to modulate the joint stiffness in response to externally
imposed disturbances. In contrast, the musculoskeletal
robot can be designed based on biological motor con-
trol, which makes it possible to control its end-point stiff-
ness intentionally. However, there is also a problem with
redundant degrees of freedom in the human-like muscu-
loskeletal robot’s body or the Bernstein’s problem. This
problem makes it difficult to decide the appropriate mo-
tor commands because the inverse dynamics problem for
such robots is underspecified. The application of the de-
composition concept of a redundant muscle activity into a
few units of motor function enables to describe the mus-
cle activities with the dimension enough for motor con-
trol, which is anticipated to make an easier control of a
redundant-DOF robot. In this paper, we extract units of
motor function from muscle space based on the coordina-
tion of agonist-antagonist muscle pairs. We then visual-
ize the kinematic meanings of these units by the muscu-
loskeletal leg robot. The robot is used as a tool for demon-
strating our theory of muscular coordination.

In a human’s daily movement, the locomotion of the
body is important. As a means of locomotion, the move-
ment of a leg can be classified into two main movements,
walking and running. Cappellini et al. extracted five prin-
cipal components as basis vectors in the muscle space
by using Principal Component Analysis (PCA) on a data
set of 32 muscles’ ElectroMyoGraphy (EMG) in human
walking and running [2]. Ivanenko et al. also analyzed
the joint angles by the same statistical method and demon-
strated a correspondence relation between the extracted
principal components and the toe’s motions in a polar co-
ordinate system based on the hip joint [5]. They discussed
the motor primitives in the muscle space and joint space
independently, but they did not demonstrate the relation
between their spaces. In our previous study, we intro-
duced the concept of “the agonist-antagonist muscle pairs
(A-A) ratio,” defined as the ratio of EMGs for the antag-
onist and agonist muscles, and decomposed human walk-
ing into two motor primitives having kinematic functions
by using PCA for the A-A ratios [6]. Transferring two
units of motor function extracted from the A-A ratios in
human walking into the musculoskeletal robot revealed
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that each unit of motor function was concerned with the
argument and moving radius of the toe in a polar coordi-
nate system based on the hip joint. The A-A ratio thus can
be said to contribute to the joint angles.

In this paper, human running, the other main means of
locomotion, is investigated. We propose two concept, the
“A-A ratio” and “A-A activity,” which represent the co-
ordination of agonist-antagonist muscle pairs. The A-A
ratio is defined as the ratio of an extensor muscle’s EMG
to the sum of the agonist and antagonist muscles’ EMG,
and it is considered to describe the degree of extension of
the joints over a 0 to 1 range. A-A activity is defined as
the sum of the EMGs for agonist and antagonist muscles,
and it can be treated as a parameter to relate to the degree
of stiffness of the joints. Each of these parameters based
on the EMG signals during human running is decomposed
into two principal components. In this paper, we analyze
the Principal Component (PC) vectors of two parameters,
A-A ratio and A-A activity. We then demonstrate that
(1) human running can be decomposed into two patterns
of muscle coordinations associated with kinematics and
(2) we also develop a new method of controlling a mus-
culoskeletal robot using patterns of muscle coordination.

This paper is organized as follows. Section 2 provides
the definitions of the A-A ratio and A-A activity, and ex-
plains the PCA technique. Section 3 discusses the decom-
position of human running into patterns of muscle coor-
dination. We also explain the identification of the kine-
matic meanings of extracted patterns by using the mus-
culoskeletal leg robot. Finally, Section 4 summarizes our
results.

2. Motion Measurement

2.1. Experiment Setup

Three healthy subjects, A (male, 23 years old, 1.75 m,
60.4 kg, right-legged), B (male, 23 years old, 1.70 m,
54.0 kg, right-legged), and C (male, 23 years old, 1.74 m,
60.0 kg, right-legged), volunteered for the experiment.
Approval for this study was provided by the Ethics Com-
mittee of Osaka University, Graduate School of Engineer-
ing Science, and informed consent was obtained from
these subjects. Fig. 1 depicts motion measurement dur-
ing treadmill running. Each subject ran on the treadmill
(SportsArt Fitness T650m) at different speeds (7, 9, 11,
13 km/h) for 30 seconds and kinematic data (hip, knee
and ankle joint positions) were measured using a motion-
capture system, QuickMAG System III (OKK, Inc.), at
60 Hz. The lower limb was modeled as a simple three-link
system in the sagittal plane (Fig. 2). The surface EMG ac-
tivities of eight muscles of the left leg were recorded us-
ing a multitelemeter system, WEB-5000 (Nihon Koden),
at 1000 Hz. This system sends EMG data to a personal
computer after band-pass filtering (0.03 to 450 Hz), anti-
hum filtering (around 60 Hz), and amplificating (× 2000)
process. The chosen eight muscles are as follows: gluteus
(m1), iliopspas (m2), hamstring (except biceps femoris

Fig. 1. Motion measurement of human running.

Fig. 2. Musculoskeletal model of human lower limb.

short head) (m3), rectus femoris (m4), vastus medialis
(m5), biceps femoris short head (m6), gastrocnemius (m7)
and tibialis anterior (m8) (Fig. 2). These mono- and bi-
articular muscles are the major muscles relevant to hip,
knee and ankle joint movements [7]. The skin areas were
cleaned with alcohol and abraded to reduce skin resis-
tance (< 10 kΩ). The interelectrode distance was 2 cm.
A run cycle was defined with respect to the left leg move-
ment, beginning with left-heel contact with the ground
and ending with next left-heel contact. The foot pressure
was recorded by F-SCAN MOBILE (Nitta) at 500 Hz to
detect the time of heel contact. Each subject wore foot-
pressure sensors over their shoes. The EMG measure-
ment device, the foot pressure measurement device, and
the motion-capture system were synchronized.

2.2. Data Analysis
A data analysis was performed after the following

preparations for raw EMG data: band-pass filtering (20 to
450 Hz) (a typical procedure in EMG analysis [8]), full-
wave rectification, smoothing, and normalization to Max-
imum Voluntary Contraction (%MVC). The muscles for
experiment are expressed as mi (i = 1, . . . ,8) (Fig. 2).
These %MVC data were averaged by using 29–36 run cy-
cles.

In this study, we focus on the coordination between the
agonist and antagonist muscles, defining the A-A ratio
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Table 1. Definition of the agonist-antagonist muscle-pair ratio.

Pair label Target muscles Movement function

r1 m1/(m1 +m2) Hip extension
r2 m3/(m3 +m4) Hip extension and Knee flexion
r3 m5/(m5 +m6) Knee extension
r4 m7/(m7 +m8) Ankle extension
r5 m1/(m1 +m4) Hip extension
r6 m3/(m2 +m3) Hip extension (and Knee flexion)
r7 m5/(m3 +m5) Knee extension
r8 m4/(m4 +m6) Knee extension (and hip flexion)
r9 m5/(m5 +m7) Knee extension

Table 2. Definition of the agonist-antagonist muscle-pair
activity.

Pair label Target muscles Physical property

a1 m1 +m2 Hip joint stiffness
a2 m3 +m4 Hip and Knee joint stiffness
a3 m5 +m6 Knee joint stiffness
a4 m7 +m8 Ankle joint stiffness
a5 m1 +m4 Hip joint stiffness
a6 m2 +m3 Hip joint stiffness
a7 m3 +m5 Knee joint stiffness
a8 m4 +m6 Knee joint stiffness
a9 m5 +m7 Knee joint stiffness

Table 3. Run cycle T [sec].

Subject 7 km/h 9 km/h 11 km/h 13 km/h
A 0.694 0.673 0.667 0.647
B 0.760 0.707 0.706 0.634
C 0.780 0.746 0.707 0.687

ri(t) (i = 1, . . . ,9) and A-A activity ai(t) (i = 1, . . . ,9)
in Tables 1 and 2. These definitions enable treating two
parameters: one contributing to the joint angle and the
other contributing to joint stiffness. For example, when
a hip joint is extending, the extensor muscle’s EMG (m1)
increases and the flexor muscle’s EMG (m2) decreases, re-
sulting in an increase in the A-A ratio r1. For this reason,
the A-A ratio r1 can be said to contribute to the hip-joint
angle. Meanwhile, for instance, when the hip joint stiff-
ness is increasing, both m1 and m2 are increasing, result-
ing in an increase in A-A activity a1. For this reason, A-A
activity a1 can be said to contribute to the hip joint stiff-
ness. From here on, we analyze human running by using
these two parameters based on the EMG signals.

The A-A ratio data set for run cycle T (Table 3) is ex-
pressed as RRR = {r j(ti)} (a p×q matrix, where r j(ti) is the
j-th A-A ratio at time ti, p is the number of time-points
during a run cycle, and q is the number of the pair labels
of A-A ratios). In this experiment, p = 634 ∼ 780 and
q = 9. Note that the number p varies according to the
run speed because of the varying run cycle. Matrix RRR is

expressed as follows.

RRR =

⎡
⎢⎢⎣

r1(t1) r2(t1) · · · r9(t1)
r1(t2) r2(t2) · · · r9(t2)

...
...

. . .
...

r1(tp) r2(tp) · · · r9(tp)

⎤
⎥⎥⎦ . . . (1)

The A-A activity data set AAA = {a j(ti)} is expressed as the
following in the same way.

AAA =

⎡
⎢⎢⎣

a1(t1) a2(t1) · · · a9(t1)
a1(t2) a2(t2) · · · a9(t2)

...
...

. . .
...

a1(tp) a2(tp) · · · a9(tp)

⎤
⎥⎥⎦ . . (2)

Applying PCA to the A-A ratio data set RRR or A-A activity
data set AAA results in the linear combinations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
diag[σσσ r]−1 (rrr(t)− r̄rr) =

9

∑
i=1

wri(t)pppri

diag[σσσa]−1 (aaa(t)− āaa) =
9

∑
i=1

wai(t)pppai

(3)

where rrr(t) = [r1(t),r2(t), . . . ,r9(t)]T is an A-A ratio data
set vector, aaa(t) = [a1(t),a2(t), . . . ,a9(t)]T is an A-A ac-
tivity data set vector, diag[σσσ r] is a 9× 9 diagonal matrix
with ri’s standard deviation σri in the i-th row and i-th col-
umn, diag[σσσa] is a 9×9 diagonal matrix with ai’s standard
deviation σai in the i-th row and i-th column, r̄rr and āaa are
the mean vectors, wri(t) and wai(t) are the i-th Principal
Component (PC) scores, and pppri = [pri1, pri2, . . . , pri9]T
or pppai = [pai1, pai2, . . . , pai9]T is the i-th 9-dimensional PC
vector of the A-A ratio or A-A activity.

3. Decomposition of Human Running

The PCA technique decomposes the A-A ratio and the
A-A activity data set into linear combinations (Eq. (3)).
The PC vectors of the A-A ratio pppri and A-A activity
pppai are the units of motor function that describe the bal-
ance among the eight muscles. This concept supports
the muscle-synergy hypothesis, which regards the CNS’s
commands to muscle groups as the units of motor func-
tion [1]. In all cases, the cumulative contribution rates
up to the second principal component are more than 95%.
Tables 4 and 5 present the contribution rates of two PCs
of A-A ratio and A-A activity, respectively. This indicates
that two principal components can describe the most of
eight muscle activities.

3.1. A-A Ratio and the Musculoskeletal Leg Robot
There is little difference in each pattern of the first or

second PC vectors at all running speeds, so we treat the
first and second PC vectors as “muscle coordination 1”
and “muscle coordination 2,” respectively. Fig. 3 depicts
the first and second PC vectors of the A-A ratio (mus-
cle coordination 1 and 2) for the three subjects using a
boxplot in which the horizontal axis is the number of the
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Table 4. The contribution rates [%] of first and second PCs
of A-A ratio.

Subject 7 km/h 9 km/h 11 km/h 13 km/h
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

A 67.4 29.1 60.5 34.5 60.9 35.4 57.3 36.0
B 52.8 44.2 65.2 33.7 61.3 37.6 61.2 37.7
C 63.5 35.6 62.5 36.4 65.0 34.0 65.4 33.9

Table 5. The contribution rates [%] of first and second PCs
of A-A activity.

Subject 7 km/h 9 km/h 11 km/h 13 km/h
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

A 94.4 5.20 96.2 3.51 96.2 3.53 96.0 3.81
B 87.8 11.4 89.2 10.1 87.4 11.9 71.5 23.5
C 59.6 34.1 64.9 29.0 73.7 23.3 75.4 22.6

Fig. 3. Two patterns of PC vectors of A-A ratio.

PC vector elements; the vertical axis is the PC vector el-
ements’ value; the middle of each box is the sample av-
erage of the PC vector elements at all running speeds; the
length of each box is twice the standard deviation of dif-
ferent running speeds; the top (bottom) of the line seg-
ment extending from each box is the maximum (mini-
mum) values of the PC vector elements at all running
speeds; and the dividing line in each box is the median
value of the PC vector elements at all running speeds. The
fact that all of the boxes are relatively short compared with
the norm for the PC vector (the norm is 1) indicates that
the standard deviation of the PC vector’s element at dif-
ferent run speeds is small. This implies that the patterns
of muscle coordination do not depend on the run speed
(7, 9, 11, 13 km/h). Additionally, the difference in the
patterns of muscle coordination among the three subjects
was small. Table 6 presents the cosine values of the angle
between each subject’s PC vectors of A-A ratios averaged
at all run speeds. In all cases, most cosine values are close
to 1.0, which indicates that there is little difference among
the three subjects’ patterns of muscle coordination.

Table 6. Cosine values of the angle between the different
subject’s PC vectors of A-A ratios.

Muscle coordination 1 Muscle coordination 2
Subject A, B B, C A, C Subject A, B B, C A, C

0.81 0.84 0.96 0.81 0.86 0.94

hip joint
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Fig. 4. The musculoskeletal leg robot.

Muscle coordinations 1 and 2 (pppr1 and pppr2), extracted
from the A-A ratios, contribute to the joint angles, and
seem to contain the kinematic meanings independently to
each other. To confirm the kinematic meaning of these
two patterns of muscle coordination in human running,
we transferred these patterns to our human-like muscu-
loskeletal leg robot. Fig. 4(a) presents the human-like
musculoskeletal leg robot. The robot consists of a skele-
tal model (Avice, Inc.) and eight Pneumatic Artificial
Muscles (PAMs) (Kanda Tsushin Kogyo Co., Ltd.) corre-
sponding to the examined muscles, as illustrated in Fig. 2.
The robot’s body parameters (segment mass, moment of
inertia) are reconstructed from human [9, 10] by attaching
metal sheets to the robot. The muscle-attaching locations
were decided by referring to human muscles (Fig. 2).
The robot has three degrees of freedom, with the rota-
tion of the hip, knee, and ankle joints in the sagittal plane.
Air pressure supplied to the PAM is controlled by volt-
age commands from the computer sent to an air-pressure-
control device (Hitachi Medical Corp.) that powers the
pressure according to the voltage changes via a propor-
tional electromagnetic valve. The air-pressure command
was determined by two parameters; the A-A ratio κ and
the A-A activity μ . These two parameters are defined as{

κ =
p1

p1 + p2
μ = p1 + p2

. . . . . . . . . (4)

where p1 and p2 are air-pressure commands to the
agonist-antagonist muscle pairs. Solving Eq. (4) for pa-
rameters p1 and p2 yields the following.{

p1 = κμ
p2 = (1−κ)μ . . . . . . . . (5)
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Fig. 5. Two PC scores of the A-A ratio in the case of subject
A, B and C.

Because κ ∈ [0,1], the A-A activity μ is the maximal air-
pressure command to the PAMs. In our experiments, the
A-A activity μ of all PAMs was fixed at an experimen-
tally determined constant (μ = 500 kPa) to refer to the
kinematic meaning of the PC vectors of A-A ratios. To
transfer muscle coordinations 1 and 2 of the A-A ratios
(pppr1, pppr2) into the leg robot, we introduce two PCs of the
A-A ratios of the robot, KKK1 and KKK2. These parameters cor-
respond to the first and second PCs of the human A-A ra-
tios. These are then determined using the first and second
PC vectors of the human A-A ratio as follows, according
to Eq. (3):{

KKK1(t) = W1(t)diag[σσσ r]pppr1 + r̄rr
KKK2(t) = W2(t)diag[σσσ r]pppr2 + r̄rr . . . . (6)

KKKi (i = 1,2) consists of the A-A ratios κ of artificial mus-
cle pairs. Because the parameters κ(t) of muscle pairs
can be determined in Eq. (6), it is possible to decide the
air-pressure commands in Eq. (5). W1(t) or W2(t) is a pa-
rameter that varies the size of the patterns of muscle coor-
dination with the neutral pattern r̄rr as a basis, and it corre-
sponds to the PC score (w1(t) or w2(t)) of the human A-A
ratio. In this experiment, so as to visualize what is meant
by the size of each PC score wri(t) and how it contributes
to each PC vectors pppri, W1(t) or W2(t) are changed lin-
early from −4.0 to 4.0 or from −3.0 to 3.0 in 50 seconds
so as to cover the range of w1(t) or w2(t) (Fig. 5). Fig. 6
shows the patterns of W1(t) and W2(t) given to the robot.
(Note that Wi(t) is not the same as wi(t).) The propor-
tional changes in the PC vector elements enable the robot
to achieve motion in a unique direction while retaining
the pattern of muscle coordination. Fig. 7 illustrates the
leg robot’s movements generated by the first or second
pattern of muscle coordination in the case of subject C at
7 km/h. As seen in Fig. 7, based on a hip joint, muscle
coordination 1 (the first PC vector of A-A ratios) seems
to create a rotary motion of the toe’s position, and mus-
cle coordination 2 (the second PC vector of A-A ratios)

10 20 30 40 50

4

2

2

4

-

-

10 20 30 40 50

4

2

2

4

-

-

W1(t)

time [s] time [s]

W2(t)

(a) (b)

Fig. 6. The robot’s PC scores of the A-A ratio, (a) W1(t),
(b) W2(t).

Fig. 7. Two patterned muscular coordinations of the mus-
culoskeletal leg robot.

seems to drive the toe’s position closer to or away from
the hip joint. The same results were obtained for differ-
ent subjects at different running speeds. This result im-
plies that human running is described by a combination
of units of motor function that contribute to the argument
Θ and the moving radius L of a toe, based on the hip joint
(Fig. 4(b)).

Ivanenko et al. achieved a similar result, although
the analysis was performed in the joint space [5]. They
decomposed locomotion into two principal components
by using the joint angles [θ1, θ2, θ3]T , based on the di-
rection of gravitational force (Fig. 4(b)). According to
their study, we analyzed the joint-angle space [θ1,θ2,θ3]T
based on the direction of gravitational force using PCA.
θθθ = [θ1,θ2,θ3]T can be expressed as follows:

θθθ =
3

∑
i=1

wθ i(t)pppθ i + θ̄θθ . . . . . . . . . (7)

where wθ i(t) is i-th PC score, pppθ i = [pθ i1, pθ i2, pθ i3]T is
the i-th PC vector, and θ̄θθ = [θ̄1, θ̄2, θ̄3] is the mean vector.
Fig. 8 depicts the result of simulation for two principal
components in the case of subject C at 7 km/h as follows:

θθθ(t) =
{

wθ 1(t)pppθ1 + θ̄θθ
wθ 2(t)pppθ2 + θ̄θθ . . . . . . . (8)

It seems that the motions of the musculoskeletal leg robot
(Fig. 7) correspond to these kinematic results (Fig. 8).
The same results were obtained for different subjects at
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Fig. 8. Simulation for two principal components extracted from the joint angles.

Fig. 9. Two patterns of PC vectors of A-A activity.

different running speeds.
So far we have considered the reduction of the muscle

space’s size and the meaning of the extracted motor prim-
itives. These results are valid even if the size of the motor
command space for musculoskeletal robot is huge relative
to that for the robot driven by DC servo motors. As just
described, the proposed method is useful for solving the
ill-posed problem, or Bernstein’s problem.

3.2. A-A Activity
The first PC vectors of the activity (muscle coordina-

tion 1 of the A-A activity) are similar for different subjects
or different running speeds because of their high contribu-
tion ratio (subject A: 94.4–96.2%, subject B: 71.5–89.2%,
subject C: 59.6–75.4%). Therefore, the contribution ratio
of the second principal components is fatally low, and the

Table 7. Cosine values of the angle between the different
subject’s PC vectors of A-A activities.

Muscle coordination 1 Muscle coordination 2
Subject A, B B, C A, C Subject A, B B, C A, C

1.00 0.99 0.99 0.49 0.92 0.59

second PC vectors (muscle coordination 2 of the A-A ac-
tivity) are a little different for all running speeds of subject
A while these similar for all running speeds of subject B
or C (Fig. 9). Table 7 lists the results of the same calcu-
lation as Table 6 for the PC vectors of the A-A activities.
Muscle coordination 1 did not differ among subjects A,
B, and C, while muscle coordination 2 of subject A dif-
fered from that of the other subjects. This result indicates
that one subject (subject A) may control joint stiffness by
using only one pattern of muscle coordination, while the
others (subjects B and C) may use another pattern of mus-
cle coordination.

4. Conclusion

In this study, we introduced the A-A ratio and A-A
activity, which describe the coordination of agonist-
antagonist muscle pairs, and we discussed the decomposi-
tion of human running into units of motor function based
on knowledge from neuroscience. Two units of motor
function extracted by using PCA for the A-A ratio and
A-A activity are expressed by PC vectors, which are time-
invariant patterns of a muscle group’s coordination, and
by time-varying PC scores, which change the degrees of
these two patterns’ contribution to the movement. In this
paper, we focused on the PC vectors. The result of trans-
ferring the patterns of muscle coordination (PC vectors)
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extracted from the A-A ratios into a pneumatically driven
musculoskeletal leg robot implies that these patterns of
muscle coordination contribute to the argument and the
moving radius of a toe, based on the hip joint. Addition-
ally, we analyzed the joint space using the same method,
and obtained the same result with the musculoskeletal leg
robot. PCA for the A-A activity clarified that joint stiff-
ness during human running was dominantly controlled by
one pattern of muscle coordination and adjusted by an-
other pattern. For the next step, we will investigate the
correspondence relation between the muscle space and the
joint space, and might be able to dynamically control the
musculoskeletal robot by using the extracted muscle syn-
ergies.
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