
Lee, C.-H. L., Liu, A., and Huang, H.-H.

Paper:

Using Planning and Case-Based Reasoning
for Service Composition

Chiung-Hon Leon Lee∗, Alan Liu∗∗, and Huan-Hsian Huang∗∗

∗Department of Computer Science & Information Engineering, Nanhua University, Taiwan
∗∗Department of Electrical Engineering, National Chung-Cheng University, Taiwan

E-mail: chlee@mail.nhu.edu.tw, aliu@ee.ccu.edu.tw
[Received October 14, 2009; accepted May 19, 2010]

Planning commonly applied to automating Web Ser-
vice composition involves two problems –
(i) overlooked user needs combined with services pro-
vided by the systems themselves and outside services
providing a much more flexible service model.
(ii) “Speeding up” and “facilitating” services by not
recording information about service providers already
having served users and about planning already pro-
cessed. We propose merging internal and external ser-
vices to meet user needs. Internal services include sys-
tem functions designed to meet user needs. External
services mean Web services provided by outside ser-
vice providers. We plan to combine both types of ser-
vices to create planning to meet user needs. We apply
case-based reasoning to store planning and related in-
formation in a case base to make planning much faster
when users have similar needs.

Keywords: service composition, planning, case based
reasoning

1. Introduction

Computer systems have long proposed providing users
with more varied and richer services in ways as easy as
making requests from a human assistant. Service-oriented
computing [1, 2] is emerging as a new and promising
computer paradigm. The Web’s loosely coupled reusabil-
ity make it as a good choice for enhancing computer
service capabilities through technologies such as SOAP,
WSDL, and UDDI, for example. To fully meet business
application requirements, however, current technologies
still must overcome security, composition, and semantic
problems [1].

One attractive Web service is composition in which
simple services are found, selected, and reorganized into
value-added composite services to provide users with
more convenient services and solve more complex prob-
lems [3–5].

Semantic Web services [6] solve Web service problems
semantically and address Web services descriptions as a
whole [7]. Semantic markup languages such as OWL-
S and its predecessor DAML-S [8] describe Web service

capabilities and contents in a computer-interpretable lan-
guage and improve service discovery, invocation, compo-
sition, monitoring, and recovery quality. An agent is a
software entity having human properties such as auton-
omy, reasoning, learning, and knowledge-level communi-
cation [9]. To facilitate service access, agents are widely
used in Web service research [1, 4, 10], enabling users to
discover, interact, and compose Web services to meet user
goals and intentions.

Despite the many techniques and standards proposed to
solve service provision problems, a large gap remains be-
tween human users and service providers, especially for
users wanting systems to serve them automatically with
minimal user interaction. Assuming, for example, that a
user wants to buy a book, the system must understand the
user’s intent regardless of whether the user has detailed
information on the book. The system must, for exam-
ple, find a service helping the user get details such as the
ISBN, correct title, publisher, and provider. The system
must also display book information to the user, interact
with the user to select the book, and provide the correct
order procedure. If more than one choice exists for the
same book, the system sorts choices by price, for exam-
ple, to provide an inexpensive one. The book is thus even-
tually ordered and displayed to the user.

It is naı̈ve to expect to directly use results returned from
service providers to meet a user’s request, since the sys-
tem may have to ask the user for more information for
suitable Web services, find or select services, or compose
services and process information from them, again dis-
playing results to the user. How to integrate Web ser-
vices and system capabilities and elicit user information
becomes an issue in enabling intelligent Web services.
How to systematically design a service-oriented system
that understands the user’s service request and delivers
appropriate services remain open research issues in the
service-oriented research domain.

In the simple bookstore service example, we show that
the user’s request cannot be satisfied directly if the sys-
tem determines only the book in question and orders it
directly. The system must interact with the user to get
more book information and process book lists from the
service provider. This has motivated some researchers to
propose a goal-driven approach modeling service requests
from users and integrating Web services, system func-

540 Journal of Advanced Computational Intelligence Vol.14 No.5, 2010
and Intelligent Informatics

https://doi.org/10.20965/jaciii.2010.p0540

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of 
the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

http://creativecommons.org/licenses/by-nd/4.0/


Using Planning and Case-Based Reasoning for Service Composition

Fig. 1. Intention extraction and satisfaction.

tions, and user information to meet the request [11, 12].
How to interpret service request intent from user input is
called user intention extraction and how to integrate in-
ternal and external services distributed on the Internet to
meet user requests is called intention satisfaction.

We propose an approach for constructing a goal model
and extracting intent from service requests [12], focusing
on intention satisfaction and merging internal and exter-
nal services to meet user needs. Internal service means
system functions designed to meet user needs. Exter-
nal service means services provided by external service
providers. We discuss planning [9] to combine both types
of services to create planning made by a series of opera-
tions to meet user needs. We apply Case-Based Reason-
ing (CBR) [13] to store planning and related information
in a case base to create planning much faster when users
have similar needs.

The operating concepts of our proposal are shown in
Fig. 1. Intention I is a vector consisting of a set of
terms extracted from a user service request string, I =
{T1,T2,. . . ,Tn}, in which T is terms in the service request
string and n is the number of terms. Goal G abstractly de-
scribes the capability the system provides. Intention ex-
traction problem IE is described as IE : I → G, meaning
that given intention I, after process IE, we map I to an
abstract description of system capability G.

Plan P consists of a series of system operations. Sys-
tem operation OP describes a single or composite system
function. Operations are used to invoke internal or ex-
ternal services. An internal service is a system function
used to serve the user or combined with external services
to generate more complex services. An external service is
provided by external objects – a Web service provider or
other software agents. Intention satisfaction problem IS is
IS : G → P, meaning that given goal G, after process IS,
the system derives plan P for achieving G as follows:

Here we focus on the intention satisfaction problem,
merging internal and external services to meet user needs.
Internal service means system functions designed to meet
user needs. External service is provided by external ser-
vice providers. We apply planning to combine both ser-
vices to create planning involving a series of operations
to meet user needs. We apply CBR to store planning and

related information in a case base to create planning much
faster when users have similar needs.

This paper is organized as follows: Section 2 reviews
background work. Section 3 introduces our approach to
service. Sections 4 and 5 develop our proposals. Section 6
presents conclusions.

2. Related Works

Systems such as MIND [14] and Pistor [15] use plan-
ning in Artificial Intelligence (AI). Our work adds the fea-
ture of user satisfaction in service using planning and re-
membering the use of previous service requests, designing
the use of planning in the form of Hierarchical Task Net-
work Planning (HTNP) [14] in service composition using
CBR in reusing previous requests and information.

Our prototype uses previous work on intention-aware
goal model [16] and personal ontology [17] to provide
services most suitable to the user. Using CBR, the system
remembers how the user was previously satisfied by ser-
vices to reuse previous experience in future use. HTNP
is used as the base in deriving services [14]. OWL-S files
provided by service providers are converted to the domain
in the tool, SHOP2, and the service request entered by the
user is used in planning with domain information. A de-
scription file resulting from the service in OWL-S is then
produced. We use HTNP [18] for service composition,
but the difference between the work above and this is that
they provide an algorithm, called Enquirer, in the query
manager to obtain information. The advantage is that it
produces a reasonable result in initial stages when infor-
mation is still lacking. An approach in planning, called
model checking, is also used [19]. We use MBP Plan-
ner [20] to solve nondeterministic and partially observ-
able problems, together with problems associated with ex-
tended goals. CBR is used [21] for service composition.
We use six different relationships among services, and the
service name together with its service description is used
to retrieve cases to provide solutions.

Table 1 summarizes background work with features
and criteria, such as main methods, capability in han-
dling unexpected situations, capability in achieving goals,
recording what service providers had used, and compo-
sition among internal and external services. All sys-
tems achieve their goals from known providers, but only
some can handle unexpected situations. Since none learns
providers they have previously used, all service requests
are processed from scratch. No systems can compose in-
ternal and external services together. If a system has in-
ternal services, it can use such services in place of exter-
nal services, saving resources in search and transmission.
Such internal services may replace other external services
in case of failure.

Our research uses HTN planning with CBR to provide
user services. For first-time users, the system uses HTN
planning to compose a service by exploring external and
internal services for possible combinations. The system
simultaneously learns the use through CBR. If the user is-

Vol.14 No.5, 2010 Journal of Advanced Computational Intelligence 541
and Intelligent Informatics



Lee, C.-H. L., Liu, A., and Huang, H.-H.

Table 1. Comparison.

Fig. 2. Goal-plan hierarchy.

sues a similar request in the future, CBR finds a composite
service from previous experience.

3. Combinations

One of our features makes it possible to combine in-
ternal services originated at the user and with external
services from other service providers. Another aim is to
record use of a particular user to deliver a composite ser-
vice without reorganizing it from scratch if the service re-
quest has been sent previously. Two AI techniques used
in our system – planning and CBR – are discussed below,
combining planning and CBR as an extension [22]. If the
goal model cannot be solved by CBR based on our case
base, the planner takes over and finds a composite service
for the user. If the solution can be found using CBR, then
the user has the choice of reusing the solution or recom-
puting a new solution.

3.1. A Goal-Plan Hierarchy Concept
A plan consists of a series of actions that should be

provided for achieving the goal. Using goal information
and the system execution status, the system retrieves and
adapts a series of actions from a plan library to achieve
the user goal. If successful or failed results are produced
by the execution of a plan, these messages may be passed
to the system. If a “soft” original goal of the user fails,

the partial result completed by subplans is displayed to
the user.

The goal-plan structure shown in Fig. 2 is divided into
abstract and concrete levels. The abstract level contains
the relationship and descriptions of plans and actions. The
concrete level includes different concrete functions pro-
vides by the system.

A plan consists of several actions. An action may gen-
erate a subplan or call a concrete system function to com-
plete requirements for action. We hold that the action to
generate a subplan is an abstract action, and the action to
call a predefined function in the concrete level is a con-
crete action. If a plan contains one or more abstract ac-
tions, then it is an abstract plan; otherwise, it is a concrete
plan. Descriptions of action decomposition are stored in
the plan library.

The concrete level contains three types of functions
provided by the system – Web services, human skills,
and agent skills. The Web service acquires results from
the service provider or service broker, the human skill
elicits required information from the user, and the agent
skill triggers the agent to perform actions for processing
data acquired from the Web service or user. The origi-
nal goal could be any actor-specific goal predefined in the
goal model, and action generation depends on the situ-
ation when the system is executing. The advantages of
such a hierarchy are reusability and flexibility.

542 Journal of Advanced Computational Intelligence Vol.14 No.5, 2010
and Intelligent Informatics



Using Planning and Case-Based Reasoning for Service Composition

Table 2. Obtaining external services.

Fig. 3. Relationship among four methods.

3.2. HTN-Planning
Using a planning mechanism requires more informa-

tion than a single service request from a user. From our
previous research in analyzing user intention and ontol-
ogy is defined, a system transforms the user query into a
goal model consisting of the following attributes [16]:

1. Actions – a user’s intended action

2. Objects – a user’s preferred type of service

3. Constraints – a user’s constraint toward a service

4. Parameters of objects – a user’s preference toward a
service

When using an external or internal service, we may face
unexpected situations such as timeouts or execution fail-
ure during execution of a plan. To solve such nondeter-
ministic problems, we add a monitoring action to plan-
ning. Because we use HTN planning, we insert a monitor-
ing action into some actions with the potential of failure.

We use P = (T,S) as our definition of planning, where
P is the plan generated, T the set of tasks, and S the initial
plan problem status. The planner uses S and T to deter-
mine a plan. In the task network, T , t ′ is a subtask. A
subtask may be a method or an operator, so task decom-
position has the following rules:

1. If t ′ is a method, then t ′ must be decomposed until t ′
becomes an operator.

2. An operator is the basic action and the basic action
cannot be divided, so decomposition stops when t ′ is
an operator.

t1 may be viewed as 4 methods – Select Service,
Check Service Data, Check all Condition, and
Show Data. Table 2 summarizes preconditions for
actions and status changes afterward. The relationship
among these methods is shown in Fig. 3, in which S
is a service provider and C the parameter for filtering
information after a service.

Figure 3 shows preconditions needed to be satisfied be-
fore a method is executed and status changes a method
brings after execution. Note, for example, that to execute
Show data, we must meet two statuses – Check ready and
Have main service data. These two statuses rely on two
methods – Check all condition and Check service data.
These two methods instead rely on Select service and Se-
lect service is triggered when Service(S) and Select(S)
are true. The status Haveservicedata(S) means that after
the execution of Select Service the system have data from
selected service.

The four methods in Table 2 are further divided into
methods or operators. Taking the method Select Service
as an example, we divide it into primary and secondary
services, which in turn are defined as Main Goal and Sec-
ond Gaol, and have different preconditions as shown in
Fig. 4.

Vol.14 No.5, 2010 Journal of Advanced Computational Intelligence 543
and Intelligent Informatics



Lee, C.-H. L., Liu, A., and Huang, H.-H.

Fig. 4. Select Service flow.

For Check all Condition, the main purpose is to check
whether sorting or filtering status still exists in the ser-
vice. If a service still requires sorting or filtering,
Check all Condition cleans up the status after sorting or
filtering and produces Check Ready status.

3.3. Process with CBR
We use the three attributes – action, object, and con-

straints – to define the description of a case. For the so-
lution, this includes locations of OWL-S files by service
providers, parameters needed for service providers, and
plans.

At case retrieval, we use the goal model provided as
features for finding a case. Attributes Action, Object, and
Constraints are features used. At case reuse, we check
the content of the goal model and the retrieved case. If
content is an exact match, we simply copy the solution as
a composite service for the user. If a difference remains,
an adaptation modifies the solution accordingly.

For the prototype, we have not yet found a satisfactory
adaptation, so we simply use substitution for adaptation,
finding data on Constraints and Parameters of objects for
comparison and apply If-Then rules to modify content.
Rules include the following:

A. Rules based on constraints (18)

• IF Case Constrain = ‘Before Date’ AND New Con-
strains = ‘After Date’
Then Update Case Constrains Data

• IF Case Constrain = ‘Before Date’ AND New Con-
strains = ‘About Date’
Then Update Case Constrains Data

• IF Case Constrain = ‘After Date’ AND New
Constrains= ‘Before Date’
Then Update Case Constrains Data

• ...

B. Rules based on Parameters of objects (8)

• IF Case Date != New Date THEN Case Date =
New Date

• IF Case DepartureTime != New DepartureTime
THEN Case DepartureTime = New DepartureTime

• IF Case ArrivalTime != New ArrivalTime THEN
Case ArrivalTime = New ArrivalTime

• ...

When all services in a plan generated by the HTN plan-
ner are completed, we apply QoS methods [23] to evaluate
the result. If the result is favorable, this successful case is
stored in the case base.

4. System Implementation

We use domain-independent planning tool
JSHOP2 [24] as our planner. For defining a plan-
ning problem and planning domain, we use definitions as
follows:
[defproblem problem-name domain-name
(a1,a2, . . . ,an)T ]; where problem-name is given by
the user and domain-name are picked from the planning
domain. a1, a2 and to an are the initial states, and T is the
tasks which can meet the initial states.
[defdomain domain-name (d1,d2, . . .,dn)]; where domain-
name is given by the user, and d1, d2, all the way up to dn
is operations.

JSHOP2 transforms the planning problem and planning
domain into Java, and plans are delivered after Java is ex-
ecuted. Planning problems vary with the user. We use
OWL-S API [25] in developing our system. With this
API, we execute an OWL-S file containing an atomic pro-
cess in WSDL grounding or use sequence, unordered, and
split to control composite process in OWL-S.

544 Journal of Advanced Computational Intelligence Vol.14 No.5, 2010
and Intelligent Informatics



Using Planning and Case-Based Reasoning for Service Composition

Fig. 5. System architecture.

Figure 5 shows the system architecture consisting of
service providers and personal service selector in the
outer part with goal models and personal ontology com-
ing through an external interface. In this prototype, plan
execution is simply assumed to execute resulting plans.

Our system has 6 important components:

(i) Plan Retriever retrieves a case for a plan if there is
a case to be found. It then transfers goal models to
the request data checker. If there are several similar
cases, the system displays choices for the user.

(ii) Goal Model Transformer uses Action and Object
fields in a goal model to understand what type of
a provider a user is seeking. If using external ser-
vices is needed, parameters related to input and out
are given to the personal service selector.

(iii) Request Data Checker checks whether information
for executing a service is complete. If not, then per-
sonal ontology is first checked. If more information
is needed, then the user is asked to enter information.

(iv) Plan Generator uses JSHOP2 to generate plans based
on the problem domain previously defined.

(v) Plan Adaptation checks the goal model and case re-
trieved in the case base for differences, then uses a
rule to modify solutions.

(vi) Plan Execution verifies how well a plan can be ex-
ecuted. When a plan is executed, an evaluation is
made.

The sequence of system execution is shown in Fig. 6,
with rectangles showing system functions. The dashed
rectangle is the outer system. Since there are many func-
tion blocks in system architecture, we organize them into
4 objects represented as rounded-rectangle in the follow-
ing sequential diagram for reducing complexity. When
the system receives the goal model from the external sys-
tem, it executes a plan retrieval to cause a search in a case
base. For a match, the goal model is transferred to Data
Gather.

Fig. 6. System sequence diagram.

Fig. 7. Data gather sequence diagram.

Fig. 8. Planner generator.

After the goal model enters the data gatherer, it uses
Goal Model Transform and Request Data Checker as
shown in Fig. 7. In Goal Model Transform, the goal
model is analyzed to determine what types of services the
user prefers. If the system does not have enough such ser-
vices, the system uses Personal Service Selector to pick a
suitable service. The sequential diagram of Data Gather
delivers service information and planning results to Plan-
ner Generator as shown in Fig. 8. Fig. 9 shows the CBR
Planner sequence.

Vol.14 No.5, 2010 Journal of Advanced Computational Intelligence 545
and Intelligent Informatics



Lee, C.-H. L., Liu, A., and Huang, H.-H.

Fig. 9. CBR planner.

5. Example

To demonstrate our proposal, we implemented a
service-based travel planning prototype for simulation.
We assume that our prototype and all related outer sys-
tems use common ontology. The programming language
for implementing our prototype is Java. Because there is
no traveling Web service in Taiwan, we collected flight,
train, and bus schedule information from the Web and im-
plemented related traveling Web services. The scenario
used to demonstrate our approach is as follows:

We assume that user Huang requests the system to book
a flight from Taipei to Kaohsiung. The extracted user goal
model is as follows:

Action: Book,
Object: Flight,
Constrains: Before DepartureTime, and
Parameters of object:

Date: 2006/07/14,
DepartureTime 09:00,
DepartureCity: Taipei,
ArrivalCity: Kaohsiung.

When the system receives the goal model and passes it
to Plan Retriever, the system tries to determine whether
the system has had a previous similar case. If not, the
system uses HTN to plan a new plan. To confirm that the
system extracts the correct user intent, the system shows a
confirmation dialog for user interaction and the user mod-
ifies data or adds information for the request so a plan is
generated as shown in Fig. 8.

Once generated, the plan is sent to Plan Execution.
When the system selects the service, related information
is retrieved by OWL-S API. Input and output data of a
flight schedule query Web service is shown in Fig. 9.

When the system gets data from related Web services,
actions do sort condition and do filter condition are exe-
cuted, then sorted and filtered data is shown to the user for
selection as shown in Fig. 10.

Once the user chooses the flight, the system continues
to execute ticket ordering. Ticket order information pro-
cessed by OWL-S API is shown in Fig. 11.

When the system got the data from related Web ser-
vices, the action do sort condition and do filter condition
will be performed. After that, the sorted and filtered data
will be shown to the user. A snapshot of this step is shown
in Fig. 12.

Once the user chosen the flight, the system will con-

Fig. 10. Flight ticket order plan.

Fig. 11. Input and output data of flight schedule query Web
service.

tinue to execute ticket ordering plan. The ticket order in-
formation processed by OWL-S API is shown in Fig. 13.

When the flight is booked successfully, the system
shows results to the user.

6. Conclusions

We have built a prototype that accepts a service re-
quest from a user through intent analysis producing a goal
model by extending the service request with keywords
representing the intent. We used simulated Web services
for transport, including airline tickets and other services.
The result was satisfactory using a planner for building
a composite service from scratch and reusing experience
through CBR. We found that the planner is flexible in
adding and deleting services. CBR effectively provides
composite service quickly.

Acknowledgements
This work was supported in part by the National Science Council
under NSC 98-2221-E-343 -007.

546 Journal of Advanced Computational Intelligence Vol.14 No.5, 2010
and Intelligent Informatics



Using Planning and Case-Based Reasoning for Service Composition

Fig. 12. Snapshot of system execution.

Fig. 13. Flight ordering information.

References:
[1] M. P. Singh and M. N. Huhns, “Service-Oriented Computing: Se-

mantics, Processes, Agents,” John Wiley & Sons. Ltd., New York,
2005.

[2] H. Wang, J. Z. Huang, Y. Qu, and J. Xie, “Web services: problem
and future directions,” ELSEVIER J. Web Semantics, Vol.1, No.3,
pp. 309-320, April 2004.

[3] P. P. W. Chan and M. R. Lyu, “Dynamic Web Service Composi-
tion: A New Approach in Building Reliable Web Service,” In Proc.
of The IEEE Int. Conf. on Advanced Information Networking and
Applications, pp. 20-25, 2008.

[4] K. Sycara et al., “Dynamic discovery and coordination of agent-
based semantic Web services,” IEEE Internet Computing, Vol.8,
No. 3, pp. 66-73, May-Jun 2004.

[5] S. Y. Hwang et al., “On Composing a Reliable Composite Web Ser-
vice: A Study of Dynamic Web Service Selection,” In Proc. of The
IEEE Int. Conf. on Web Services, pp. 184-191, 2007.

[6] D. Martin et al., “Bringing Semantics to Web Services: The OWL-
S Approach,” In proc. of the First Int. Workshop on Semantic Web
Services and Web Process Composition, 2004.

[7] A. Hibner and K. Zielinski, “Semantic-based Dynamic Service
Composition and Adaptation,” In proc. of the IEEE Congress on
Service, pp. 213-220, 2007.

[8] http://www.daml.org/services/owl-s/
[9] S. Russel and P. Norvig, “Artificial Intelligence: A Mordern Ap-

proach 2ed.,” Prentice Hall, London, 2003.

[10] C. H. L. Lee and A. Liu “User intention satisfaction for agent-
based semantic Web services systems,” Proc. of The 12th Asia-
Pacific Software Engineering Conference (APSEC’05), Taipei, Tai-
wan, Dec. 2005.

[11] J. M. G’omez et al., “Godo: Goal oriented discovery for semantic
web services,” Discovery on the WWW Workshop (SDISCO’06),
Beijin, China, 2006.

[12] C. H. L. Lee and A. Liu, “A Goal-Driven Approach for Service
Request Modeling,” Int. J. of Intelligent Systems, 2009.

[13] I. Watson, “Applying Case-Based Reasoning: Techniques for En-
terprise Systems,” Morgan Kaufmann Publishers, California, 1997.

[14] E. Sirin, B. Parsia, D. Wu, J. Hendler, and, D. Nau, “HTN Planning
for Web Service Composition Using SHOP2,” J. of. Web Semantics,
Vol.l, No.4, pp. 377-396, 2004.

[15] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso,
“Planning and monitoring web service composition,” Proc. of Int.
Conf. on Artificial Intelligence, ethodologies, Systems, and Appli-
cations (AIMSA), pp. 106-115, 2004.

[16] C. H. L. Lee and A. Liu, “Model the query intention with
goals,” Proc. of The First Int. Workshop on Ubiquitous Smart
Worlds (USW2005) (Conjunction with AINA2005), Taipei, Tai-
wan, pp. 535-540, Mar. 2005,

[17] M. N. Huhns and L. M. Stephens, “Personal Ontologies,” IEEE In-
ternet Computer, pp. 85-87, 1999.

Vol.14 No.5, 2010 Journal of Advanced Computational Intelligence 547
and Intelligent Informatics



Lee, C.-H. L., Liu, A., and Huang, H.-H.

[18] U. Kuter, E. Sirin, D. Nau, B. Parsia, and J. Hendler, “Informa-
tion gathering during planning for web service composition,” Proc.
of 3rd Int. Semantic Web Conf. (ISWC -2004), Hiroshima, Japan,
November 2004.

[19] M. Pistore and P. Traverso, “Planning as Model Checking for Ex-
tended Goals in Non-deterministic Domains,” Proc. of 7th. IJ-
CAI’01. AAAI Press, August 2001.

[20] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso,
“MBP: a Model Based Planner,” Proc. of the IJCAI’01 Workshop
on Planning under Uncertainty and Incomplete Information, Seattle,
pp. 93-97, August 2001.

[21] B. Limthanmaphon and Y. Zhang, “Web Service Composition
with Case-Based Reasoning,” Proc. of the Fourteenth Australasian
database conf. on Database technologies 2003, pp.201-208, 2003.

[22] H. Munoz-Avila et al., “SiN: Integrating Case-based Reasoning
with Task Decomposition,” Proc. of Seventeenth Int. Joint Conf.
on Artificial Intelligence, 2001.

[23] C. H. L. Lee and A. Liu, “Service Quality Evaluation by Personal
Ontology,” J. of Information Software and Engineering, Vol.25,
No.5, 2009.

[24] O. Ilghami and D. S. Nau, “A general approach to synthesize
problem-specific planners,” Tech Report CS-TR-4597, UMIACS-
TR-20060, University of Maryland, 2003.

[25] E. Sirin et al., OWL-S API, 2004.
http://www.mindswap.org/2004/owl-s/api/index.shtml

Name:
Chiung-Hon Leon Lee

Affiliation:
Department of Computer Science & Information
Engineering, Nanhua University, Taiwan

Address:
No.55, Sec.1, Nanhua Rd., Zhongkeng, Dalin Township, Chiayi County,
Taiwan (R.O.C.)
Brief Biographical History:
2006 Received the Ph.D. degree in Department of Electrical Engineering,
National Chung Cheng University, Taiwan
2006-2008 Assistant Professor of Department of Computer Science and
Information Engineering, ChungChou Institute of Technology, Taiwan
2008- Assistant Professor of Department of Computer Science and
Information Engineering, Nanhua University, Taiwan
Main Works:
• “Pattern Discovery of Fuzzy Time Series for Financial Prediction,” IEEE
Trans. on Knowledge and Data Engineering, Vol.18, No.5, pp. 613-625,
2006.
Membership in Academic Societies:
• Taiwan Software Engineering Association
• Institute of Electrical and Electronics Engineers, Inc. (IEEE)

Name:
Alan Liu

Affiliation:
Department of Electrical Engineering, National
Chung Cheng University, Taiwan

Address:
168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan
(R.O.C)
Brief Biographical History:
1994 Received the Ph.D. degree in Electrical Engineering and Computer
Science from the University of Illinois at Chicago
1994-2006 Associate Professor of Department of Electrical Engineering,
National Chung Cheng University, Taiwan.
2006- Professor of Department of Electrical Engineering, National Chung
Cheng University, Taiwan.
Main Works:
• “A Flexible Architecture for Navigation Control of a Mobile Robot,”
IEEE Trans. on Systems, Men, and Cybernetics - Part A, Vol.37, No.3,
pp. 310-318
Membership in Academic Societies:
• Taiwan Software Engineering Association
• Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Association for Computing Machinery (ACM)

Name:
Huan-Hsian Huang

Affiliation:
Department of Electrical Engineering, National
Chung Cheng University, Taiwan

Address:
168 University Road, Minhsiung Township, Chiayi County 62102, Taiwan
(R.O.C)
Brief Biographical History:
2006 Received the M.S. degree in Department of Electrical Engineering,
National Chung Cheng University
Main Works:
• “Service Composition Using Planning and Case-Based Reasoning,”
Master thesis, Department of Electrical Engineering, National Chung
Cheng University
Membership in Academic Societies:
• Taiwan Software Engineering Association

548 Journal of Advanced Computational Intelligence Vol.14 No.5, 2010
and Intelligent Informatics

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

