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So far, many studies on Double-Deck Elevator Systems
(DDES) have been done for exploring more efficient
algorithms to improve the system transportation ca-
pacity, especially in a heavy traffic mode. The main
idea of these algorithms is to decrease the number of
stops during a round trip by grouping the passengers
with the same destination as much as possible. Un-
like what occurs in this mode, where all cages almost
always keep moving, there is the case, where some
cages become idle in a light traffic mode. Therefore,
how to dispatch these idle cages, which is seldom con-
sidered in the heavy traffic mode, becomes important
when developing the controller of DDES. In this pa-
per, we propose a DDES controller with idle cage as-
signment algorithm embedded using Genetic Network
Programming (GNP) for a light traffic mode, which is
based on a timer and event-driven hybrid model. To
verify the efficiency and effectiveness of the proposed
method, some experiments have been done under a
special down-peak pattern where passengers emerge
especially at the 7th floor. Simulation results show that
the proposed method improves the performance com-
pared with the case when the cage assignment algo-
rithm is not employed and works better than six other
heuristic methods in a light traffic mode.

Keywords: double-deck elevator systems, evolutionary
computation, genetic network programming

1. Introduction

To meet the demand of transportation capacity in high-
rise buildings without adding any more elevator installa-
tion spaces, Double-Deck Elevator Systems (DDES) have
been invented in 1970’s. Due to its specific hardware
configuration, i.e., two decks vertically connected in one
shaft, the transportation capacity of DDES can be signif-
icantly improved in a pure up-peak traffic pattern, where
passengers are efficiently grouped at the lobby floors. On
the other hand, some specific features caused by its hard-
ware configuration make the DDES controller much more
intractable giving poor performances in some traffic pat-
terns other than the pure up-peak traffic pattern. A lot
of research has been done not only on the control algo-
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rithm but also on the hardware of DDES. Recently, more
and more DDESs have been installed in high-rise build-
ings all over the world by employing some collective ap-
proaches [1] as well as some hardware enhancements like
Destination Floor Guidance System (DFGS), monitoring
cameras, and so on.

The elevator control system is a classical NP hard prob-
lem. It is the problem of finding the best solution from all
feasible solutions. It is very hard to find the global opti-
mal. Many Artificial Intelligence (AI) technologies [2-5]
have been applied to these kinds of problems. In recent
years, many heuristic methods with learning and evolu-
tion have been found to be preferable for realizing such
systems. As typical examples, Fuzzy Logic, Neural Net-
work (NN), Reinforcement Learning (RL), Genetic Algo-
rithm (GA) were successfully applied to elevator systems,
and solutions are obtained, that can satisfy the demands of
customers. Genetic Network Programming (GNP) which
is an extension of GA and Genetic Programming (GP)
was also verified to be applicable to the DDES in our past
studies. GNP can realize a rule based elevator control sys-
tem due to its directed graph structure, which makes the
elevator system more flexible in different traffics. Unlike
a linear solution that must cover multiple episodes, e.g.,
produced by a genetic algorithm, a directed graph can en-
capsulate the naturally recurring patterns in elevator op-
eration for reuse throughout the problem instance. Also,
the reusability of nodes makes the structure of GNP more
compact than the tree structure of GP. Most of the stud-
ies on DDES control algorithms [6] including our past re-
search [7, 8] have focused on the improvement of DDES
performances in the heavy traffic mode, where all cages
almost always keep moving to assigned calls. However,
an overall evaluation of DDES is to be made not only in
the heavy, but also in the light traffic mode. Since some
cages become idle in the light traffic mode, how to dis-
patch these idle cages, which is seldom considered in the
heavy traffic mode, becomes important when developing
the controller of DDES. In this paper, we propose a DDES
controller with idle cage assignment algorithm using GNP
for the light traffic mode. Some experiments are done
to verify the efficiency of the proposed method using a
DDES simulator.

This paper is organized as follows. An overview of
DDES is given in the next section, and the details of the
proposed method are described in section 3. Section 4
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Fig. 1. Outline of DDES.

shows the simulation results and some discussions. Fi-
nally, some conclusions are made in section 5.

2. Outline of Double-Deck Elevator Systems

The outline of Double-deck Elevator Systems (DDES)
is shown as Fig. 1. In DDES, two cages are connected
vertically in each shaft whose size is the same as the con-
ventional Single-deck Elevator Systems (SDES). It allows
that the passengers at two consecutive floors could be ser-
viced simultaneously. To guide the passengers efficiently,
one or more escalators are usually installed at the entrance
of the lobby floors. In order to obtain more information
on passengers’ destination, the conventional hall/cage call
system has been replaced by Destination Floor Guidance
System (DFGS) [9, 10], where the cage call buttons in-
side the cage are removed and DFGS is set at each floor
instead of up/down buttons. The passenger could input
there destination before they enter into the cages. Then,
the system guides the passenger to an elevator that will be
stopping at their destination floor.

There are three kinds of running modes in DDES. They
are (1) Double running mode, in which the upper/lower
cage serves only odd/even floors respectively; (2) Semi-
double running mode, in which both two cages can serve
any floor except for the two lobby floors; and (3) Single
running mode, in which one of cages is set to be out of ser-
vice. Note that semi-double running mode can provide a
more flexible service while it makes the control algorithm
more complex.

In our past studies, a GNP controller of DDES has been
proposed for the semi-double running mode, and its per-
formance has been verified under a moderately heavy traf-
fic density, where all cages always keep moving to as-
signed calls. The traffic density, however, does not keep
high during the work hours in typical high rise office
buildings. Some cages become idle when the DDES runs
in a light traffic mode, and they are usually requested to

488 Journal of Advanced Computational Intelligence

---------- Information Management Part }- -

CagelD 1 2 3 4 5 6
- Cage Position (CP)
- Service Area (SA)

- Predicted Passenger
Arrival (PPA)

Assignment
of Floor(FA)

Bquny abed uﬁssv>

100|4 uoneunsaq ubssy

N

Cage I dling Event || or ’\@

. AN

i GNP Controller

Fig. 2. Outline of the proposed method.

stay there until they are assigned to a new hall call. An
idle cage assignment algorithm of how to dispatch these
idle cages is proposed in this paper for some performance
improvements.

3. Idle Cage Assignment Algorithm for DDES
Controller Using GNP

Since how to dispatch the idle cages is important for
a DDES controller in a light traffic mode, we added an
floor assignment algorithm to the DDES controller us-
ing Genetic Network Programming (GNP). Fig. 2 shows
the outline of the proposed method, where the GNP con-
troller consists of two parts, i.e., Cage Assignment algo-
rithm (CA) and Floor Assignment algorithm (FA). The
immediate assignment policy is employed in Cage As-
signment algorithm as our past studies did, that is to say,
the optimal cage is assigned based on the current infor-
mation of DDES such as the values of evaluation items
of each cage shown in the left side of “Information Man-
agement Part” (for more details, see [8]) and the assign-
ment is not changed later. Contrary to this kind of event-
driven model, Floor Assignment algorithm is proposed by
a timer and event-driven hybrid model, that is, FA is in-
voked by a preset timer or a cage idling event to assign the
idle cage to the optimal destination floor where it should
move to.

3.1. Overview of GNP

As a new evolutionary computation method, Genetic
Network Programming (GNP) has been proposed around
ten years ago. In contrast to the string structure of Ge-
netic Algorithm (GA) and the tree structure of Genetic
Programming (GP), GNP has a directed graph structure.
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The efficiency and effectiveness of GNP have been veri-
fied in several studies [11, 12].

The evolutionary process in GNP is almost the same as
the one in other evolutionary computation methods, which
is briefly described as follows.

« Initialize the population of the first generation.

« Evaluate each individual based on the fitness after
task execution.

« Generate the population of the next generation by ex-
ecuting the genetic operations.

Iterate 2—3 until the terminal condition is satisfied.

In this paper, “Uniform Crossover,”! “Branch Muta-
tion”? and “Elite Preservation” are used as the genetic op-
erators of GNP.

3.2. Evaluation Items

To determine the optimal floor of idle cages, several
evaluation items, i.e., X € {CP,SA, PPA} are proposed as
follows. They will be used in the judgment nodes of GNP,
and their functions are described later.

Cage Position (CP) To avoid the bunching mode [13]
of elevator group systems, which is reportedly linked to
a poor performance, the positions of all cages are con-
sidered when determining the optimal floor for the idle
cages.

Service Area (SA) With the same reason, the service
area of each cage is defined for Floor Assignment algo-
rithm since the states of each cage including the moving
direction and moving speed are also some important fac-
tors.

Predicted Passenger Arrival (PPA) In an ideal case,
the idle cages should be dispatched to the floor, where new
passengers would arrive in the near future if we could pre-
cisely predict the next passenger arrival. PPA is another
valuable factor of the proposed evaluation.

3.3. Main Algorithm

Figure 3 shows the flowchart of the proposed GNP
controller. After the controller is started, GNP will be
invoked by some events including the call event and cage
idling event or a preset timer. The Cage Assignment al-
gorithm (CA) is invoked and the cage to serve is deter-
mined when a hall call with DFGS occurs by a passenger.
On the other hand, the Floor Assignment algorithm (FA)
is invoked either when a cage becomes idle or the timer
makes a time up. Since there might be more than one idle
cages in DDES, each idle cage will be checked whether
to stay at the current position or move to a specified floor
by FA.

1. Some nodes in two parent GNPs are selected by probability P., then the
branches from the corresponding nodes are exchanged and two new off-
spring GNPs are generated.

2. Some branches in a GNP are selected by probability B, then the con-
nections of them are changed randomly and a new GNP is generated.
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Fig. 3. Flowchart of the proposed GNP controller.

Since the Floor Assignment algorithm is the main point
of this paper, we employ the same Cage Assignment al-
gorithm which has been proposed in our past research [8].

When the FA of the GNP controller is invoked, the
current position of the idle cage is judged firstly with 3
results, i.e., {Base, General-Low, General-High}, which
represents where the idle cage is. Then, the processing
nodes on the transition route of GNP in the floor selection
part are activated and the evaluation values of the candi-
date floors are calculated based on the following Eq. (1).
This evaluation function to be maximized can be calcu-
lated with different evaluation item X until the node tran-
sition transfers to the floor assignment part.

e(N)=Y wpXp(f), - - . . . ... (D)

peP

where,

P : set of suffixes of nodes transited in the floor se-
lection part (P is determined by node transition)

w, : weights of the floor selection processing node
p (wp, is optimized during the evolutionary pro-
cess)

evaluation function of floor f at floor selection
processing node P

Xp(f):

The evaluation functions X, (f) of floor f are shown in
Fig. 4. In CP(f), fo represents the current position of the
cage running upward. Since the area behind the upward
running cage in the figure is very hard to serve as floor as-
signment floors by this cage in the near future, so, the high
priority is given to the floors behind the upward running
cage. On the other hand, the low priority is given to the
floors ahead the running cage. The function should be re-
versed when the cage runs downward. In SA(f), fo repre-
sents the current position of the cage running upward, and
f1 represents the next stop of the cage. Since the floors
around the next stop of the cage are serviced by the cage,
its function value is set to the lowest one. In PPA(f), the
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Fig. 4. Evaluation functions of floors.

rate of the passengers emerged at each floor during the
past 30 minutes is used to predict the next passenger ar-
rival. The higher the rate of the floor is, the more the floor
is considered as the service floor of the idle cage. The sum
of the rate is 1.0. In order to balance the influence of PPA
with CP and SA, the value of PPA is multiplied by 100 in
advance.

The following Eq. (2) is used to determine the service
floor of the idle cage when the floor assignment node is
activated.

f:argr}lgge(f), R )|

where, F : set of the number of floors.

3.4. Node Functions

The node functions in the proposed method are defined
as follows.

Idle Cage Position Judgment Node

« Judge the current position of the idle cage ({Base,
General-Low, General-High}).
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Candidate Floor Selection Node

o Calculate the evaluation values of the candidate
floors based on Eq. (1).

Floor Assignment Node

« Assign the idle cage to serve floor f.

3.5. Fitness Function

The same items, which have been proposed in our past
research, are employed to evaluate the fitness F' of each
FA individual. As shown in Eq. (3), the first two items, av-
erage waiting time and maximum waiting time, are min-
imized for better performance. The third item is min-
imized to provide more comfortable riding service [8],
while the last one is minimized to eliminate the loop gene
of GNP [8].

1 N

F= N Z(t")2+wt (tmax) 2 +we - (ne)? +wi - ()%, (3)
n=1

N : total number of passengers
t, © waiting time of n-th passenger
fmax | Maximum waiting time among N passengers

n. : total number of passengers experiencing one
cage service

n; : number of loops of GNP per one hour evaluation
wrwe,wy @ weighting coefficients

Since the items in the function are expected to mini-
mize, the smaller the fitness value of the individual is, the
better the performance becomes. The weights are deter-
mined empirically referring to [8], which means that they
are determined by finding the best values using various
simulations, in other words, by considering the balance
among the average waiting time, the maximum waiting
time, the ratio of the long waiting and average system time
to be explained in section 4.3.

Moreover, the loop of GNP occurs when the accumula-
tion of the time delays of nodes and transitions exceed the
time delay threshold value, which should be avoided.

4. Simulation Results and Discussions

4.1. DDES Simulator

The DDES simulator was built based on the specifica-
tions shown in Table 1. All events are simulated in de-
tail by using 0.1 second time unit. In each time unit, the
events of passengers such as arriving at floors, pushing the
button of DFGS, getting on and off the cage, are generated
according to the O/D table shown in Table 2, which rep-
resents a typical down peak pattern. In this paper, a more
complicated traffic pattern is simulated by setting the 7th
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Table 1. Specifications of DDES simulator.

Items Value
Number of Floors 16
Number of Shafts (Cages) 6 (12)
Floor Distance [m] 4.5
Max. Velocity [m/s] 2.5
Max. Acceleration [m/s?] 0.7
Jerk [m/s®] 0.7
Cage Capacity [person] 20
Time for Opening Door [s] 2.0
Time for Closing Door [s] 2.3
Time for Riding [s/person] 1.0
Passenger Density [person/h] 200
Table 2. Relative traffic flows.
Dest. Floor LF 7F | ReGF

Origin Floor

Lobby Floor(LF) - 2 2
7th Floor(7F) 25 -

Rest of General Floors(ReGF) 10 1 1

floor, where a high passenger arrival rate is set compared
to the other general floors. Table 3 shows the running
parameters of the proposed method.

4.2. Fitness Curves

Figure 5 shows the fitness curves of the best individ-
uals during the evolutionary process of GNP with floor
assignment individuals. In order to reduce the influence
of random noises, we did the experiments using 5 random
seeds. Fitness curves of all 5 random seeds are listed in
Fig. 5§ as well as the average one. Note that the population
of GNP controller was optimized generation by genera-
tion and converged to a certain level at the latter genera-
tions of the evolutionary process.

4.3. Performance Comparisons

To confirm the generalization ability of the proposed
method, the best individual of each rand seed obtained
in the above evolutionary process was tested on the same
DDES simulator for 30 times with 2 simulated hours.
To verify the efficiency and effectiveness of the pro-
posed method, the performance comparisons have been
done firstly between the proposed method and the method
called Non-FA Method. In Non-FA Method, there is only
cage assignment algorithm, i.e., the elevator system with-
out floor assignment algorithm for the idle cage, that is to
say, the cage will stay at the last floor after it serves all
registered hall and cage calls.

Moreover, there are six other heuristic methods pro-
posed for some further performance comparisons in
this paper. They are SA Method, SA+CP Method,
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Table 3. Running parameters of floor assignment GNP.

Items Value
Generation 300
Population Size 300
—Crossover 120
—Mutation 170
—Elite 10
Node Size 30+Initial Node
Crossover Rate 0.1
Mutation Rate 0.01
Evaluation Time [hour] 2
Wty We, Wy 0.007, 0.001, 0.6
170 . .
160 average 8
rand seed 0 ---------
1 rand seed 1 -~
150 § rand seed 2 s
: rand seed 3
rand seed 4 -----
140

Fitness

130 A
120

110

100
0 50 100 150 200 250 300

Generation

Fig. 5. Fitness curves of the proposed method.

SA+CP+PPA Method, Fixed-FA(1F) Method, Fixed-
FA(7F) Method, Fixed-FA(7F*) Method and Fixed-
FA(16F) Method. In SA Method, only SA(f) is used in
the proposed method to determine the service floor of the
idle cage. Similarly, SA(f)+CP(f) and SA(f)+CP(f)+
PPA(f) are used in e(f) of Eq. (1) in SA+CP Method and
SA+CP+PPA Method, respectively. On the other hand,
the idle cages are dispatched to the 1st floor automatically
in Fixed-FA(1F) Method, while 7th floor in Fixed-FA(7F)
Method® and 16th floor in Fixed-FA(16F) Method. In
addition, Fixed-FA(7F*) Method, an enhanced version of
Fixed-FA(7F) Method, is considered, where 1 of 6 cages
is dispatched to the lobby floor, 1 to the 16th floor and the
remaining 4 to the 7th floor.

The performances of each method are listed in Table 4,
where the best individual obtained during the evolution-
ary process under 200 persons/h is tested not only under
200 persons/h, but also under 100 and 300 persons/h to
confirm its generalization ability. There are four perfor-
mance criteria, LWR, AWT, AST and MWT [14-17]. LWR
represents the ratio of the long waiting, i.e., the ratio of
passengers who wait more than 60 s. AWT represents the

3. This method is efficient as expected since the rate of passenger emer-
gence at the 7th floor is much larger than the one at other floors as shown
in Table 2
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Table 4. Performance comparison of different methods in simulations.

Passenger Methods LWR | Imp. | AWT Imp. AST Imp. MWT Imp.
Density
100 Proposed Method 0.01 75 % 9.9 92% | 31.1 | 3.1% 299 24.7%
Non-FA Method 0.04 0% 10.9 0% 32.1 0% 39.7 0%
SA Method 0.02 50% 119 | 92% | 33.6 | -4.7% 34.8 12.3%
SA+CP Method 0.03 25% 11.8 | -83% | 33.5 | -4.4% 36.9 7.1%
SA+CP+PPA Method 0.03 25% 12.8 | -17.4% | 345 | -7.5% 39.8 -0.3%
Fixed-FA(1F) Method 0.06 | -50% 18.2 -67% | 39.7 | -23.7% | 47.3 | -19.1%
Fixed-FA(7F) Method 0.02 50% 116 | -6.4% | 325 | -1.2% 30.2 23.9%
Fixed-FA(7F*) Method || 0.02 50% 124 | -13.8% | 33.1 | -3.1% 29.6 | 25.4%
Fixed-FA(16F) Method || 0.09 | -125% | 16.6 | -52.3% | 38.3 | -19.3% | 48.6 | -22.4%
200 Proposed Method 001 | 75% | 10.3 17% | 33.3 | 6.5% 36.8 | 18.4%
Non-FA Method 0.04 0% 12.4 0% 35.6 0% 45.1 0%
SA Method 0.02 50% 11.9 4% 35.6 0% 41.5 8%
SA+CP Method 0.02 50% 12.1 2.4% 358 | -0.6% 43.5 3.5%
SA+CP+PPA Method 0.04 0% 13.0 | 48% | 36.7 | -3.1% 44.6 1.1%
Fixed-FA(1F) Method 0.05 | -25% 16.9 | -36.3% | 40.6 | -14% 48.3 -71.1%
Fixed-FA(7F) Method 0.02 50% 11.6 6.5% 34.3 3.7% 35.3 21.7%
Fixed-FA(7F*) Method || 0.02 50% 12.1 2.4% 349 2% 351 | 222%
Fixed-FA(16F) Method | 0.03 25% 153 | -23.4% | 39.1 | -9.8% 479 -6.2%
300 Proposed Method 0.04 20% 109 | 12.2% | 35,5 | 0.3% 46.7 -3.6%
Non-FA Method 0.05 0% 12.4 0% 35.6 0% 45.1 0%
SA Method 0.06 | -20% 12.3 0.4% 376 | -58% | 52.0 | -15.5%
SA+CP Method 0.08 | -60% 126 | -20% | 380 | -6.8% | 55.1 | -22.2%
SA+CP+PPA Method 0.05 0% 133 | -7.8% | 38.8 | -8.9% 533 | -182%
Fixed-FA(1F) Method 0.05 0% 163 | -31.6% | 41.8 | -17.3% | 50.5 | -12.0%
Fixed-FA(7F) Method 0.03 40% 11.8 5.1% 358 | -0.6% 42.2 6.3%
Fixed-FA(7F*) Method || 0.04 20% 12.2 1.3% 364 | -23% | 41.3 8.5%
Fixed-FA(16F) Method 0.1 -100% | 14.5 | -17.0% | 39.9 | -12.2% | 56.3 | -25.0%

Note: Imp. is defined by w, x € {Proposed Method, SA, SA+CP, SA+CP+PPA, Fixed-FA(1F), Fixed-FA(7F), Fixed-

Valuenon-ra

FA(7F* ), Fixed-FA(16F)}.

average waiting time of all passengers during the test pe-
riod. AST represents the average system time of all pas-
sengers, which is the sum of the average waiting time and
the average travelling time. MWT represents the maxi-
mum waiting time during the test period.

Table 4 shows that the proposed method outperforms
the Non-FA Method and six other heuristic methods
except MWT by the Fixed-FA(7F) Method and Fixed-
FA(7F*) Method on all four performance criteria. The
Imp. columns of each performance criteria show the per-
centage improvement of each method comparing with the
Non-FA Method. The worst performances of the Fixed-
FA(1F) Method on all four criteria suggest that inappro-
priate floor assignment for the idle cage, in this case
the idle cage is dispatched to the 1st floor regardless of
the down-peak traffic pattern, will deteriorate the perfor-
mance to some extent. Note that the performances of SA
Method and SA+CP Method are almost the same, which
suggests that only adding CP to SA for the floor assign-
ment does not impact the overall performances a lot. Fur-
thermore, the performances of Fixed-FA(7F) Method and
Fixed-FA(7F*) Method show that the latter one underper-
forms on AWT and AST though it works a bit better on
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MWT than the former one. This is reasonable since dis-
patching all idle cages to the 7th floor, where the rate
of passenger emergence is very large, in Fixed-FA(7F)
Method could shorten the AWT and AST, while dispatch-
ing one of idle cages to the lobby floor and one to the 16th
floor in Fixed-FA(7F*) Method could shorten the MWT
by servicing many more floors.

In order to compare the performances of the different
methods, we used the statistical test analysis of variance,
named ANOVA. It gives a statistical test on whether the
means of several groups, in our case, 9 different methods,
are all equal or not. We used 5% level of significance. The
various quantities in ANOVA are summarized in Table 5.
DF is the degree of freedom for the sum of the squares
between different methods. F value is the ratio of the
model mean square to the error mean square. Pr(F) is the
probability to judge how strong the hypothesis that all the
means are equal is supported. The smaller the Pr(F) is,
the stronger the hypothesis is supported. From Table 5,
it is found that AWT in all 9 different methods are not
equal, under the three kind of passengers’ density. Also,
the same statistical tests have been done for AST. Then,
the Student-Newman-Keuls (SNK) is used to compare all
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Table 5. ANOVA of different methods.
| | DF | Sumof Sq | MeanSq | FValue | Pr(F) |
Passenger Density 100
AWT 290.683 36.335 1894.445 | 0.0000000
AST 333.793 41.724 1587.426 | 0.0000000
Passenger Density 200
AWT 165.133 20.642 889.259 0.0000000
AST 214.002 26.750 785.322 0.0000000
Passenger Density 300
AWT 103.761 12.970 413.797 0.0000000
AST 186.420 23.302 501.630 0.0000000

the means based on ANOVA. The means are ordered from
small to large and divided into several subsets. Table 6-8
shows where the difference between two subsets is statis-
tically significant.

In addition, as mentioned earlier, the idle cage assign-
ment algorithm embedded controller is proposed espe-
cially for a light traffic mode where some idle cages oc-
cur. That is to say, the proposed method would not con-
tribute to the system performances when it is employed
in a heavy traffic mode, because there are almost no idle

Vol.14 No.5, 2010
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cages in such a mode. Furthermore, the idle cage as-
signment algorithm even deteriorate the performance a bit
when there are only few idle cages in a moderate traffic
mode, because the cage movement due to the idle cage
assignment weakens the flexibility of the idle cage move-
ment in terms of not serving the new passenger in two
directions, which could be implicitly linked to a larger
MWT. Fig. 6 confirms the above discussions, where ex-
perimental results under various passenger densities are
done. The frequencies of idle cage occurrence in each
passenger density are listed in Table 9. Also, Fig. 6 shows
that the proposed method works well under the passenger
density less than 450 persons/h.

5. Conclusions

In this paper, we proposed an idle cage assignment al-
gorithm of the DDES controller for the light traffic mode
where some idle cages exist. Three evaluation items are
proposed to determine the service floor for the idle cage,
and it is selected with optimized weights during the node
transition of the proposed GNP. Fitness curves show that
the evolutionary process was implemented generation by
generation. The best individuals are firstly applied to a
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Table 6. Student-Newman-Keuls in 100 person/h.

< Average Waiting Time>

100 person/h
Method

Subset for alpha = 0.05

1

| 2 [ 3 [ 4[5 ]6

| 7

8

Proposed
Non-FA
Fixed-FA(7F)
SA+CP
SA
Fixed-FA(7F*)
SA+CP+PPA
Fixed-FA(16F)
Fixed-FA(1F)

9.9

10.9

11.8
11.9
12.4
12.8

16.6

18.2

Pr(F)

1.0

1.0 1.0 | 027 | 1.0 1.0

1.0

1.0

<Average System Time>

100 person/h
Method

Subset for alpha = 0.05

| 213 [ 4[5 6

| 7

8

Proposed
Non-FA
Fixed-FA(7F)
Fixed-FA(7F*)
SA+CP
SA
SA+CP+PPA
Fixed-FA(16F)
Fixed-FA(1F)

31.1

32.1
325
33.1
335
33.6
34.5

38.3

39.7

Pr(F)

1.0

1.0 1.0 1.0 | 0.80 | 1.0

1.0

1.0

Table 7. Student-Newman-Keuls in 200 person/h.

< Average Waiting Time>

Method

200 person/h

Subset for alpha = 0.05

Ll 23 [4]5 ]

6|

7

Proposed

SA
SA+CP

Non-FA

Fixed-FA(7F)

Fixed-FA(7F*)

SA+CP+PPA
Fixed-FA(16F)
Fixed-FA(1F)

10.3
11.6
11.9
12.1
12.1
12.4
13.0

15.3

16.9

Pr(F)

1.0 1.0 | 007 | 1.0 1.0

1.0

1.0

< Average System Time>

Method

200 person/h

Subset for alpha = 0.05

L[ 23 [4]5 ]

6|

Proposed

Non-FA
SA
SA+CP

Fixed-FA(7F)
Fixed-FA(7F%)

333
343
349
35.6
35.6
35.8

Fixed-FA(16F) 39.1

SA+CP+PPA 36.7

Fixed-FA(1F)

40.6

Pr(F) 1.0 1.0 1.0 | 0.11 | 1.0 1.0

1.0
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Table 8. Student-Newman-Keuls in 300 person/h.

< Average Waiting Time>

300 person/h Subset for alpha = 0.05

Method 1 T 2] 3] 4]57]67171

Proposed 10.9
Fixed-FA(7F) 11.8
Fixed-FA(7F*) 12.2
SA 12.3
Non-FA 12.4
SA+CP 12.6
SA+CP+PPA 13.3
Fixed-FA(I6F) 145
Fixed-FA(1F) 16.3

Pr(F) 1.0 1.0 | 0.34 1.0 1.0 1.0 1.0

<Average System Time>

300 person/h Subset for alpha = 0.05

Method 1 [ 2] 3] 451617

Proposed 35.5
Non-FA 35.6
Fixed-FA(7F) 35.8
Fixed-FA(7F*) 36.4
SA 37.6
SA+CP 38.0
SA+CP+PPA 38.8
Fixed-FA(16F) 39.9
Fixed-FA(1F) 41.8

Pr(F) 0.63 1.0 1.0 1.0 1.0 1.0 1.0

Table 9. Frequency of idle cage occurrence.

| Passenger Density || 200 [ 700 | 1200 | 1700 | 2200 | 2700 |
| Freq. of ldle Cage || 45 [ 37 | 19 [ 07 | 03 [ 02 |

Note: The frequency of idle cage occurrence represents the num-
ber of idle cages per minute.

light traffic mode (100, 200 and 300 persons/h) and com-
pared with the Non-FA Method and six other heuristic
methods. The efficiency and effectiveness of the proposed
method have been verified by the performance compar-
isons. Furthermore, the proposed method has been ap-
plied to various traffic modes from light to heavy to clar-
ify its applicable conditions. In addition, ANOVA is used
to prove that the difference of the performance is not
caused by the selection of different samples. The pro-
posed method has been shown to have essential differ-
ences to the alternative methods for this domain.
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