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This paper proposes a new approach for self-
calibration and color image rendering using Radial
Basis Function (RBF) neural network. Most empiri-
cal approaches make use of a calibration object. Here,
we require no calibration object to both shape recov-
ery and color image rendering. The neural network
learning data are obtained through the rotations of a
target object. The approach can generate realistic vir-
tual images without any calibration object which has
the same reflectance properties as the target object.
The proposed approach uses a neural network to ob-
tain both surface orientation and albedo, and applies
another neural network to generate virtual images for
any viewpoint and any direction of light source. Ex-
periments with real data are demonstrated.

Keywords: neural network based rendering, photometric
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1. Introduction

Model based rendering purposes generating realistic
images from the 3-D modeling of the real object. In gen-
eral, 3-D modeling deals with both photometric and geo-
metric properties such as shape, viewpoint, lighting, and
albedo. Rendering is originally based on the technology
of 3-D computer graphics and it has been used in graph-
ics architecture, video games and recently in the area of
computer vision and mixed reality.

In the previous approaches for shape recovery, Wood-
ham [1] proposed photometric stereo to recover the sur-
face orientation from shading images under three light
sources. Further, an empirical photometric stereo [2]
was proposed in 1994. Empirical photometric stereo uses
LUT (Look Up Table) to look up the surface gradient from
three image intensities from a calibration sphere with the

same reflectance properties as the target object.
Iwahori et al. [3] developed Neural Network (NN) im-

plementation of photometric stereo. Radial Basis Func-
tion Neural Network (RBF-NN) [4] learns the mapping
of triple of image intensities to the corresponding surface
gradient using a calibration sphere. This means NN learns
the surface reflectance property with a calibration sphere
and generalizes to the target object. NN based photo-
metric stereo [5] estimates the monochrome albedo (re-
flectance factor) except the surface gradients.

Further, the approach [6] recovers the color reflectance
factor and surface gradients for the purpose of color im-
age rendering, here 3-D shape and color reflectance factor
are obtained by NN, then NN based image rendering is
applied to generate virtual images for any viewpoint and
any direction of light source.

The approach [7] proposed a method that renders vir-
tual objects from real illumination environment. 3-D
shape is obtained by the range finder. Reflectance pa-
rameters are estimated based on the Torrance-Sparrow re-
flectance function. [7] uses the ranger finder and it is dif-
ficult to realize the entire approach with only photometric
environment.

Shape-from-silhouette [8] recovers the shape of an ob-
ject from many images taken at many viewpoints. Shape-
from-silhouette requires the observation from 360◦ rota-
tion with the small rotation angle to recover the detailed
shape. The method does not need to know reflectance pa-
rameters. However it has the problem to catch the local
concave shape.

[9] combines the techniques of photometric stereo and
motion stereo to recover both 3-D shape and surface re-
flectance parameters. Instead, it is required that specific
reflectance function is assumed to obtain the surface re-
flectance parameters.

In this paper, we propose a new approach to improve
neural network based rendering without any calibration
sphere. Instead, the rotation of the target object itself
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generates the learning data for neural network via self-
calibration. Using the dichromatic reflection model, the
image intensities of specular reflection and diffuse reflec-
tion are separated from the observed data. Four images
of the target object under different four light sources are
used to recover the shape and to generate virtual images,
including recovering color reflectance factor.

2. Background

2.1. Principle of Photometric Stereo
In [5], NN based photometric stereo is used to recover

both surface orientation and surface albedo. Four light
source NN based photometric stereo uses a calibration
sphere which has the same reflectance properties as the
target object, and the following simultaneous equation
holds.



E1(x,y) = R1(nnn,ρ)
E2(x,y) = R2(nnn,ρ)
E3(x,y) = R3(nnn,ρ)
E4(x,y) = R4(nnn,ρ)

. . . . . . . . . (1)

where (R1,R2,R3,R4) is the reflectance map, nnn represents
the surface normal vector and ρ represents the reflectance
factor (albedo). In the previous approaches [5], NN learns
the mapping of (E1,E2,E3,E4) to (nnn,ρ) for a calibration
sphere and generalizes the NN to the target object to re-
cover (nnn,ρ). Suppose that the height function z = F(x,y),
then the surface gradient parameters (p,q) are represented
as (p,q) = ( ∂ z

∂ x ,
∂ z
∂ y ). In general, nnn can be represented with

x,y,z components (nx,ny.nz) or (p,q) as

nnn = (nx,ny,nz) =
(−p,−q,1)√

p2 +q2+1
. . . . . . (2)

2.2. Dichromatic Reflection Model
The dichromatic reflection model describes that image

intensity E consists of two components, one of which
is the diffuse reflection component Rd and the other of
which is the specular reflection component Rm. In the dif-
fuse reflection, the light is reflected in all directions. The
color of the diffuse refection represents the color of ob-
ject, while the color of specular reflection represents the
color of light source. The colors of reflection light is given
by the two kinds of colors but it is assumed that the white
color light source is used here.

The parameters Rd (diffuse component) and Rm (spec-
ular component) represent the mixing ratios of the dichro-
matic reflection model. The mixing ratio depends on the
surface normal vector nnn, the light source direction vector
sss and the viewing direction vector vvv at each point on the
object. Here Ew represents the intensity of light source
and it is assumed to be 1.

E = RdEwρ +RmEw = Rd(nnn,sss)ρ +Rm(nnn,sss,vvv) (3)

Occluding 
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Feature Point

n

n

α=0° α=90° α=180°

Horizontal
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Fig. 1. Self-calibration through rotation.

3. Self-Calibration and Neural Network
Learning

3.1. Self-Calibration with Rotation

Empirical photometric stereo is an approach to recover
the shape of the target object using a calibration object
with known shape. Here, it is assumed that a calibration
object has the same reflectance property as the target ob-
ject. Since a sphere has all possible surface gradients, a
sphere is usually used as a calibration object. However, it
is difficult to prepare the calibration sphere which has the
same reflectance properties as the target object in general.
To achieve the same condition as the calibration sphere,
the self-calibration is introduced to obtain the reflectance
properties by rotating the target object itself (as shown in
Fig. 1).

The target object is rotated from 0◦ to 359◦. The object
images are obtained under each of four light sources. At
the points on the occluding boundary of target object, the
surface normal is perpendicular to both the tangent to the
occluding boundary and the viewing direction. The sur-
face normals of those points on the occluding boundary
are uniquely determined and can be geometrically calcu-
lated. Those points are tracked during rotation and the
corresponding surface normals at the rotation angle α can
also be calculated. Among those points, some feature
points are selected with the uniform probability accord-
ing to the calculated surface normals. A set of surface
normals and corresponding observed image intensities of
selected feature points is used for neural network learning.

Gaussian sphere is defined as a virtual sphere with its
radius R = 1. The surface normals is represented as the
various points on the Gaussian sphere. Each point on
the Gaussian sphere is projected onto the tangent plane
defined as ( f ,g) space with the stereographic projection.
The values of ( f ,g) take the region within a circle of ra-
dius 2 for all points on the Gaussian sphere [10].

During rotation, the feature points on the occluding
boundaries are selected and tracked with every 1◦. Sup-
pose a feature point on the occluding boundaries, the point
is tracked geometrically during rotation. Tracked point on
the Gaussian sphere is mapped on the point inside the cir-
cle with the radius 2 in ( f ,g) plane as shown in Fig. 2.
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Fig. 2. Gaussian sphere and projection of feature point onto
( f ,g) space.
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Fig. 3. Plot example of feature points in ( f ,g) space.

The radius of the circle, r, represents the horizontal dis-
tance at each point on the occluding boundary from the
rotation axis, where r = Rcosθ = cosθ . θ represents the
angle between the normal vector of the feature point and
the horizontal axis.

From the relation of similarity for the triangles in
Fig. 2, ( f ,g) of the current feature point is determined
using the current rotation angle α , R and r as

f =
2Rr cosα
R+ r sinα

g = ±
√
( f 2 +4R2)(R2 − r2)√

(R+ r sinα)2 +(r cosα)2
. . . . (4)

g takes plus or minus value. If the vector nnn is over
the horizontal axis, g takes plus value. If the vector nnn is
under the horizontal axis, g takes minus value (as shown
in Fig. 1). Plot example of the feature points in ( f ,g)
space using Eq. (4) is shown in Fig. 3.

The values of (p,q) become infinite on the occluding
boundary. Except the points on the occluding boundary,
the corresponding (p,q) are given by

p =
4 f

4− f 2 −g2 , q =
4g

4− f 2 −g2 . . . . (5)

for points where (4− f 2 −g2) �= 0.

Fig. 4. Separation of diffuse and specular components.

3.2. NN for Estimating Color Reflectance Factor

When the neural network based rendering is used to
generate virtual images for any viewpoint and any direc-
tion of light source, it is necessary to obtain the color re-
flectance factors (color albedo) of the object. To recover
the color reflectance factor of all points of the object, NN
learning data are prepared from the feature points and the
learned NN is used to the remaining other points in the
generalization. For any feature point, the color (RGB
components) reflectance factor is calculated from Eq. (3)
as

(ER −ERm)/ERd = ρR . . . . . . . . . . (6)

(EG −EGm)/EGd = ρG . . . . . . . . . (7)

(EB −EBm)/EBd = ρB. . . . . . . . . (8)

When the specular components (ERm,EGm,EBm) can
be separated from (ER,EG,EB) based on the dichro-
matic model, the color reflectance factor (color albedo)
(ρR,ρG,ρB) can be estimated since the diffuse compo-
nents (ERd ,EGd,EBd) are based on the cosine of the in-
cident angle i, where i is the angle between the surface
normal vector nnn and the light source direction vector sss of
any feature point.

The color albedo (ρR,ρG,ρB) can be calculated using
Eqs. (6)-(8) for only the feature points. So, we use the
NN to estimate color reflectance factors including other
remained points of the object.

When the target object is rotated from 0◦ to 180◦, the
image intensities E of feature point are shown with the
real line in Fig. 4.

When E suddenly changes for some threshold value,
the brighter points are separated from E as Em. The points
with specular components are plotted with ‘o’ marker in
Fig. 4 as an example. The remaining data are recognized
as the components Edρ and the spline interpolation is ap-
plied to these data. As a result, the components Edρ are
separated from E. These components are shown with the
broken line in Fig. 4. Here, since the diffuse components
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Fig. 5. NN for estimating color reflectance factor.

Ed are calculated by cos i, the color reflectance factor ρ
of the feature point are calculated by ρ = (E −Em)/Ed .
This method is applied to each of RGB components using
Eqs. (6)-(8).

The color reflectance factor of the feature points is cal-
culated using Eqs. (6)-(8) and these data are prepared as
the learning data of NN. The color reflectance factor of
the other points on the target object is still unknown and
they cannot be prepared as the learning data. To recover
the color of all points on the target object, the learning
data of the feature points is synthesized by multiplying
random number using Eq. (9).

ρρρ
′
= {ρ

′
R,ρ

′
G,ρ

′
B}

= {ρR × rand1,ρG × rand2,ρB × rand3}. (9)

Here, the symbol ′ (dash) represents the learning data
with adding the random number.

Uniform random color reflectance factors (ρ ′
R,ρ

′
G,ρ

′
B)

are generated using Eq. (9), where (rand1,rand2,rand3)
is the randomized real value between 0 and 1. The cor-
responding image intensities (E

′
R,E

′
G,E

′
B) for the selected

feature points are given with the randomized real value
(rand1,rand2,rand3) according to the corresponding val-
ues of (ρ ′

R,ρ
′
G,ρ

′
B) under 4 light source directions. The

mapping of (E
′
1R, E

′
1G, E

′
1B, E

′
2R, E

′
2G, E

′
2B, E

′
3R, E

′
3G, E

′
3B,

E
′
4R, E

′
4G, E

′
4B) to (ρ ′

R,ρ
′
G,ρ

′
B) is input to the NN learning.

To estimate color reflectance factor, the learning data
(E

′
1R, E

′
1G, E

′
1B, E

′
2R, E

′
2G, E

′
2B, E

′
3R, E

′
3G, E

′
3B, E

′
4R, E

′
4G,

E
′
4B) are given as the input to the NN. The random color

reflectance factors (ρ ′
R,ρ

′
G,ρ

′
B) are given as the output

data. After learning of NN, the input data (E1R, E1G,
E1B, E2R, E2G, E2B, E3R, E3G, E3B, E4R, E4G, E4B) of a
target object are given, then, the color reflectance factor
(ρR,ρG,ρB) of the target object is obtained from NN as
the output data in the generalization of NN. The architec-
ture is shown in Fig. 5.

3.3. NN Implementation for Shape Recovery
Selected feature points can construct a virtual sphere

from the target object itself. Then the mapping of
(E1,E2,E3,E4) to (nx,ny,nz) of the selected feature points
is used as the learning data under four light sources.

When NN based monochrome photometric stereo is ex-
panded to color object to recover the shape, the number
of learning data increases. Although the number of color
data is 65536 times more than the monochrome data, it is
necessary to prepare the learning data efficiently. Further,

RBF
-NN2

E1

E2

E3

E4

nx

ny

nz

Fig. 6. NN for surface normal estimation.

(ER,EG,EB) is synthesized by random color reflectance
factor ρρρ ′

for each point on the learning data to cover the
color of all points on the target object, the following re-
lation (E

′
R,E

′
G,E

′
B) = (ρ ′

RER,ρ
′
GEG,ρ

′
BEB) are used. The

diffuse component and the specular component are sep-
arated in Eq. (3). That is, only the diffuse component is
synthesized and added for each point on the learning data
by ρρρ ′

.
NN learning with monochrome data generally gives the

higher accuracy than that with the original color data be-
cause of the dimensionality problem. This means that one
channel data with the largest dynamic range is used to
learn the NN mapping for the higher accuracy. There-
fore, the largest range data among (E

′
R, E

′
G, E

′
B) selected

for each pixel included in the target object are used as the
learning data E

′
.

E
′
= max(E

′
R,E

′
G,E

′
B). . . . . . . . . (10)

In the learning during self-calibration, the learning
data obtained from the feature points are prepared using
Eq. (10) and (E

′
1,E

′
2,E

′
3,E

′
4) are given as the input to NN.

The corresponding (nx,ny,nz) are given as the output of
NN. After the learning of NN, input data (E1,E2,E3,E4)
of a target object are given, then, the corresponding
(nx,ny,nz) of the target object is obtained through the
NN as output. The architecture for the generalization of
this RBF-NN (Radial Basis Function Neural Network) is
shown in Fig. 6.

4. Neural Network Based Rendering

Given the surface orientation and the color reflectance
factor, a virtual image can be rendered for any viewpoint
under any direction of the light source. The rendered im-
age intensity E can be represented using the incident an-
gle i, the emittance angle e, and the phase angle g with the
color reflectance factor ρ .

The previous approach of neural network based render-
ing [6] uses (i,e,g) shown in Eq. (11).

i = cos−1(nnn · sss)
e = cos−1(nnn · vvv)
g = cos−1(vvv · sss) . . . . . . . . . . . . (11)

Here, instead of using the phase angle g, the angle h is
defined in Eq. (12).

h = cos−1(ddd ·nnn) . . . . . . . . . . . . (12)
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Fig. 7. (i,e,h).

where h is the angle between the surface normal vector nnn
and a vector ddd, and the vector ddd is equally divided vector
between the light source direction vector sss and the view-
ing direction vector vvv as shown in Fig. 7. In the proposed
approach, E is derived from Eq. (13). Here, Rm and Em
means functions of (nnn,sss,vvv) and (i,e,h), respectively.

E = Rd(nnn,sss)ρ +Rm(nnn,sss,vvv)
= Ed(i)ρ +Em(i,e,h). . . . . . . . . (13)

Here, the range of (i,e,h) is given as

0◦ ≤ i ≤ 90◦, 0◦ ≤ e ≤ 90◦, 0◦ ≤ h ≤ 90◦. (14)

When we use four light sources, the variation of g is re-
stricted to only four values. Sparse sampling results in the
lower accuracy for generating image in general, as shown
in Fig. 8. It is necessary to use a large number of images
to obtain the high accuracy for the rendering. That is, a
large number of light sources are required when the neural
network is used to learn data from (i,e,g) space.

From the comparison between (i,e,g) space shown in
Fig. 8 and (i,e,h) space shown in Fig. 9, it is shown that
(i,e,h) space builds data sampling with few gaps. Using
(i,e,h) space can improve the accuracy of the neural net-
work learning.

The mapping of (i,e,h) to Em is learned for the ren-
dering of the specular components of the target object.
After the learning, Em is generalized using the rendering
NN. The architecture for the generalization of this RBF-
NN is shown in Fig. 10. Here, Ed can be calculated by
cos i = nnn · sss and Em is estimated using an RBF neural net-
work. The rendered image intensity (ER,EG,EB) can be
separately applied to Eq. (13).

5. Experimental Results

Figure 11 illustrates the observation environment. Four
light sources are used to illuminate the target object. Let
vvv be (0,0,1), and it is necessary to estimate sss for the neu-
ral network based rendering, one light source direction
is aligned with the camera viewing direction to check
whether the feature point extracted is good candidate or
not. The ( f ,g) of each feature point also is tracked as a
function of the rotation angle α . When the target object is
rotated from 0◦ to 180◦, each feature point extracted from
the occluding boundary is tracked horizontally during ro-
tation and the corresponding image intensities E are ob-
served. For the candidate of feature point observed under

g

e

i

Fig. 8. Sampling data in (i,e,g) space.

i

e

h

Fig. 9. Sampling data in (i,e,h) space.

i

e

h

Em

Fig. 10. NN rendering for specular component.

O
x

y

y

x
z

object

camera

turn table

light
source

Fig. 11. Observation environment.

the light source direction which is the same as the viewing
direction, E should be increased from 0◦ to 90◦ rotation,
while E should be decreased from 90◦ to 180◦ rotation.
Only the data of feature points which satisfy this condi-
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(a) Slope (b) Aspect
Fig. 12. Recovered surface shape.

(a) Actual input image (b) Color reflectance
Fig. 13. Recovered surface shape.

(a) Any light source (b) Any light source
direction 1 direction 2

Fig. 14. Results of virtual image rendering.

tion are used for the NN learning. The learning data are
sorted with the unique combinations of ( f ,g) and input to
NN. For the details, see [10].

Four images are obtained under four different condi-
tions of illumination for each object pose during rotation.
The target object is rotated with every 1 degree between
0◦ to 359◦ degrees. A total of 360× 4 images are taken
and used in this experiment. Actual input image consists
of 8-bit for each of RGB, and this input image intensity E
is normalized to the real value between 0 and 1. The range
of i,e,h takes 0 to π/2. The spread constant of RBF-NN
takes a half of the maximum of the input data in the NN
learning. In the NN learning for shape recovery and color
reflectance factor, the number of learning data set is 4029,
the number of learning epochs is 50, and the spread con-
stant is 0.5. In the NN based rendering, the number of
learning set is 5644, and the spread constant is 0.8.

The higher density of data is used in the neural net-
work, the better result is obtained in the glossy points.
This means that dense data are required when the neural
network uses the learning data in the glossy points. This
experiment is performed so that the target object is rotated
with every 1◦ step to obtain the dense observed data.

The recovered shape and color reflectance of the target

0
20

40
60

0

20

40

60

-200

0

200

Fig. 15. Height distribution.

object using self-calibration and NN are shown in Fig. 12
and Fig. 13. Here, surface orientation (surface gradient)
of each point on the target object is represented as both
slope and aspect. Slope represents the steepness of sur-
face gradient and aspect represents the azimuth of gradi-
ent. Fig. 12(a) linearly encodes the slope angle e (i.e.,
tan−1(

√
p2+q2), the angle between the surface normal

and the viewing direction) as a gray value in the range of
black (e = 0) to white (e = π/2), while Fig. 12(b) plots
the aspect angle (i.e., tan−1(q/p), the projection of the
surface normal onto the XY -plane) as a short line segment.
Fig. 13(b) encodes the color albedo (color reflectance fac-
tor). Both the surface orientation and color reflectance
factor are recovered by the proposed self-calibration ap-
proach without using any calibration sphere.

The virtual image means the generated image by the
proposed method for any viewpoint and any direction
of light source after obtaining 3-D model and color re-
flectance factor acquired by each NN. The virtual image
under any light source direction is shown in Figs. 14(a)
and (b). The light source direction is given as the vector
(0.6635,−0.0084,0.7656) in Fig. 14(a). The light source
direction is given as the vector (−0.6622,0.0903,0.7438)
in Fig. 14(b). It is shown that the virtual image rendering
gives the realistic feelings for both of them.

The height distribution obtained by the integration of
surface orientation is shown in Fig. 15. Rotating this
height distribution and the rendering NN can generate a
realistic virtual image at any viewpoint. The results are
shown in Figs. 16(a) and (b) from the different views.

From these results, the proposed approach can generate
the virtual images of the target object for any viewpoint
and any direction of light source. In the experiments, the
multiple color object in Fig. 17(a) is used to obtain results,
and error analysis is performed on the target object.

Figure 17(a) shows the actual image in the light source
direction (0.6635,−0.0084,0.7656). Using the simpler
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(a) Any view point 1 (b) Any view point 2
Fig. 16. Results of virtual image rendering.

(a) Actual input image (b) Virtual image by
Torrance-Sparrow model

Fig. 17. Results of virtual image rendering.

(a) Virtual image (b) Virtual image
rendering using (i,e,g) rendering using (i,e,h)

Fig. 18. Difference between real virtual light image.

(a) (i,e,g) space (b) (i,e,h) space
Fig. 19. Difference between real virtual light image.

formula of Torrance-Sparrow model Em = k e
(− h2

2σ2 )

cos i [11],
the parameter k = 0.5 and σ = 0.01, Fig. 17(b) is the vir-
tual image by Torrance-Sparrow model in the same light
source direction. The mean error between actual image
Fig. 17(a) and the virtual image by Torrance-Sparrow
model Fig. 17(b) is 7.9520, and the variance is 0.0061.
Fig. 18(a) shows the result in the same light source direc-
tion using the (i,e,g) space. Fig. 18(b) shows the result
in the same light source direction using the (i,e,h) space.
The difference between actual image Fig. 17(a) and vir-
tual image Fig. 18(a) is shown in Fig. 19(a). The mean
error between actual image Fig. 17(a) and virtual image
Fig. 18(a) is 10.5645, and the variance is 0.0167. The dif-

Table 1. Mean and variance error.

mean variance
error of error

(i,e,g) space 10.5645 0.0167
(i,e,h) space 3.3623 0.0031
Torrance-Sparrow 7.9520 0.0061
model

ference between actual image Fig. 17(a) and virtual im-
age Fig. 18(b) is shown in Fig. 19(b). The mean error
of real image Fig. 17(a) and virtual image Fig. 18(b) is
3.3623, and the variance is 0.0031. The result is shown
in Table 1. Here, it is confirmed that the result obtained
by (i,e,h) space is better than that by (i,e,g) space from
the rendering results including the glossy points. From
the comparison between the virtual image by Torrance-
Sparrow model and that by the proposed method, the pro-
posed method using (i,e,h) space with NN based render-
ing is better than the method by model based rendering.

6. Conclusion

This paper proposed a new method of self-calibration
and color image rendering using RBF-NN without using
any calibration object. The learning data is obtained by
rotating the target object itself without assuming any func-
tional model of the reflectance function. With four input
images, both the surface orientation and color reflectance
factor are obtained using NN from the target object with
multiple color reflectance factors. Further, a virtual im-
age under any viewpoint and any direction of light source
can be obtained with rendering NN. It is shown that the
proposed approach is effective through the experimental
results for the real object. Cast shadow is another prob-
lem but this remains as the future work.
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