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Machine vision has been widely studied, leading to the
discovery of many image-processing and identification
techniques. Together with this, rapid advances in com-
puter processing speed have triggered a growing need
for vision sensor data and faster robot response. In
considering omnidirectional camera use in machine
vision, we have studied omnidirectional image features
in depth to determine correlation between parameters
and ways to flatten 3-dimensional images into 2 dimen-
sions. We also discuss ways to process omnidirectional
images based on their individual features.

Keywords: omni-directional vision, mobile robot, local-
ization, navigation, color detection

1. Introduction

How mobile robots may potentially play roles in haz-
ardous, repetitive tele-operated or automated tasks has at-
tracted much attention. We have focused on automated
mobile-robot movement involving efficient, automated
standalone movement through sensor assistance. With the
wide variety of sensors now available, robots can obtain
the information they need about their surroundings and
react accordingly. Vision sensors have undergone wide
study due to the humongous amounts of data they provide.
Vision systems usually consist of “eyes” — one or more
cameras — coupled to a “brain” — or processor — to handle
information obtained. Effective hardware functioning re-
quires (usually) embedded intelligent image recognition
and processing.

Intensified research and success in this field has been
largely limited to developed nations, among which ex-
amples include Honda’s Asimo and Sony’s Aibo which
use vision-based navigation only as a part of other intel-
ligence. Work in developing countries has just reached
the autonomous level after great time and effort. The leap
from manual to tele-operated robots is itself being made
where researchers combine microprocessors and micro-
controllers to overcome the computational limitation of
microcontrollers alone although mobile robot space and
resource restrictions make implementing both microcon-
trollers and microprocessors impractical especially for
compact robots. Implementing microprocessors at a sepa-
rate workstation would require wired control although an
alternative is to use wireless data transmission from the
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workstation microprocessor to the robot microcontroller.

With the importance of mobile robot roles widely rec-
ognized, the fast pace of development begs for better ef-
fectiveness and efficiency, higher work and product qual-
ity, improved reliability, less human labor in dangerous
and hazardous tasks and lower operating cost especially
in semi- and fully automated factories. While automa-
tion is widely viewed as the solution to these problems,
crucial factors hindering its implementation are limited
space and energy resources and the cost of controllers.
Mobile robots are widely used as Automated Guided Ve-
hicles (AGV) in factories and as fire-fighters and secu-
rity guards — all applications requiring robots to detect
their own locations, headings and potential obstacles — in-
formation crucial to effective autonomous navigation and
task completion.

The most suitable sensors available for acquiring this
wide variety of information are vision sensors. In global
navigation, ceiling cameras acquire views of entire en-
vironmental layouts. Cameras on robots informing their
hosts of local navigation details are the focus here, which
brings up the issue of the narrow field of view (FOV) [1].
We propose using omnidirectional cameras which have
a 360° FOV to cover the navigation environment. This
FOV has increased omnidirectional camera use among vi-
sion researchers. Kohsia used an omnidirectional cam-
era to calculate the driver’s view of the vehicular envi-
ronment, presenting multistate statistical decision models
with Kalman-filter based tracking to detect head position-
ing and calculate face orientation [2]. Kim presented Si-
multaneous Localization And Map building (SLAM) us-
ing omnidirectional stereovision to provide robust calcu-
lation and minimize the effects of motion drift [3].

Ulrich introduced appearance-based place recognition
for topological localization, classifying real-time color
imaging based on nearest-neighbor learning, image his-
togram matching and voting while obtaining 87-98% ac-
curacy [4]. However, information explaining the basics
of this wonderful invention remains insufficient. This pa-
per’s main objective is to address this issue and it is orga-
nized as follows: Section 2 details the mobile robot — The
OmniBot and Section 3 describes omnidirectional cam-
era features. Section 4 gives the experimental setup and
results determining how different omnidirectional camera
parameters correlate. Section 5 discusses robot localiza-
tion and ways to process omnidirectional images and Sec-
tion 6 presents conclusions and projected work.
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Fig. 1. The OmniBot using differentially driven wheels.

2. The OmniBot

The OmniBot used in experiments and shown in Fig. 1
is based on differential-driven wheeled mobile robots
whose movement is controlled using independent left and
right wheels supported front and back by 2 transwheel
casters that swivel freely in the local x and y directions [5].
The transwheel’s hard contact surface reduces friction [6].
The weight of the OmniBot is distributed equally on the
platform to enhance robot stability. This design better
controls the movement of the OmniBot in navigation even
under space limitations. This can be further explained by
the ability of the OmniBot to make a turning even without
having to make any forward or reverse movement. It only
needs to move both left and right wheels in the same di-
rection to turn at a location. This movement is commonly
called “hard” or “sharp” turns [6].

The properties of the OmniBot on a planar surface are
shown in Fig. 2. Two motor-driven center wheels pro-
vide traction. Front and back casters freely rotate to sup-
port the OmniBot which is located in global coordinates
at point P1. The x-axis of P1 is x1 and that of the y-axis
is y1 which point lies at the center of the motor-driven
wheel axle. The a-angle is the heading of the OmniBot
as related to the y-axis in global coordinates — parameters
represented by the following vector:

x1

g=|y|. ... ..
o

This model has three degrees of freedom with nonholo-
nomic constraints limiting local or instantaneous robot
movement to two degrees of freedom.

This model assumes pure rolling, no friction, non-
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Fig. 2. Model of the OmniBot.

Table 1. Locomotion of the OmniBot.

. Left Wheel Right Wheel

Motion - -

Rotation | Speed | Rotation | Speed
Forward CCW Same CwW Same
Reverse CwW Same CCW Same
Left Stop Zero Ccw Same
Right CCW Same Stop Zero
Sharp Left Ccw Same Ccw Same
Sharp Right CCW Same CCwW Same
Arc (Center CCW | Slow | CW | Fast
point on left)
Arc (Center CCW | Fast | CW | Slow
point on right)

CCW = Counter Clockwise
CW = Clockwise

slippage and nonholonomically constrained to limit the
OmniBot’s speed but not its location [5]. Regarding the
local coordinates in Fig. 2, the OmniBot only has velocity
in the y direction and a rotation angle of ¢ at any time. Ve-
locity in the x direction is restricted with no displacement
in that direction. The OmniBot can have velocity in the
x and y directions in global coordinates as it can turn 90°
with velocity in the new direction. Thus, the restriction on
velocity does not limit the displacement in any direction.
In short, local-coordinate movement and positioning are
restricted but global movement and positioning are not.

Basically, the direction of individual wheel rotation and
speed controls all the movements of the OmniBot. In or-
der to move the OmniBot forward and backward, both
wheels will be moving at the same speed but in the oppo-
site directions. The OmniBot turns either by stopping one
wheel or by turning both wheels in opposite directions.
The OmniBot follows an arc by rotating both wheels in
opposite directions at different speeds. An arc with the
center of rotation on the left is produced by making the
right wheel faster than the left wheel. Table 1 shows ba-
sic locomotion of the OmniBot.
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Fig. 3. (a) Original image from the omni-directional camera
(b) panaroma image from the omni-directional camera and
(c) addition of higher objects.

3. Omnidirectional Cameras

This research uses an omnidirectional camera rather
than a perspective camera installed on the OmniBot to ob-
tain a 360° local view of the environment. Advantages
of this include a greater FOV and enabling the Omni-
Bot to learn the environment in the shortest time with-
out excessive camera panning or tilt. The disadvantage is
that omnidirectional camera images tend to be distorted
by shape variation even in simple Cartesian conversion
such as translation, scale or rotation. In an example of an
omnidirectional camera image taken at the same height
shown in Fig. 3(a), the distorted surroundings are visi-
bly doughnut-shaped with image distortion limited to ob-
ject height. This means that an object’s size increases
with height, so objects on the same horizontal plane will
have zero distortion as seen where grids formed by floor
tiles remain undistorted except for slight barrel distortion
which is commonly seen in perspective cameras [7].
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Fig. 4. (a) Side view of the camera-mirror system and (b)
the mirror on the omni-directional camera.

Further observation shows individual objects in the im-
age retain their top shape but at a different scale depend-
ing on height as Anderson found where physical object
shapes remain intact on the ground plane [8]. The object
size tends to grow with increasing distance from the im-
age center as shown in Fig. 3(c) where additional objects
are higher. The size of both the rectangular bracket and
the stool increases with their respective height. The maxi-
mum object size is viewed if the object is shorter than the
mirror height. Fig. 3(b) shows a panorama of the original
image with images from the mirror’s height at the center
of the view. This explains distortion in images due to ob-
ject height variation. Fig. 4(a) shows camera architecture
and light ray transmission from the object into the camera.

4. Image Characteristic

Experiments were conducted to determine the relation-
ship between pixel displacement and object height as
shown in Fig. 5. The scale of real-world distance to pixel
distance is measured, and then a wooden block is placed
near the image center. The addition of identical wooden
blocks provides a constant incremental height of 50 mm.
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100mm
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Fig. 5. The experimental setup and the blocks used in the
experimental setup (inset).

Fig. 6. Angle of pixel displacement relative to center of image.

The four base-corner coordinates are measured, and then
the four coordinates of corners on the top of the first block
are measured. This last measurement is being repeated
when a new block is added until displaced pixels fall out-
side of the image. This process is repeated with wooden
blocks shifted away from the image center to obtain a dif-
ferent image radius.

The data thus obtained is used to calculate the pixel dis-
placement angle and the magnitude of pixel displacement.
The first thing that this calculation shows is that the pixel
displacement angle remains unchanged throughout incre-
mental height as stated by Daneshpanah regarding angles
preserved completely in a linear manner [9]. The pixel
displacement angle thus depends solely on the object an-
gle from the image center and any further displacement
due to height is in the direction of the same angle obtained
earlier as shown clearly in Fig. 6.

Regarding the magnitude of pixel displacement, the re-
lationship between the object height and the magnitude of
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Fig. 7. The graph of pixel displacement versus height of objects.

Table 2. Coefficients a and b at different radius.

Pixel radius Real word distance a b
(pixel) (cm)
29.07 19.38 2.2888 | 0.0684
33.62 22.41 2.6189 | 0.069
47.17 3145 2.8853 | 0.0723
65.31 43.54 6.5997 | 0.064
73.01 48.67 6.3398 | 0.0673
79.12 52.75 6.7933 | 0.0676
85.59 57.06 6.6439 | 0.0698
101.83 67.89 7.3444 | 0.075
111.2 74.13 8.4181 | 0.0719
114.39 76.26 6.7269 | 0.0798
122.8 81.87 7.9233 | 0.0772
170.07 113.38 11.391 | 0.0796
177.79 118.53 11.457 | 0.0798
183.36 122.24 12.94 | 0.0775
190.54 127.03 12.389 | 0.0798

pixel displacement is an exponential function. The expo-
nential function obtained at this point has different coef-
ficients if the point is placed at different radius from the
image center as shown in Fig. 7 where each exponential
function represents a different radius from the image cen-
ter.

The relationship between the magnitude of pixel dis-
placement and object height is generalized as follows:

y:aeb"...............(Z)

Where y is the magnitude of pixel displacement, x the
object height, and a and b coefficients dependent on the
object radius from the image center. Eq. (2) requires that
we find the relationship between (i) pixel radius and co-
efficient a and (ii) pixel radius and coefficient b. Coef-
ficients a and b values are calculated as follows for the
object radius from the image center.

The result approximates the relationship between pixel
radius and coefficients a and b as shown in Fig. 8.
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Fig. 8. (a) Graph of coefficient a versus pixel radius and (b)
graph of coefficient b versus pixel radius.

5. Experimental Setup

The transformation function for flattening omnidirec-
tional camera images is approximated based on results ob-
tained thus far. Markers are placed on environment land-
marks and the combination of color and movement used
to obtain their exact locations in local coordinates. This
method is known as color blob tracking and robots need
not recognize objects to complete tasks [10].

With a known height, pixel points from markers are
converted to exact local coordinates enabling the Omni-
Bot to know its global coordinate location by referencing
the global coordinate of landmarks which are invariably
within the view due to the omnidirectional camera’s large
FOV, enabling the robot’s path to be planned as shown in
Fig. 9. We confirmed the accuracy of this approach by
comparing actual OmniBot axle and heading global co-
ordinates to global coordinates calculated using the algo-
rithm shown in Tables 3 and 4.

As shown above, a small deviation occurs between ac-
tual and calculated global locations of the OmniBot, pos-
sibly due to wireless transmission fluctuations and poor
lighting. Such displacement deviation is invariably less
than 0.4 at any location on the map, indicating that the
OmniBot can locate itself within global coordinates using
landmarks. Further experiments conducted to determine
its heading in relation to a defined global location on the
map showed that the OmniBot locates itself and finds its
way to the defined global destination as shown in screen
captures in Fig. 10.

This confirmed that the OmniBot approximates its
global location in the global environment and navigates
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Fig. 9. Localization of the OmniBot by using landmarks.

Table 3. Global axle position.

Calculated Actual Global | grror
Reading | Global Position | Position (Distance

X y X y in Units)
1 7.5 3.0 7.4 3.0 0.100
2 12.5 3.5 12.3 32 0.361
3 12.0 4.8 11.7 5.0 0.361
1 11.5 7.9 11.5 7.6 0.300
2 12.0 9.2 11.9 8.9 0.316
3 11.8 11.0 11.8 11.3 0.300
1 6.0 12.5 6.0 12.8 0.300
2 4.0 12.0 39 12.3 0.316
3 35 10.5 3.6 10.2 0.316
1 4.0 7.8 39 7.8 0.100
2 29 6.0 3.0 6.3 0.316
3 43 32 4.6 32 0.300

Table 4. Global head position.

Calculated Actual Global | grror
Reading | Global Position | Position (Distance

X y X y in Units)
1 8.5 3.0 8.3 29 0.224
2 13.0 4.0 12.8 3.8 0.283
3 11.2 52 11.1 53 0.141
1 11.5 8.5 11.6 8.7 0.224
2 12.8 10.0 12.7 9.8 0.224
3 11.1 11.8 11.1 12.0 0.200
1 52 12.5 5.0 12.7 0.283
2 32 11.5 3.1 11.8 0.316
3 32 11.2 32 11.0 0.200
1 4.0 8.5 39 8.8 0.316
2 3.5 6.8 3.8 7.0 0.361
3 5.1 32 53 32 0.200
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(a) Time frame at 00:52/01:57

(d) Time frame at 01:26/01:57

(b) Time frame at 01:04/01:57

(e) Time frame at 01:52/01:57

(c) Time frame at 01:13/01:57

(f) Time frame at 01:57/01:57

Fig. 10. Localization and navigation of the OmniBot (without obstacles).
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Fig. 11. Graph of distance from destination against time.

toward the defined global destination with minimal error.
Fig. 11 shows the robot’s distance from the destination
versus time. Final error is 0.3, the same as shown in Ta-
bles 3 and 4. Fig. 12 shows robot heading angles versus
time. Although the robot took much longer to reach a

60 Journal of Advanced Computational Intelligence

steady state, oscillation and steady state error are min-
imal and could be improved, for example by adding a
Proportional-Integral-Derivative (PID) or fuzzy controller
to the omnidirectional vision system. Error could also be
minimized by replacing wireless vision system with an on
board vision system to ensure more reliable vision trans-
mission.

As yet, the OmniBot only navigates obstacle-free envi-
ronments. For autonomous obstacle avoidance, the Om-
niBot must be able to differentiate between the floor and
objects on the floor. Waypoints will be created in local
navigation until the OmniBot reaches the global destina-
tion as shown in Fig. 13 where the white blob is floor area
for navigation and black blobs obstacles or areas that are
not navigable. Red squares are possible navigation coor-
dinates.
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Fig. 12. Graph of heading angle against time.

Fig. 13. Floor finder.

6. Conclusions

Image distortion in omnidirectional camera occurs due
to vertical object height and object radius from the image
center. Thus, the transformation function required to flat-
ten the image can be used to approximate the displaced
coordinates useful in robot localization and navigation in
a landmarked environment. However, the transformation
function requires the height of the object to be known in
the first place. Therefore, it is another effort to find out
how to approximate the height of the object in the envi-
ronment to provide greater autonomy to the system.
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